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Abstract. We have developed a 3D magnetohydrodynamics simulation code for applications in the solar convection zone
and photosphere. The code includes a non-local and non-grey radiative transfer module and takes into account the effects of
partial ionization. Its parallel design is based on domain decomposition, which makes it suited for use on parallel computers
with distributed memory architecture. We give a description of the equations and numerical methods and present the results
of the simulation of a solar plage region. Starting with a uniform vertical field of 200 G, the processes of flux expulsion and
convective field amplification lead to a dichotomy of strong, mainly vertical fields embedded in the granular downflow network
and weak, randomly oriented fields filling the hot granular upflows. The strong fields form a magnetic network with thin, sheet-
like structures extending along downflow lanes and micropores with diameters of up to 1000 km which form occasionally at
vertices where several downflow lanes merge. At the visible surface around optical depth unity, the strong field concentrations
are in pressure balance with their weakly magnetized surroundings and reach field strengths of up to 2 kG, strongly exceeding
the values corresponding to equipartition with the kinetic energy density of the convective motions. As a result of the channelling
of radiation, small flux concentrations stand out as bright features, while the larger micropores appear dark in brightness maps
owing to the suppression of the convective energy transport. The overall shape of the magnetic network changes slowly on a
timescale much larger than the convective turnover time, while the magnetic flux is constantly redistributed within the network
leading to continuous formation and dissolution of flux concentrations.

Key words. magnetohydrodynamics (MHD) – Sun: magnetic fields – Sun: photosphere – Sun: granulation –
Sun: faculae, plages

1. Introduction

The interaction between convective flows and magnetic fields
in the solar photosphere and the uppermost layers of the con-
vection zone gives rise to a number of processes which are of
interest both in a solar and in a general astrophysical context.
These include flux expulsion and convective field amplifica-
tion, which lead to highly evacuated flux concentrations with
superequipartition field strength, the modification or suppres-
sion of convective energy transport by strong fields, and the dy-
namics resulting from wave excitation and magnetic reconnec-
tion. In the context of the magnetic connectivity of the entire
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solar atmosphere, information on the structure and dynamics
of the photospheric fields represents a crucial input.

While the progress in observational techniques (e.g. in-
frared spectroscopy, speckle polarimetry, adaptive optics) has
greatly improved our knowledge of photospheric magnetic
fields, observations provide information about the variation of
physical quantities along the line of sight in a structured at-
mosphere only in highly convoluted form, which does usu-
ally not allow an unambiguous interpretation, while subpho-
tospheric layers are entirely inaccessible to direct observations.
Numerical simulations of MHD processes in the photosphere,
on the other hand, provide a way to obtain information on the
full three-dimensional structure of magnetic field configura-
tions, as well as on spatial scales which are not resolved by
current observations, thus helping to develop consistent models
of the physical processes underlying the observed phenomena.
In order to approximate solar conditions, comprehensive simu-
lations of magneto-convection in the photosphere and convec-
tion zone include elaborate physics: radiative transfer, which is
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the main driver of convection and has an important influence
on the temperature structure and brightness of magnetic field
concentrations, and partial ionization, which strongly affects
the efficiency of convective energy transport. With continuum,
spectral line and polarization diagnostics, realistic numerical
models can be directly compared with observations.

Following the work by Nordlund (1983), fully three-
dimensional simulations of photospheric magneto-convection
(e.g. Nordlund & Stein 1990; Bercik 2002; Stein & Nordlund
2003b) have provided valuable insight into the spatial struc-
ture and time evolution of magnetic field concentrations. A dif-
ferent approach was taken by Grossmann-Doerth et al. (1998)
and Steiner et al. (1998) who carried out two-dimensional sim-
ulations of magnetic structures in Cartesian geometry. While
geometrically constrained, these simulations achieved rela-
tively high spatial resolution at affordable computational cost,
thus permitting a more realistic modelling of small-scale mag-
netic structures, boundary layers and shocks. Comprehensive
reviews of realistic simulations of solar magneto-convection
have been given by Schüssler (2001) and Schüssler & Knölker
(2001). Following the lines of more idealized models, Cattaneo
(1999), Emonet & Cattaneo (2001) and Cattaneo et al. (2003)
have carried out simulations of thermal magneto-convection in
the Boussinesq approximation which highlighted the possibil-
ity that a substantial fraction of the magnetic field in the quiet
photosphere is generated locally by fast dynamo action associ-
ated with the granular and supergranular flows.

In this paper we present MURaM1, a newly developed
3D MHD simulation code for applications in the solar photo-
sphere and convection zone which meets the requirements of
realistic simulations (Vögler 2003; Vögler et al. 2003). It in-
cludes non-local and non-grey radiative transfer and takes into
account partial ionization effects. The code is parallelized by
means of domain decomposition, which allows to make full
use of the computational capabilities of large, massively par-
allel computers with distributed memory architecture. We give
a detailed description of the code and discuss simulation re-
sults obtained with it. Early other results already obtained with
the MURaM code have been presented by Vögler & Schüssler
(2003), Schüssler (2003), Schüssler et al. (2003), and Keller
et al. (2004). The paper is organized as follows. In Sect. 2 we
describe the physical model, including the basic equations and
the boundary conditions. The numerical methods are addressed
in Sect. 3. In Sect. 4 we present the simulation of a typical
solar plage region with an average field strength of 200 G.
We discuss morphology, time evolution and statistical proper-
ties of the magnetic field as well as the relation between field
strength and brightness of magnetic structures. Our conclusions
are given in Sect. 5.

2. Equations and boundary conditions

2.1. The MHD equations

We solve the equations of (non-ideal) MHD in three spatial
dimensions in an inertial frame of reference with constant

1 The Max-Planck-Institute for Aeronomy/ University of Chicago
Radiation Magneto-hydrodynamics code.

gravitational acceleration, using Cartesian coordinates.
Rotation of the Sun is not accounted for since the Coriolis
force is negligible on typical length-scales of solar granulation
of the order of 1000 km. An estimate for the Rossby number
gives Ro ≡ u/2ΩL ≃ 300, whereas the Coriolis force becomes
dominant for Ro ≪ 1. We write the system of magnetohydro-
dynamic equations in conservative form in terms of density, ̺,
momentum density, ̺u, total energy per volume, e, and
magnetic field strength, B, as the independent variables. The
system consists of the continuity equation,

∂̺

∂t
+ ∇ · (̺u) = 0 (1)

representing mass conservation, the equation of motion,

∂̺u

∂t
+ ∇ ·

[

̺uu +

(

p +
|B|2

8π

)

1 −
BB

4π

]

= ̺g + ∇ · τ, (2)

the energy equation,

∂e

∂t
+ ∇ ·

[

u

(

e + p +
|B|2

8π

)

−
1

4π
B(u · B)

]

= (3)

1
4π
∇ · (B × η∇ × B) + ∇ · (u · τ) + ∇ · (K∇T ) + ̺(g · u) + Qrad,

and the induction equation

∂B

∂t
+ ∇ · (uB − Bu) = −∇ × (η∇ × B). (4)

In Eqs. (1)−(4), u is the flow velocity, p is the gas pressure
and g is the gravitational acceleration. uu, uB, Bu and BB

are dyadic products and 1 is the 3 × 3 unit matrix. τ is the vis-
cous stress tensor. The energy equation is written for the total
energy density per volume, e, which is the sum of internal, ki-
netic and magnetic energy densities: e = eint+̺|u|

2/2+ |B|2/8π.
T is the temperature and K the thermal conductivity. Qrad is the
source term which accounts for radiative heating and cooling.
This term is discussed in detail in Sect. 2.2.

In our code, the diffusive terms are implemented in two al-
ternative ways. One version assumes constant scalar diffusion
coefficients, µ (the dynamic viscosity), K and η. In this case,
the components of the vicous stress tensor τ are given by

τi j = µ

(

∂ui

∂x j

+
∂u j

∂xi

−
2
3
δi j (∇ · u)

)

, i, j = 1, 2, 3. (5)

The alternative implementation uses artificial shock-resolving
and hyperdiffusivities, which provide efficient numerical sta-
bilization and high effective Reynolds numbers in large eddy
simulations, which do not aim at resolving the actual diffusive
length scales. The numerical implementation is described in
Sect. 3.2. In the simulations discussed in Sect. 4, the viscous
and thermal diffusion terms were replaced by their artificial
counterparts.

