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ABSTRACT

We study the non-linear growth of cosmic structure in different dark energy models, using

large volume N-body simulations. We consider a range of quintessence models which feature

both rapidly and slowly varying dark energy equations of state, and compare the growth of

structure to that in a universe with a cosmological constant. We use a four-parameter equation of

state for the dark energy which accurately reproduces the quintessence dynamics over a wide

range of redshifts. The adoption of a quintessence model changes the expansion history of the

universe, the form of the linear theory power spectrum and can alter key observables, such

as the horizon scale and the distance to last scattering. We incorporate these effects into our

simulations in stages to isolate the impact of each on the growth of structure. The difference

in structure formation can be explained to first order by the difference in growth factor at

a given epoch; this scaling also accounts for the non-linear growth at the 15 per cent level.

We find that quintessence models that are different from � cold dark matter (�CDM) both

today and at high redshifts (z ∼ 1000), and which feature late (z < 2), rapid transitions in

the equation of state, can have identical baryonic acoustic oscillation (BAO) peak positions

to those in �CDM. We find that these models have higher abundances of dark matter haloes

at z > 0 compared to �CDM and so measurements of the mass function should allow us to

distinguish these quintessence models from a cosmological constant. However, we find that

a second class of quintessence models, whose equation of state makes an early (z > 2) rapid

transition to w = −1, cannot be distinguished from �CDM using measurements of the mass

function or the BAO, even if these models have non-negligible amounts of dark energy at early

times.

Key words: methods: N-body simulations – cosmology: theory – large-scale structure of

Universe.

1 IN T RO D U C T I O N

Determining whether or not the dark energy responsible for the

accelerating expansion of the Universe evolves with time remains a

key goal of physical cosmology. This will tell us if the dark energy

is indeed a cosmological constant or has a dynamical form as in

quintessence models. The nature of the dark energy determines

the expansion history of the Universe and hence the rate at which

cosmological perturbations grow. In this paper, we investigate the

influence of quintessence dark energy on the non-linear stages of

structure formation using a suite of N-body simulations.

⋆E-mail: elise.jennings@durham.ac.uk

The simplest candidate for dark energy is the cosmological con-

stant, � (see e.g. the review by Carroll 2001). Despite the success of

�CDM (cold dark matter and cosmological constant model) at fit-

ting much of the available observational data (Sanchez et al. 2009),

this model fails to address two important issues: the fine-tuning

problem and the coincidence problem. The fine-tuning problem

arises from the vast discrepancy between the vacuum energy level

predicted by particle physics, generically given by �4, where �

is the physics scale considered, and the value of missing energy

density inferred cosmologically, ρ ∼ 10−47 GeV4. In the standard

model of particle physics, � could be at the Planck scale, � ∼
1018 GeV. The coincidence problem refers to the fact that we hap-

pen to live around the time at which dark energy has emerged as the

dominant component of the Universe, and has a comparable energy

density to matter, ρDE ∼ ρm.
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Quintessence models were devised to solve the fine-tuning and

coincidence problems of �CDM. In these models, the cosmolog-

ical constant is replaced by an extremely light scalar field which

evolves slowly (Ratra & Peebles 1988; Wetterich 1988; Caldwell,

Dave & Steinhardt 1998; Ferreira & Joyce 1998). An abundance of

quintessence models has been proposed in the literature which can

resolve the coincidence problem and explain the observationally in-

ferred amount of dark energy. Models of quintessence dark energy

can have very different potentials, V (ϕ), but can share common fea-

tures. The potentials provide the correct magnitude of the energy

density and are able to drive the accelerated expansion seen today.

The form of the scalar field potential determines the trajectory of

the equation of state, w(z) = P/ρ, as it evolves in time. Hence,

different quintessence dark energy models have different dark en-

ergy densities as a function of time, �DE(z). This implies a different

growth history for dark matter perturbations from that expected in

�CDM.

Cosmological N-body simulations are the theorist’s tool of choice

for modelling the final stages of perturbation collapse. The over-

whelming majority of simulations have used the concordance

�CDM cosmology. Here we simulate different dark energy mod-

els and study their observational signatures. A small number of

papers have used N-body simulations to test scalar field cosmolo-

gies (Ma et al. 1999; Linder & Jenkins 2003; Klypin et al. 2003;

Francis, Lewis & Linder 2008; Alimi et al. 2009; Casarini, Macciò

& Bonometto 2009; Grossi & Springel 2009). Rather than explicitly

solving for different potentials, it is standard practice to modify the

Friedmann equation using a form for the dark energy equation of

state, w(z). Previous work used a variety of parametrizations for

w(z), the most common being the two-parameter equation, w =
w0 + (1 − a)wa (Chevallier & Polarski 2001; Linder 2003) or the

empirical three-parameter equation proposed by Wetterich (2004)

for the so-called early dark energy models. The disadvantage of

using a one- or two-variable parametrization for w is that it cannot

accurately reproduce the dynamics of a quintessence model over

a wide range of redshifts. If we wish to reproduce the equation of

state of the original scalar field to within 5 per cent, a two-parameter

equation of state will not be able to achieve this precision for a wide

range of quintessence potentials (Bassett, Corasaniti & Kunz 2004).