The system of MHD Eqs. (1)–(4) is completed by the equa-
tion of state, which describes the relations between the ther-
modynamical quantities of the fluid. At temperatures typically
encountered in the uppermost few Mm of the convection zone,
the solar plasma is partly ionized and the simple thermodynam-
ical relations for an ideal gas do not apply. As hydrodynami-
cal calculations have shown, changes in the thermodynamical



A. Vögler et al.: Simulations of magneto-convection in the solar photosphere 337

properties due to partial ionization have considerable conse-
quences for the character of convection. In the hydrogen ioniza-
tion zone, about 2/3 of the enthalpy flux is transported by latent
heat. Buoyancy driving is strongly enhanced since partial ion-
ization reduces the adiabatic gradient ∇ad, and the increase in
specific heat tends to suppress the radiative damping of temper-
ature fluctuations (Rast & Toomre 1993). For our equation of
state, we take into account the first ionization of the eleven most
abundant elements. Since we write the MHD equation with ̺
and eint as the fundamental thermodynamical quantities whose
time development is explicitly described, the system is closed
by relations specifying the dependence of T and p on ̺ and eint:

T = T (̺, eint); p = p(̺, eint). (6)

These relations are stored in tables from which the required
quantities are interpolated during a simulation run. The pro-
cedure by which we obtain these relations is sketched in
Appendix A.

2.2. The radiative source term

The photosphere is the region where radiation takes over from
convection as the dominant energy transport mechanism and
where the plasma becomes transparent for radiation in the vis-
ible wavelength range. The energy exchange between gas and
radiation determines the outgoing radiation intensity as well as
the temperature structure of the photosphere and is responsible
for the strong entropy gradient which acts as the main driver
of convection. Therefore, an accurate representation of the ra-
diative energy exchange rate, Qrad, is crucial both for the dy-
namics and temperature structure as well as for the diagnostics
of magneto-convection. Since the mean free path of photons
becomes large as the atmosphere becomes transparent in the
photosphere, radiative transfer at this height is essentially non-
local, rendering the diffusion approximation of radiative energy
transport inadequate. Hence, an accurate calculation of Qrad re-
quires the solution of the (time-independent) radiative transfer
equation (RTE hereafter)

dIν

dτν
= Sν − Iν (7)

for a number of frequencies and ray directions. Iν is the (spec-
tral) specific intensity, Sν is the source function and dτν =
κν ̺ ds is the optical thickness of the path element ds. κν is the
opacity of the plasma. We neglect departures from local ther-
mal equilibrium (LTE) and assume that the source function is
given by the Planck function, S ν = Bν. The numerical treatment
of radiative transfer is dicussed in Sect. 3.5. Once the radiation
field is known, the radiative energy flux,

Fν =

∫

4π
Iν(µ) µ dω, (8)

and the average intensity,

Jν =
1

4π

∫

4π
Iν(µ) dω, (9)

can be calculated. Here µ(ω) denotes the unit vector in the ray
direction. The radiative heating rate then follows from

Qrad = −

∫

ν

(∇ · Fν) dν = 4π̺
∫

ν

κν(Jν − Bν) dν. (10)

2.3. Boundary conditions

2.3.1. Upper boundary

In the current vesion of the code, the upper boundary of the
computational domain is assumed to be closed, with stress-
free conditions for the horizontal velocity components. This
assumption leads to unphysical reflection of waves and shocks.
In our simulations, however, the upper boundary is located
near the temperature minimum, where densities are very low.
Therefore, possible inaccuracies in the modelling of the flow
field in the uppermost layers of the computational domain due
to the closed-box assumption have only a small influence on
the deeper layers around τ500 = 1 which we are primarily in-
terested in. For a realistic modelling of wave propagation near
the upper boundary, an open and transmitting boundary is re-
quired. The implementation of such a boundary condition is
under development. Physically, a closed boundary implies that
the vertical convective fluxes of mass, energy, and horizontal
momentum vanish on the boundary itself. This is achieved by
setting the vertical velocity and the vertical gradients of mass
density and energy density to zero:

uz |top ≡ 0,
∂̺

∂z

∣

∣

∣

∣

∣

top
≡ 0,

∂e

∂z

∣

∣

∣

∣

∣

top
≡ 0. (11)

The stress-free boundary conditions read

∂ux

∂z

∣

∣

∣

∣

∣

top
≡ 0,

∂uy

∂z

∣

∣

∣

∣

∣

∣

top

≡ 0. (12)

The treatment of the pressure gradient at the upper boundary is
described in Sect. 3.4. For the magnetic field we assume that
the field lines are vertical at the boundary, i.e.

Bx,y |top ≡ 0. (13)

By virtue of solenoidality of B, this implies

∂Bz

∂z

∣

∣

∣

∣

∣

top
≡ 0. (14)

With this boundary condition free footpoint movement of the
field lines is allowed.

2.3.2. Lower boundary

The lower boundary of the computational domain is located in
the convectively unstable upper layers of the convection zone
which are characterized by bulk fluid motions. Ideally, an im-
plementation of an open lower boundary should allow free mo-
tions across the boundary without interfering with the fluid.
Some degree of interference is unavoidable, though, since in
principle any formulation of an open boundary condition re-
quires knowledge of the physical conditions outside the do-
main, which is not available. The missing information has to
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be replaced with reasonable assumptions regarding the physi-
cal properties of the incoming fluid at the boundary.
The first assumption we make is that the total pressure ptot =

p + |B2|/8π is uniform across the lower boundary:

ptot |bot ≡ ptot,0. (15)

This is justified as long as fluid motions are slow com-
pared to the speed of magneto-acoustic waves, cmag =
(

c2
Alfén + c2

sound

)1/2
, since in this case fluctuations in ptot are bal-

anced on a timescale much smaller than the flow timescale. For
the magnetic field, the same vertical conditions as for the upper
boundary are specified. Forcing the magnetic field lines to be
vertical on the boundary implies that the net vertical magnetic
flux in the computational box remains height-independent and
constant in time. In downflow regions (uz < 0) we assume a
smooth isentropic outflow by setting

∂ux

∂z

∣

∣

∣

∣

∣

bot
=
∂uy

∂z

∣

∣

∣

∣

∣

∣

bot

=
∂uz

∂z

∣

∣

∣

∣

∣

bot
≡ 0 (16)

and

∂s

∂z

∣

∣

∣

∣

∣

bot
≡ 0 (17)

where s is the entropy density per unit mass.
Owing to the strong stratification of the convection zone,

upflows undergo a strong adiabatic expansion which tends to
smooth out any initial or subsequent fluctuation during their
rise. Therefore, one expects upflows entering the computational
domain to be quite uniform. In our implementation, the internal
energy density per unit mass, εint, in upflows is assumed to be
uniform across the lower boundary and set to a global value, ε0.
We assume that all inflows are vertical with a smooth vertical
profile of uz:

ux |bot = uy |bot ≡ 0,
∂uz

∂z

∣

∣

∣

∣

∣

bot
≡ 0. (18)

The parameter ε0 determines the inflow of energy into the
computational box and thus can be used to control the net
vertical energy flux through the domain. We adjust the value
of ε0 in time in order to maintain the time-averaged outgo-
ing radiation flux density at the top of the box at the solar
value F⊙ = 6.34×1010 erg s−1 cm−2. Since the rate at which en-
ergy is radiated does not react instantaneously to changes in ε0,
the adjustment is done on the Kelvin-Helmholtz timescale τKH

of the system, which is defined as the time over which the net
energy flux through the domain equals the total internal energy
of the system:

τKH =

∫

box
eint dV

∫

top
F⊙ dx dy

· (19)

At each timestep, ε0 is corrected according to

ε0 → ε0 ·

(

1 +
∆t

τKH
·

F⊙ − Ftop

F⊙

)

, (20)

where Ftop is the current value of the simulated radiation flux
at the top of the domain and ∆t is the time increment.

Since our numerical simulations are carried out in a rather
small computational box containing a limited number of con-
vective flow cells, statistical fluctuations of the total mass in the
simulated volume can become significant if no measures are
taken to control the mass flux across the lower boundary. We
use the total pressure at the bottom, ptot,0, as control parameter
in order to preserve the total mass of the system. Let δM be the
(relative) mass deficit inherited from the previous timestep,

δM =
M − M0

M0
, (21)

where M is the current total mass and M0 the initial value. In
order for the adjustment of ptot,0 to be smooth, we require that
the deficit δM be balanced on a timescale τM = 30 s. For each
timestep the deficit to be corrected is

δMcorr = δM ·
∆t

τM

· (22)

Based on the value of ptot,0 from the previous timestep, this
deficit is balanced by adjusting the gas pressure in the upflow
regions:

pup = ptot,0 + ∆p. (23)

The resulting changes in density and, consequently, in the ver-
tical mass flux f̺ = ̺ uz at the bottom allow to efficiently
control the mass influx. Subsequently, the newly found pup is
used as the starting value ptot,0 for the following timestep. As
a consequence, the downflow regions always lag behind one
timestep in the pressure adjustment. Since the pressure correc-
tion for a single timestep is very small, this does not lead to the
build-up of significant horizontal pressure gradients. The cor-
rect value for the pressure adjustment ∆p is found by means of
an iteration.

2.3.3. Side boundaries

All quantities are taken to be periodic in both horizontal
directions.

3. Numerical methods

3.1. Spatial and temporal discretization

The MURaM code solves the system of MHD equations on a
three-dimensional uniform Cartesian grid. For the spatial dis-
cretization of the partial derivatives, centered, fourth-order ac-
curate, explicit finite differences are used for both first and
second derivatives. The code is parallelized using a domain-
decomposition scheme. The computational domain is divided
into a three-dimensional array of rectangular subdomains, each
of which is assigned to a separate process on the computer.
Parallelization is done with MPI and follows the distributed-
memory concept, i.e. each process only possesses knowledge
of the variables in its own subdomain. In order to apply the
5-point stencil of the fourth-order scheme to grid cells bor-
dering on subdomain boundaries, knowledge of two layers of
cells outside the subdomain is required. Therefore each subdo-
main is endowed with two layers of “ghost” cells on each sub-
domain boundary. The required information is communicated
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between the neighbouring subdomains and stored in the ghost
layers before the numerical derivatives are evaluated. If the sub-
domain boundary coincides with a global boundary, the ghost
cells are assigned values according to the boundary conditions.
The numerical solution of the system is advanced in time with
an explicit, fourth-order accurate Runge-Kutta scheme. The
centered-difference operators and the time-stepping scheme are
described in Appendices B and C, respectively.

3.2. Artificial diffusivities

The low viscosity and corresponding high Reynolds number
in the solar convection zone lead to structure formation down
to a diffusive length scale of the order of centimeters. Since the
computing power necessary to resolve these scales in a numeri-
cal simulation exceeds the capacity of contemporary computers
by many orders of magnitude, all simulations of the solar pho-
tosphere and convection zone are necessarily large-eddy simu-
lations, which simulate flows on resolvable scales and cut off
the part of the energy spectrum which lies below the grid scale.
In order to balance the cascading of energy to small scales due
to the nonlinearity of the momentum equation, a large-eddy
simulation requires some kind of numerical viscosity to pre-
vent the build-up of energy at the grid scale. One way of han-
dling this problem is based on numerical schemes which are
highly non-diffusive (like e.g. higher-order centered-difference
schemes as used in our code) and use explicit viscous terms to
dissipate energy at the grid scale. We follow this approach and
use the methods described by Stein & Nordlund (1998) and
Caunt & Korpi (2001) as a guideline. The diffusive terms in
the momentum and energy equations are replaced by artificial
equivalents; likewise, in the continuity equation an artificial
diffusive term is introduced, which has no physical counterpart.
In the induction equation, we retain the fourth-order centered-
difference term with constant η and add artificial diffusion only
near the lower boundary of the computational domain where
we found it necessary to stabilize the numerical scheme.

For each physical quantity subject to diffusion and for each
coordinate direction, a separate diffusion coefficient, consisting
of a shock-resolving and a hyperdiffusive part, is defined:

νl(u) = νshk
l + ν

hyp
l

(u). (24)

Here u stands for the quantity to be diffused and the index l

indicates the coordinate direction.
The shock-resolving part is designed to have significant

values only in those regions where converging flows with
strong cell-to-cell velocity jumps lead to the build-up of strong
gradients in advected quantities. The rate at which gradients
grow in converging flows is determined by the local value of the
flow divergence. Following Caunt & Korpi (2001), we define

νshk
l =















cshk · ∆x2
l
· |∇ · u| ∇ · u < 0

0 ∇ · u ≥ 0
. (25)

Here, cshk is a scaling factor of order unity and ∆xl is the grid
spacing in direction l. With the shock-diffusivity defined this
way, the timescale for the build-up of gradients in shocks is ap-
proximately equal to the timescale of diffusion across the mesh

width ∆xl, which ensures that the solution remains resolved at
the shock. We included the shock diffusivity in the momentum
and energy equations. In the other equations it was not found
to be necessary for stability and therefore not included.

The hyperdiffusive part is defined on cell interfaces normal
to the direction of diffusion. For a physical quantity u and di-
rection l, we define, following Stein & Nordlund (1998):

ν
hyp
l

(u) = chyp · ctot · ∆xl ·
max3 ∆

3
l
u

max3 ∆
1
l
u
· (26)

Here chyp is a scaling factor of order unity, ctot is the sum of
flow velocity, speed of sound, and Alfvén velocity. At the in-
terface i + 1

2 between cells i and i + 1 (i being the grid index
of direction l), the expressions ∆3

l
u and ∆1

l
u are defined as the

third and first differences of u, respectively:

(∆3
l u)i+ 1

2
= |3(ui+1 − ui) − (ui+2 − ui−1)| (27)

and

(∆1
l u)i+ 1

2
= |ui+1 − ui|. (28)

The symbol max3 indicates the maximum over three adjacent
interfaces. The expression ∆3

l
u/∆1

l
u in Eq. (26), which is pro-

portional to the ratio of third and first derivatives, detects small-
scale fluctuations and leads to significant values of the hyper-
diffusion only where numerical noise on the grid level needs
to be dissipated while resolved structures remain largely unaf-
fected. The factor ctot ·∆xl results in diffusive timescales across
the mesh width, ∆xl, which balance the timescale on which
noise on the grid scale grows as the result of the information
exchange between neighbouring grid cells. The explicit form
of the diffusion terms is given in Appendix D.

3.3. Calculation of the timestep

The maximum allowed timestep, ∆tmax, is determined by a cri-
terion which ensures that in a single timestep flow velocities,
wave speeds, and diffusion transport information across dis-
tances not larger than the mesh width. When the artificial dif-
fusion terms are used, the timestep criterion in our code reads

∆tmax = min(∆tad,∆tν). (29)

Here

∆tad = cad ·
min(∆x,∆y,∆z)

ctot
(30)

is the advective timestep, which is determined by the usual
CFL criterion. ctot is the total wave speed:

ctot = u + csound + cAlfvén. (31)

Each coefficient of artificial diffusion imposes a timestep limit
of the form

∆tν = cν ·
∆x2

ν
, (32)

which is based on the diffusion time across the mesh width, ∆x.
cad and cν are safety factors of order unity (typically 0.5−0.7).
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In the case of constant scalar diffusion coefficients, a
more strigent timestep criterion, based on the analysis of lin-
ear advection-diffusion equations discretized with fourth-order
centered differences (e.g. Hirsch 1988), is used:

∆tmax = min(∆t1,∆t2), (33)

with

∆t1 =
8
3
·

min(ν, η, κ)

c2
tot

(34)

and

∆t2 =
2
3

[

max(ν, η, κ) ·

(

1
∆x2
+

1
∆y2
+

1
∆z2

)]−1

· (35)

Here, ν = µ/̺ and κ = K/cp̺.

3.4. Implementation of the boundary conditions

In order to set a quantity u to value u0 on the upper or lower
boundary, the values in the two layers of ghost cells are fixed
in such a way that the difference, u − u0, is antisymmetric with
respect to the boundary,

u
gc
1,2 − u0 = u0 − udc

1,2· (36)

The superscripts dc and gc refer to domain cells and ghost cells,
respectively, and the subscripts 1 and 2 denote, respectively, the
first and second grid plane on either side of the boundary. A
vertical derivative ∂zu is set to zero by assigning the ghost cell
values for u symmetrically with respect to the boundary:

u
gc
1,2 = udc

1,2. (37)

Consequently, the closed upper boundary condition implies
that the ghost-cell values for ε and ̺ are to be filled symmet-
rically (cf. Sect. 2.3.1). While the symmetric condition for ε
is consistent with the generally small vertical temperature gra-
dients encountered in the upper photosphere near the temper-
ature minimum, the symmetric conditons for ̺, and hence, p,
are certainly not realistic since one expects a roughly exponen-
tial density and pressure stratification in this region. In order
to avoid unphysical behaviour as a result of these assumptions,
the vertical pressure gradient is treated separately at the up-
per boundary. We replace the fourth-order centered differences
with first- and second-order expressions that do not make use
of the ghost cell pressure values:

[

∂p

∂z

]dc

1

=
pdc

1 − pdc
2

∆z
;

[

∂p

∂z

]dc

2

=
pdc

1 − pdc
3

2∆z
· (38)

The lower formal order of the representation of the vertical
pressure derivative affects only the uppermost two grid planes.

3.5. Numerical treatment of radiative transfer

3.5.1. Treatment of frequency dependence

We use the multigroup method (Nordlund 1982; Ludwig 1992;
see also Stein & Nordlund 2003a) in order to account for the

frequency dependence of the radiative transfer. The underlying
idea of this approach is to sort frequencies into a small num-
ber of groups according to the height at which they mainly
contribute to the radiative heating rate. As the sorting crite-
rion we use the geometrical depth in a 1D reference atmosphere
at which optical depth τν = 1 is reached. For each frequency
group, an average opacity is defined and a transfer equation for
the group-integrated intensity with a group-integrated source
function is solved. For the simulation described in Sect. 4 we
have used four opacity groups. We took the opacity distribution
functions and continuum opacities from the ATLAS9 stellar at-
mosphere package of Kurucz (1993) as the basis for the multi-
group sorting and averaging procedure. A comprehensive de-
scription of our multigroup implementation is given by Vögler
et al. (2004).

3.5.2. Integration scheme

Since the computation of the radiative source term is usually
the most time-consuming part of a realistic simulation, effi-
ciency considerations have high priority in the choice of numer-
ical methods. Furthermore, the domain decomposition scheme
used in our code demands a solver which is local and reduces
the communication overhead to a minimum. Given these re-
quirements, the method of choice is the short-characteristics
formal solver (Mihalas et al. 1978; Olson & Kunasz 1987;
Kunasz & Olson 1988; Kunasz & Auer 1988). It is based on the
discretized form of the formal solution of the radiative transfer
equation. In order to calculate the intensity for a certain direc-
tion and frequency on a given grid point, the transfer equation
is solved along the ray segment (short characteristic) between
the grid point and the nearest upwind intersection of the ray
with a cell boundary. The grid on which we solve the radia-
tive transfer coincides with the cell corners of the grid used
by the MHD solver. The values of T , p and ̺ on the radiative
grid are interpolated from the adjacent MHD grid cells. An ex-
ample for a short characteristic within a grid cell is shown in
Fig. 1. Applying the formal solution to the short characteristic
between the points F and E, the intensity at point F is given by

IF = IE e−∆τEF +

∫ τE

τF

B(τ) eτF−τ dτ. (39)

Here τ measures the optical depth along the ray, starting from
point F, and

∆τEF = τE − τF =

∫ E

F
κ(s)̺(s)ds. (40)

Unless the ray direction is aligned with one of the coordinate
directions (or one of the diagonals of the grid cell), the point
of intersection E is located on a cell interface and the inten-
sity IE needs to be interpolated from the grid points at the
interface corners (points A to D in Fig. 1). On the 3D grid
used here, we calculate IE by bilinear interpolation on the
rectangle ABCD. As pointed out by Kunasz & Auer (1988),
the short-characteristics scheme with linear interpolation of up-
wind intensities leads to an artificial broadening of rays. For the
calculation of angle-integrated quantities, this behaviour is not
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F

Fig. 1. The intensity at gridpoint F is obtained by solving the transfer
equation along the short characteristic EF. The intensity at the upwind
point E is interpolated from the (already known) intensity values at the
surrounding gridpoints, A to D.

1 2

4 5 6

87 9

3

Fig. 2. The walking order of the short-characteristics method in a
2D grid for a ray direction pointing into the upper right quadrant.
Black circles represent gridpoints on the upwind boundaries, where
the intensity values are assumed to be given.

entirely undesirable since, in this context, the intensity for a
given ray direction is supposed to represent the radiation com-
ing from a cone of directions. For the evaluation of the inte-

gral contribution,
∫ E

F
B(τ) eτF−τ dτ, and the optical depth inter-

val, ∆τEF, we adopt the linear method described by Kunasz &
Auer (1988): density, opacity and source function are approx-
imated as linear functions along the ray segment EF, which
leads to analytical expressions for ∆τEF and the integral.

Since the interpolation of the upwind intensity requires
knowledge of the intensity at the four surrounding gridpoints
(points A to D in Fig. 1), the grid must be traversed in a se-
quence which makes sure that the required upwind information
is always available. To this end, for a given ray direction, the
scheme starts in each subdomain at those boundaries through
which the radiation enters (the upwind boundaries). The in-
tensity values at these boundaries are assumed to be given.
Then the traversal of the subdomain systematically proceeds
in the downwind direction, propagating the boundary informa-
tion across the grid (see Fig. 2 for a 2D example). Since the
correct initial values on the upwind boundaries of a subdomain
are a priori unknown unless these boundaries coincide with the
top or bottom of the computational box, this procedure must be
iterated until convergence on the boundaries is obtained. The

intensities at a given upwind boundary are updated after each
iteration with the new values provided by the neighbouring sub-
domain. Clearly, the number of iterations required depends on
the accuracy of the initial guess. We use a linear extrapolation
of the boundary values of the previous two timesteps. With this
choice, on average 2−3 iteration steps per frequency and ray
direction are sufficient to keep the relative error in intensity be-
low 10−3.

At the global top and bottom boundaries of the computa-
tional domain, the incoming intensity must be specified in order
to start the short-characteristics scheme. As long as the medium
is optically thin at the top of the box for a given frequency
group ν, the incoming radiation from outside the computational
domain is negligible and the boundary condition

Iν(µ) |top = 0 ∀ µz < 0 (41)

can be used.
In the simulations discussed here, this assumption is valid

for all frequency groups except the one representing the
strongest line opacities. For this group, the τν = 1 level is close
to the top of the box and setting the incoming radiation to zero
would lead to artificial cooling of the uppermost layers. In order
to derive a more realistic boundary condition, we assume that
above the computational domain there is a isothermal plane-
parallel layer with temperature Ttop, whose optical thickness in
the most opaque group is τtop. According to the formal solution
of the RTE, the radiation entering the box from such a layer is
given by

Iν(µ) |top = Bν(Ttop)
(

1 − eτtop/µz

)

∀ µz < 0. (42)

In our simulations, we use this relation with τtop = 0.2 and
Ttop = 4000 K as boundary condition for the strongest opacity
group. The choice τtop = 0.2 corresponds to the optical depth τν
of the strong-opacity group at similar geometrical height in
1D solar standard atmospheres.

The bottom of the simulation box is located in the optically
thick regions where the diffusion approximation holds. At the
bottom, incoming radiation is set to the local value of the source
function:

Iν(x, µ) |bot = Bν(x) ∀ µz > 0. (43)

For each direction and each frequency group, the short-
characteristics scheme described above is applied separately.
For the angular integration we use the quadrature formulae of
type A of Carlson (1963). In this scheme, the directions in one
octant are arranged in a triangular pattern and the quadrature
is invariant under rotations over multiples of π/2 around any
coordinate axis. A summary of the construction procedure is
given by Bruls et al. (1999). For the simulations in Sect. 4, the
A4 quadrature set with three directions per octant was used.

Once the angular integration has been performed, the radia-
tive heating rate for frequency group ν can be derived from the
two equivalent expressions

QJ
ν = 4πκν̺ (Jν − Bν) (44)

and

QF
ν = −∇ · Fν. (45)
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Fig. 3. Geometrical setup of the simulation run. The vector B0 indi-
cates the vertical homogeneous magnetic field introduced into the hy-
drodynamic convection at the beginning of the magnetic phase.

While the radiation field is defined on cell corners, the
MHD solver requires cell-centered (or cell-averaged) values
of the radiative heating rate. Cell-centered values for QJ

ν are
obtained by averaging over the values at the eight surround-
ing cell corners. In the case of QF

ν , first average values for
the components of Fν are calculated on the centers of cell in-
terfaces, then the derivatives are obtained by first-order finite
differences between the averaged flux components on opposite
cell interfaces.

As pointed out by Bruls et al. (1999), QJ
ν suffers from se-

vere accuracy problems in the optically thick regime, since
then Jν approaches Bν, and the difference of these two almost
equal quantities is amplified by a factor κν ̺ which grows ex-
ponentially with depth. On the other hand, QF

ν is less accu-
rate than QJ

ν in the optically thin layers of the upper photo-
sphere since small inaccuracies in the orientation of the flux
vector can lead to significant errors when the divergence of the
nearly constant radiative flux is determined, while the differ-
ence Jν − Bν is only slightly affected. Following a suggestion
of Bruls et al. (1999), we make a smooth transition from QJ

ν

to QF
ν for each frequency group separately, depending on the

local optical depth scale for the group considered, using QF
ν in

regions with τν ≥ 0.1 and QJ
ν otherwise. The total (frequency-

integrated) radiative heating rate is then given by

Qtot =
∑

ν

e−τν/τ0 QJ
ν + (1 − e−τν/τ0 ) QF

ν (46)

with τ0 = 0.1.

4. Simulation of a solar plage region

4.1. Simulation setup

In this section we show some results of the simulation of
a typical solar plage region. The simulations are part of a
parameter study to investigate the properties of photospheric
magneto-convection and their dependence on the average mag-
netic field strength. The dimensions of the computational do-
main are 1400 km in the vertical direction and 6000 km in each
horizontal direction, with a resolution of 100 × 288 × 288 grid
points. Initially, the simulation was set up as purely hydrody-
namical convection, starting from a plane-parallel model of the
solar atmosphere (Spruit 1974) extending from 800 km below
to 600 km above the level of continuum optical depth unity
at 500 nm, as initial condition (see Fig. 3). The height corre-
sponding to τ500 = 1 of the initial stratification was chosen as
the zero level of the height coordinate z used in the following

sections. For this simulation we used the artificial diffusivities
described in Sect. 3.2 with cshk = 1 and chyp = 0.03. In order
to stabilize the solution in the uppermost parts of the computa-
tional domain, chyp was increased in a layer of 200 km thickness
below the top of the box and reaches a maximum value of 0.2
at the upper boundary. For the magnetic diffusivity we use the
constant value η = 1.1 × 1011 cm2 s−1. Our choice of cshk, chyp,
and η is motivated by test runs which showed that this set of
parameters keeps the solution stable and well resolved without
overresolving it. After convection had fully developed, a homo-
geneous vertical initial magnetic field of 200 G, corresponding
to the average field strength in a strong solar plage region, was
introduced.

4.2. Morphology and statistical properties

The simulation results show that within a few minutes (approx-
imately one turnover time of the convection) after the magnetic
field has been introduced, the convective motions transport
most of the magnetic flux into the intergranular downflow re-
gions. During this initial phase, the magnetic field forms a net-
work structure with maximum field strengths around 2000 G at
height z = 0. (It should be noted that the average τ500 = 1 level
of the fully developed convection in its statistically steady state
is shifted upwards by approximately 80−100 km as a result of
the turbulent pressure of the convective flow (see e.g. Stein &
Nordlund 1998). The magnetic network is organized on a larger
scale, which typically comprises 2−6 granules. As the simula-
tion develops in time, the network on this scale turns out to be
long-lived with a typical timescale of hours. Similar large-scale
organization also appears in other convection simulations (e.g.,
Cattaneo et al. 2001). However, since the horizontal box size is
comparable to the length scale of the pattern, it cannot be ruled
out that it is an artifact.

Figure 4 shows a map of the frequency-integrated emergent
intensity (brightness) together with horizontal slices of temper-
ature, vertical magnetic field, and vertical velocity at z = 0 for
a snapshot taken about two hours of simulated solar time af-
ter the start of the magnetic phase. The magnetic field forms
elongated, sheet-like structures that extend along intergranular
lanes as well as larger structures with a size of up to 1000 km
(“micropores”), which are located at vertices where several
downflow lanes merge. The micropores appear dark in the in-
tensity picture, while smaller structures are usually brighter
than the non-magnetic downflow lanes, their brightness oc-
casionally exceeding the brightness of granules. A large part
of the simulated area shows “abnormal” granulation (Dunn
& Zirker 1973; Title et al. 1992) with reduced granule sizes
compared to the “normal” granules in the upper right corner
of the intensity map. The micropores are far from homoge-
neous; they show considerable small scale intensity fluctua-
tions, which are related to localized upflows in regions of re-
duced field strength. While the overall shape of the magnetic
network is stable, the magnetic features show a strong time de-
pendence on small scales as magnetic flux is incessantly redis-
tributed within the network. Consequently, the typical lifetime
of the micropores is smaller than the timescale associated with
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Fig. 4. Map of (frequency-integrated) brightness (lower right) and horizontal cuts at the the average geometrical height corresponding to optical
depth unity of (clockwise from bottom left) temperature, vertical magnetic field and vertical velocity. The “mesoscale” network of magnetic
field structures is embedded in the network of granular downflows. Larger field concentrations appear dark while the brightness of small
magnetic structures occasionally exceeds the brightness of granules. Most of the domain exhibits “abnormal” granulation with small granules
(compared to the “normal” granules in the upper right corner). See also the movies provided as supplementary online material.

the magnetic network and is comparable to the granule life-
time. The magnetic network itself is embedded in the network
of granular downflows. While convective motions are effec-
tively supressed inside strong field features, downflows occur
at their edges. Basically, this result is consistent with earlier
MHD simulations (e.g. Deinzer et al. 1984a,b; Knölker et al.
1991) which showed that the influx of radiation into a magnetic
element drives a baroclinic flow in form of a strong downflow
at its edge. It is also consistent with the observational finding

that observed Stokes-V profiles in plage regions show a distinct
area asymmetry (Stenflo et al. 1984; Grossmann-Doerth et al.
1989; Solanki 1989; Sigwarth et al. 1999).

Figure 5 shows some statistical properties of a layer
of 100 km thickness around 〈τ500〉 = 1. The probability den-
sity function (PDF) for the magnetic field, multiplied with
the sign of its vertical component is shown in the upper left
panel. There appears to be a superposition of two components.
Most of the volume considered is occupied by weak field, the
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Fig. 5. Statistical properties of a layer of 100 km thickness around optical depth unity. Upper left: probability density function (PDF) of the
field strength, signed with the vertical orientation of the field vector. Upper right: joint PDF of field strength and the inclination angle of B

with respect to the horizontal, theta(B). Lower left: joint PDF of flow velocity, multiplied with the sign of its vertical component, and field
strength. Lower right: joint PDF of the inclination angles of the flow, theta(u), and of the magnetic field, theta(B). The grey-scaling indicates
the probability density, with intervals of 0.5 on the log10 scale between greyscale levels.

probability density dropping off approximately exponentially
with increasing field strength. The distribution reveals a pro-
nounced local minimum at B = 0, indicating that magnetic
fields, albeit mostly weak, permeate the whole volume, and
strictly field free regions are avoided. Superimposed on this
exponential distribution is a Gaussian “bulge” (the high field
strength wing shows the characteristic parabolic shape on a
logarithmic scale) with a maximum around 1500 G, which re-
flects the sheet and micropore structures in the network of con-
centrated magnetic field. The joint probability density function
(joint PDF) of magnetic field strength and inclination angle of
the field vector with respect to the horizontal plane given in
the upper right panel of Fig. 5 shows that most of the strong
field (above the kilogauss level) is vertical and upward directed
(which is the orientation of the initial field), presumably as the
result of buoyancy acting on the partially evacuated magnetic
structures. The inclination angle of weak fields is much more
evenly distributed. With decreasing field strength, a slight pref-
erence for upward directed fields is observed. The joint PDF
of the vertical magnetic field and the flow velocity multiplied
with the sign of the vertical velocity component in the lower
left panel of Fig. 5 (positive velocities correspond to upflows)

shows the effect of strong fields on the fluid motions: while
flow velocities up to 8 km s−1 can be found in regions of weak
field, the velocities are reduced in magnetic structures with
field strengths above 1000 G. Fluid motions are not completely
supressed, however, since the predominantly vertical fields per-
mit vertical flows. Downflows are preferred inside strong field
features. The lower right panel of Fig. 5 shows the joint PDF
of the inclination angles of magnetic field vector and flow vec-
tor with respect to the horizontal plane. The pronounced di-
agonal feature indicates that flow field and magnetic field are
roughly aligned in most of the volume considered. In addi-
tion to this component, there is a clear correlation of (strong)
vertical magnetic field with downflows. The picture obtained
here exhibits some similarities with simulations of idealized
Boussinesq magneto-convection (Emonet & Cattaneo 2001),
which also show a preferentially vertical orientation of strong
fields embedded in downdrafts and a decrease of the velocity
amplitude with increasing field strength.

The three-dimensional field line plot given in Fig. 6 (left
panel) shows a face-on view of a thin magnetic sheet (cf. mag-
netic map at z = 0 on the right panel). The structure appears
coherent around the visible surface. At a depth of 200−300 km
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Fig. 6. Left: face-on view of a thin magnetic sheet. The spreading of the field lines in the upper photosphere is clearly visible. At a depth of
approximately 300 km below the surface, the sheet is disrupted. The grey, horizontal plane in dicates the height z = 0. Right: magnetic map of
the sheet at z = 0. The arrow shows the viewing direction of the field line plot on the left.

Fig. 7. The same sheet as in Fig. 6, from a
different angle. The isosurface τRoss = 1 is
shown as shaded surface.

below z = 0 the sheet is disrupted by vigorous convective flows,
the coherence is lost and a large part of the flux appears in form
of turbulent, more or less randomly oriented field lines. We find
this to be a typical property of thin magnetic flux concentra-
tions in our simulation. Figure 7 shows the same flux sheet from
a different viewing angle. The depression of the visible surface
(τRoss = 1) associated with the magnetic sheet is clearly visible.
The field lines appear to be systematically twisted, possibly as
a result of a horizontal shear near the surface. In contrast, the
micropore shown in Fig. 8 appears much more coherent over
the whole simulated height range. While the field undergoes
fragmentation and forms more concentrated strands of flux un-
derneath the surface, a significant part of the flux remains more
or less vertical in the sub-surface layers.

The upper panel of Fig. 9 shows that the total (gas + mag-
netic) pressure inside strong field concentrations (here defined
as fields exceeding a height-dependent critical value, Bc(z); at

a given height z, Bc is defined such that the fields with B > Bc

comprise 70% of the total flux at that height) is over a large
height range in balance with the external gas pressure. So,
despite of the dynamic time evolution of the strong fields in
the downflow network and although the typical diameters of
flux concentrations are not necessarily small compared against
other relevant length scales like e.g. the pressure scale height,
the pressure conditions are largely consistent with the simple
picture of a thin flux tube or flux sheet in horizontal magne-
tohydrostatic pressure balance with its surroundings. The de-
viations become significant in the uppermost 300 km of the
computational domain where the total pressure inside strong
fields clearly exceeds the external pressure. This is plausible
since the field concentrations spread out with height and be-
come nearly vertical close to the upper boundary, thus giv-
ing rise to an inwards directed magnetic curvature force which
is balanced by an outwards directed magnetic pressure force.
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Fig. 8. Three-dimensional field line plot (left) and corresponding magnetic map (right) of a micropore. The translucent plane shows the field
strength at z = 0; strong fields appear white.

Correspondingly, the actual average field strength of the field
concentrations shown in the lower panel of Fig. 9, exceeds
the value predicted by the thin flux-tube approximation in the
height range above z ≈ 200−300 km.

Owing to the strong decrease in gas pressure with height,
the plasma-β in strong flux concentrations shown in Fig. 10
drops by more than three orders of magnitude across the verti-
cal extent of the simulation box. While it is of the order of unity
near the visible surface 〈τ500〉 = 1 (z ≈ 100 km), it drops be-
low 0.1 near the top of the box, which shows that the gas pres-
sure is largely irrelevant for the internal force balance of mag-
netic flux concentrations in the uppermost parts of the domain.

In the upper part of the computational domain, the struc-
ture of horizontal flows undergoes a characteristic change with
height. This is illustrated by Fig. 11, which shows horizontally
averaged (root-mean-square) velocities of horizontal flows as
a function of height, in strong-field and weak-field regions,
respectively. Horizontal flows are stronger outside magnetic
field concentrations than inside below z = 400 km and reach
a maximum around z = 200 km, where the granular up-
flows turn over and converge horizontally towards the down-
flow lanes. Above z = 400 km, a different picture is ob-
tained: the rms horizontal velocity inside magnetic structures
increases with height, while the velocities outside decrease sig-
nificantly. As a result, horizontal flows have larger amplitudes
inside magnetic fields. As the example shown in Fig. 12 il-
lustrates, there is a correlation between flows inside magnetic
structures at large heights and converging granular flows imme-
diately outside magnetic structures at deeper levels near the vis-
ible surface around τ5000 = 1. The anticlockwise whirl flow at
z = 550 km (upper panel) corresponds to a net circulation of
granular flows around the magnetic element with the same ori-
entation at z = 100 km (lower panel). It is conceivable that the
shear due to such surrounding flows excites torsional Alfvén
waves propagating upward along field concentrations. While
such waves in the uppermost parts of the computational domain
cannot be described realistically with the present closed upper
boundary conditions, future versions of our code with a trans-
mitting upper boundary will allow us to thoroughly analyze this

Fig. 9. Upper panel: horizontally averaged gas pressure inside (solid)
and outside (dashed) strong field regions, and total (gas + magnetic)
pressure in strong field regions (dotted). (See the text for the definition
of strong fields used here.) Lower panel: average (rms) field strength
inside (solid) and outside (dotted) strong fields as a function of height.
The dashed line shows the field strength which would balance the dif-
ference between the inside and outside gas pressures.



A. Vögler et al.: Simulations of magneto-convection in the solar photosphere 347

Fig. 10. Average plasma-β in strong-field regions as a function of
height.

Fig. 11. Horizontally averaged (rms) horizontal velocity in regions of
strong and weak magnetic field as function of height.

potentially important mechanism of mechanical energy trans-
port and assess its relevance for the energy balance in the upper
layers of the solar atmosphere.

4.3. Relation between brightness and magnetic field

strength

It is a well established observational fact that the brightness
of magnetic structures in the photosphere strongly depends on
their size (Topka et al. 1997). While small field concentra-
tions appear as bright points in continuum-intensity pictures,
larger structures like pores and sunspots are dark as a result of
the reduced convective energy transport in their interior (see
e.g. Zwaan 1987, for an overview of the hierarchy of mag-
netic elements). A particular case is the brightening of mag-
netic concentrations in molecular lines like the CH lines in the
“G band”. Schüssler et al. (2003) and Shelyag et al. (2004) have
shown that the G-band brightening is caused by a depletion of
CH molecules in the partially evacuated magnetic structures.
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Fig. 12. Detailed view of the flow and magnetic structure of a flux con-
centration. Upper panel: vectors of horizontal velocity superimposed
on a greyscale map of the vertical magnetic field at a height of 550 km
above the visible surface. Lower panel: the same at a height of 100 km.
The longest arrows correspond to a velocity of 7 km s−1.

A comparison of the map of magnetic field strength with
the intensity picture in Fig. 4 shows that the brightest magnetic
structures are typically found in regions of high field strength
of the order of 2000 G at z = 0. However, not all strong-field
features stand out as particularly bright; larger structures with
extended regions of magnetic fields above 1000 G tend to be
darker than average. This impression is confirmed quantita-
tively by Fig. 13. The left panel shows the joint PDF of mag-
netic field strength at z = 0 (approximately 80−100 km below
the average level of optical depth unity) and emergent intensity,
based on simulation data of approximately one hour simulated
time. While a large part of the magnetic regions has an inten-
sity below the average value, the largest field strengths show a
trend towards increased brightness, with maximum intensities
reaching or even slightly exceeding those of the brightest gran-
ules. The right panel shows the probability distribution of mag-
netic field strength in bright (solid line) and dark (dashed line)
magnetic regions, both curves being separately normalized to
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I > <I>
I < <I>

Fig. 13. Upper panel: joint probability distribution of magnetic
field strength and frequency-integrated brightness. The grey-shading
indicates the probability density, with level-intervals of 0.5 on
the log10-scale. Lower panel: probability distribution functions of the
magnetic field strength inside the magnetic network (|Bz| > 500 G),
for regions brighter and darker than average, respectively. The field
strength distribution on the τ = 1 or τ = 0.1 levels would, however,
lead to a somewhat different picture since in dark structures the strong
Wilson depression results in higher observed field strengths.

unity. While the fields with below-average brightness have a
rather flat distribution up to fields of 1500 G, the distribution
for the bright features shows a steep increase with increasing
field strength and reaches a pronounced maximum at 1700 G.

Figures 14 and 15 provide a detailed view of a typical sheet-
like structure in an intergranular lane which illustrates the con-
nection between brightness and field strength. Figure 14 shows
magnetic field and intensity maps. The vertical line marks the
position of the vertical cuts through this structure shown in
Fig. 15. As Fig. 15 illustrates, the partial evacuation and lower
temperature of the magnetic structure leads to a depression of
the visible surface inside the sheet (the bold solid lines, indicat-
ing the level τRoss = 1). This results in radiation flowing in from
the hot neighbouring granules through the sidewalls, heating up
the interior of the sheet. This horizontal heating is balanced by
cooling due to radiative losses in the vertical direction. The re-
sulting net radiative heating rate in the interiour of the sheet is

Fig. 14. Vertical field strength at z = 0 (upper panel) and intensity
map (lower panel) for a sheet-like magnetic structure. The vertical
lines indicate the position of the cuts shown in Fig. 15.

very small which indicates that it is nearly in radiative equilib-
rium and convective energy transport is not relevant. The bright
appearance of the sheet is, in turn, a direct consequence of the
increased temperature around the (depressed) visible surface
corresponding to this radiative equilibrium.

This example confirms the basic mechanism for brightness
enhancement due to channelling of radiation which was al-
ready found in earlier, more simplified models of photospheric
magnetic elements (e.g. Spruit 1976; Deinzer et al. 1984a,b;
Knölker et al. 1991) and demonstrates that results of idealized,
two-dimensional models are indeed relevant for the explana-
tion of some aspects of three-dimensional magneto-convection.
The nature of facular brightenings close to the solar limb was
studied by Keller et al. (2004) whose analysis of photospheric
MHD simulations showed that faculae originate from a thin
layer within granules immediately below largely transparent
magnetic flux concentrations.

It should be noted that radiative heating is not the only
mechanism which could affect the temperature structure of
magnetic structures. In principle, Joule dissipation near the
edges of the magnetic sheet, where the gradients in field
strength are large, can also heat the interior of the sheet. In
the solar photosphere, this effect is expected to be small com-
pared with the radiative heat influx because of the high electric
conductivity of the plasma. Since the value of the conductivity
in simulations of this kind is unrealistically low – an inevitable
consequence of the limited spatial resolution – Joule heating
tends to be overestimated (Schüssler 1986; Hirayama 1992).
However, as Fig. 16 shows, the contribution of Joule dissipa-
tion to the total heating around τ = 1 is negligible, indicating
that the effects of limited grid resolution do not seriously affect
the temperature structure obtained from the simulation.
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Fig. 15. Vertical cut through the sheet-like magnetic structure shown
in Fig. 14. Left panel: density (grey-scaled) and magnetic field vectors
projected on the veertical plane. The longest vector correponds to a
field strength of 2000 G. Right panel: temperature structure and radia-
tive flux vectors. The solid lines indicate the level τRoss = 1 (for the
Rosseland opacity average).

4.4. Formation of a micropore

Figure 17 illustrates the formation of a micropore. At the be-
ginning of the time sequence shown, a small granule is sur-
rounded by magnetic field, which is embedded in a complex
structure of downflows and forms a ring around the granule.
Subsequently, the initially bright granule shrinks and becomes
darker as the upflow velocity in the granule decreases; the
surrounding magnetic flux converges to form a dark microp-
ore with a diameter of approximately 1000 km. In its interior,

Fig. 16. Radiative and joule heating across a flux sheet. The solid line
shows the heating rate due to horizontal influx of radiation energy
into the sheet along the cut indicated in Fig. 14, at a depth of 80 km
below z = 0. The dashed line shows the joule heating occuring at the
sheet boundaries at the same depth.

vertical motions are strongly reduced, which implies that con-
vective energy transport is almost completely supressed. The
micropore is, however, punctuated by small, non-magnetic up-
wellings, which penetrate it from below and carry hot plasma
to the surface. While the shape of the micropore changes con-
tinuously, it more or less retains its position. Roughly 15 min
after the end of the sequence shown, most of the magnetic
flux of the micropore has been transported away into the mag-
netic network and the pore has dissolved. Apparently, the size
(amount of magnetic flux) of the micropores which form in
this simulation is too small to structure the convective flow
around them in a way that would stabilize them and extend their
lifetime beyond about 1−2 convective turnover times. The mi-
cropore formation process shown in Fig. 17 is reminiscent of
the result reported by Hirzberger (2003), who observed several
bright points immediately before the appearance of a microp-
ore at the same position. It is also in qualitative agreement with
the magneto-convection simulations of Bercik (2002) (see also
Stein et al. 2002).

5. Conclusions

We have developed a 3D radiative MHD code for realistic
simulations in the solar photosphere and convection zone. It
includes a detailed treatment of partial ionization effects as
well as non-grey radiative transfer, which makes the numer-
ical model sufficiently realistic to allow a direct comparison
with observations. Owing to the high degree of paralleliza-
tion, including the radiative transfer part, the code is able to
use the capabilities of large, massively parallel computers with
distributed memory architecture to simulate spatially extended
domains at high resolution.

The first results obtained with this code are promising.
The simulation of a solar plage region with an average field
strength of 200 G is in agreement with the basic picture of
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Fig. 17. Time series of vertical magnetic field (left; light shades indicate strong fields), intensity (middle), and vertical velocity (right; light and
dark shades indicate up- and downflows, respectively) during the formation of a micropore. An initially bright, small granule shrinks, while the
magnetic field surrounding it forms a small pore which appears dark in the intensity picture.
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solar magneto-convection derived from previous simulations.
But the results also suggest that a wealth of new informa-
tion can be obtained by combining full three-dimensionality
with high spatial resolution: while the sizes, lifetimes, and field
strengths of micropores found in our simulations are consistent
both with observations (Topka et al. 1997; Hirzberger 2003)
and simulations (Stein et al. 2002), they appear as internally
highly structured features which show significant fluctuations
of brightness and field strength around the mean values and
are penetrated by hot, weakly magnetized upflows. The near-
surface structure of the quasi two-dimensional flux sheets in the
intergranular lanes is consistent with earlier two-dimensional
models (e.g. Deinzer et al. 1984a,b; Knölker et al. 1991). Our
simulations, however, show that slender flux sheets which ap-
pear as coherent features around optical depth unity, get dis-
rupted by turbulent downflows beneath the surface and are,
in fact, shallow phenomena. The occurrence of strong vorti-
cal flows inside magnetic structures in the upper photosphere,
which are triggered by the advection of vorticity towards the
footpoints of the field concentrations in the surface layers, sug-
gests that important information about the transport of mechan-
ical energy in the upper layers of the solar atmosphere can be
obtained from simulations of this kind.
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Appendix A: The equation of state

In the following, a brief outline is given how temperature and
pressure are derived from eint and ̺ if the first ionization of a
number of elements is taken into account. For the simulations
presented here, the eleven most abundant elements in the so-
lar photosphere were included. The internal energy per mass
unit εint = eint/̺ is given by

εint =
3

2̺
(ne + na) kT +

1
̺

∑

n∗i χi, (A.1)

where the sum runs over the particle species (labeled with in-
dex i), n∗i is the number density of ions of type i, and χi is
the corresponding ionization energy. na =

∑

ni is the number
density of atoms, ne the number density of electrons. Defining
the ionization degree, xi = n∗i /ni, and the relative abundance,
νi = ni/na, Eq. (A.1) can be rewritten as

εint =
3kT

2µam0

(

1 +
∑

xiνi
)

+
1
µam0

∑

xiνiχi, (A.2)

where µa is the mean molecular weight of the neutral gas (µa =

1.29 for solar composition) and m0 is the atomic mass unit.
The ionization degrees, xi, are determined by the set of Saha
equations

xi

1 − xi

∑

xiνi =
ui1(T )
ui0(T )

µam0

̺

2 (2πmekT )3/2

h3

× exp (−χi/kT ) . (A.3)

The temperature dependence of the partition func-
tions ui1, ui0 are obtained from the literature (e.g., Irwin
1981). For temperatures exceeding about 16 000 K, the first
ionization for all elements considered is almost complete, so
that the temperature dependence of the partition functions
can be neglected. In order to obtain the temperature from ̺
and eint, the nonlinear system of Eqs. (A.2) and (A.3) is solved
iteratively. Once the temperature is known, the gas pressure
follows from

p = (ne + na) kT =
̺

µam0

(

1 +
∑

xiνi
)

kT. (A.4)

Temperature and pressure are stored on a (ρ, eint)-grid from
which the required values are interpolated during a simulation
run.

Appendix B: Fourth-order centered difference

operators

Choosing i as the index denoting the grid position along a par-
ticular spatial direction, the first and second spatial derivatives
of quantity u are given by
(

∂u

∂x

)

i

=
1

12∆x
(−ui+2 + 8ui+1 − 8ui−1 + ui−2) (B.1)

and
(

∂2u

∂x2

)

i

=
1

12∆x2
(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2), (B.2)

Table A.1. Relative abundances and ionization energies of first ioniza-
tion for the eleven most abundant elements in the solar photosphere.

AN Name νi χi [eV]

1 H 0.934042096 13.600

2 He 0.064619943 24.580

6 C 0.000371849 11.256

7 N 0.000091278 14.529

8 O 0.000759218 13.614

12 Mg 0.000035511 7.644

11 Na 0.000001997 5.138

20 Ca 0.000002140 6.111

26 Fe 0.000039844 7.896

14 Si 0.000033141 8.149

13 Al 0.000002757 5.984

respectively, where ∆x is the grid spacing in the coordinate di-
rection considered.

For partial differential equations corresponding to a con-
servation law, the centered difference scheme is equivalent to a
finite volume scheme with the numerical flux

fi+1/2 =
7

12
[

f (ui+1) + f (ui)
]

−
1

12
[

f (ui+2) + f (ui−1)
]

(B.3)

defined on the cell interfaces, where f (u) is the flux function of
the conservation law for quantity u. Therefore, any quantitity
obeying a conservation law is exactly conserved numerically as
long as the total integrated flux at the domain boundaries van-
ishes. It is straightforward to show that, for an induction equa-
tion with constant scalar η, this discretization formally con-
serves the discretized form of ∇ · B as a result of the symmetry
of the scheme.

In a multidimensional domain, mixed derivatives are calcu-
lated by straightforward successive application of Eq. (B.1) in
different coordinate directions.

Appendix C: Time-stepping procedure

The numerical solution of the system is advanced in time
with an explicit fourth-order Runge-Kutta scheme. Defining U0

as the vector which describes the state of the system for
time t0, i.e.

U0 = (̺, ̺u, e, B)(x, y, z, t0), (C.1)

the system of partial equations can be written as

∂U

∂t
= R(U), (C.2)

where the vector R(U) contains the spatial derivatives and
source terms in the system of equations. Then the new state U1
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for time t1 = t0 + ∆t is calculated in four steps:

U 1
4
= U0 +

∆t

4
R(U0),

U 1
3
= U0 +

∆t

3
R(U 1

4
),

U 1
2
= U0 +

∆t

2
R(U 1

3
),

and finally

U1 = U0 + ∆t R(U 1
2
). (C.3)

Appendix D: Numerical implementation

of the diffusive terms

With the artificial diffusion νl defined in Sect. 3.2, the diffusive
terms in the continuity and energy equations are given by
(

∂̺

∂t

)

diff

=
∑

l

∂

∂xl

(

νl(̺)
∂̺

∂xl

)

(D.1)

and
(

∂e

∂t

)

diff

=
∑

l

∂

∂xl

(

̺νl(T )
∂cpT

∂xl

)

, (D.2)

respectively. The diffusive terms for the vector quantities u

and B have a more complicated structure. In the momentum
equations we have
(

∂̺u

∂t

)

diff

= ∇ · τ, (D.3)

where τ is the symmetrized stress tensor

τkl =
1
2
̺

(

νk(ul)
∂ul

∂xk

+ νl(uk)
∂uk

∂xl

)

· (D.4)

In the equation for the total energy, the dissipated energy is
taken into account by a viscous heating term
(

∂e

∂t

)

visc

= ∇ ·
(

u · τ
)

. (D.5)

The artifical diffusive term in the induction equation is given by

(

∂B

∂t

)

diff

= −∇ × E. (D.6)

The vector quantity E is defined as

E =

























νy(Bz)∂yBz − νz(By)∂zBy

νz(Bx)∂zBx − νx(Bz)∂xBz

νx(By)∂xBy − νy(Bx)∂yBx

























. (D.7)

The dissipated energy is accounted for in the energy balance
and appears in the energy equation as an Ohmic heating term:
(

∂e

∂t

)

ohm

=
1

4π
∇ · (B × E) . (D.8)

All artificial diffusion terms are discretized with second-order
centered differences. The staggered grid used for the artificial
diffusion is shown in Fig. D.1. At grid point i, a diffusion term
of the form ∂x(ν∂xu) is calculated as
(

∂u

∂t

)

diff,i

=
1
∆x

(

νi+ 1
2
·

ui+1 − ui

∆x
− νi− 1

2
·

ui − ui−1

∆x

)

, (D.9)

where νi+ 1
2

and νi− 1
2

are the artificial diffusion coefficient de-
fined on the cell interfaces normal to the coordinate direction
of diffusion. In a term with mixed derivatives like ∂y(ν∂xu), the
hyperdiffusion coefficient is interpolated from cell interfaces
onto cell centers. The inner part of such a term is then dis-
cretized as
(

ν
∂u

∂x

)

i

=

(

νi+ 1
2
+ νi− 1

2

2

)

·

(

ui+1 − ui−1

2∆x

)

· (D.10)
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x

y

Fig. D.1. The numerical stencil for the artificial diffusivities. Empty circles indicate the staggered grid on which the hyperdiffusive coefficients
are defined. Left and middle panel: grid and stencil for the terms ∂x(ν∂xu) and ∂y(ν∂yu), respectively. Right panel: stencil for the term ∂y(ν∂xu)
with mixed derivatives.