Instead, we take advantage of a parametrization for w(z) which can

describe a wide range of different models. In this work, we use a

four-parameter dark energy equation of state which can accurately

reproduce the original w(z) for a variety of dark energy models to

better than 5 per cent for redshifts z < 103 (Corasaniti & Copeland

2003).

In this paper, we present three stages of N-body simulations of

structure formation in quintessence models. Each stage progres-

sively relaxes the assumptions made and brings us closer to a full

physical model. In the first stage, the initial conditions for each

quintessence cosmology are generated using a �CDM linear the-

ory power spectrum and the background cosmological parameters

are the best-fitting values assuming a �CDM cosmology. The only

departure from �CDM in this first stage is the dark energy equa-

tion of state and its impact on the expansion rate. In the second stage,

we use a modified version of CAMB (Lewis & Bridle 2002) to gener-

ate a consistent linear theory power spectrum for each quintessence

model. The linear theory power spectrum can differ from the power

spectrum in �CDM due to the presence of non-negligible amounts

of dark energy during the early stages of the matter-dominated era.

This power spectrum is then used to generate the initial conditions

for the N-body simulation which is again run for each dark en-

ergy model. The third and final stage in our analysis is to find the

values for the cosmological parameters �mh2, �bh
2 and H0 (the

matter density, baryon density and Hubble parameter, respectively)

such that each model satisfies cosmological distance constraints.

Recently, Alimi et al. (2009) used cosmic microwave background

(CMB) and supernova (SN) data to constrain the parameters in the

quintessence potential and the value of the matter density, �mh2, for

two models. In this paper, we allow three parameters to vary when

fitting each quintessence model to the available data. This distinction

is important as changes in these parameters may produce compen-

sating effects which result in the quintessence model looking like

�CDM. For example, for a given dark energy equation of state, a

lower value of the matter density may not result in large changes

in the Hubble parameter if the value of H0 is increased. In going

through each of these stages, we build up a comprehensive picture

of the quintessence models and their effect on the non-linear growth

of structure.

This paper is organized as follows. In Section 2, we discuss

quintessence models and the parametrization we use for the dark

energy equation of state. We also outline the expected impact of

different dark energy models on structure formation. In Section 3,

we give the details of our N-body simulations. The main power

spectrum results are presented in Section 4.3. Intermediate results

are presented in Sections 4.1 and 4.2, which the reader may wish

to omit on a first pass. In Section 4.4, we present the mass func-

tion predictions. In Section 4.5, we discuss the appearance of the

baryonic acoustic oscillations (BAO) in the matter power spectrum.

Finally, in Section 6, we present our conclusions.

2 QUI NTESSENCE MODELS

O F DA R K E N E R G Y

Here we briefly review some general features of quintessence

models; more detailed descriptions can be found, for example, in

Ratra & Peebles (1988), Wetterich (1988), Ferreira & Joyce (1998),

Copeland, Sami & Tsujikawa (2006) and Linder (2008). The main

components of quintessence models are radiation, pressureless mat-

ter and a quintessence scalar field, denoted by ϕ. This dynamical

scalar field is a slowly evolving component with negative pressure.

This multifluid system can be described by the following action:

S =
∫

d4x
√

−g

(

−
R

2κ
+ Lm+r +

1

2
gμν

∂μϕ ∂νϕ − V (ϕ)

)

, (1)

where R is the Ricci scalar, Lm+r is the Lagrangian density of mat-

ter and radiation, κ = 8π G, g is the determinant of a spatially

flat Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) metric ten-

sor gμν and V (ϕ) is the scalar field potential. We assume that any

couplings to other fields are negligible so the scalar field interacts

with other matter only through gravity. Minimizing the action with

respect to the scalar field leads to its equation of motion

ϕ̈ + 3Hϕ̇ +
dV (ϕ)

dϕ
= 0, (2)

where H is the Hubble parameter and we have assumed that the

field is spatially homogeneous, ϕ(x, t) = ϕ(t). The impact of the

background on the dynamics of ϕ is contained in the 3Hϕ̇ term.

The Hubble parameter for dynamical dark energy in a flat universe

is given by

H 2(z)

H 2
0

=
(

�m (1 + z)3 + (1 − �m)e3
∫ z

0 dln(1+z′) [1+w(z′)]
)

, (3)

where H0 and �m = ρm/ρcrit are the values of the Hubble pa-

rameter and dimensionless matter density, respectively, at redshift

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201
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Simulations of quintessential CDM 2183

z = 0 and ρcrit = 3H 2
0/(8πG) is the critical density. The dark en-

ergy equation of state is expressed as the ratio of the dark energy

pressure to its energy density, denoted as w = P/ρ. Once a standard

kinetic term is assumed in the quintessence model, it is the choice

of potential which determines w as

w =
ϕ̇2/2 − V (ϕ)

ϕ̇2/2 + V (ϕ)
. (4)

In general, in these theories if the contribution from the kinetic

(ϕ̇ = 0) and gradient energy (dϕ/dx = 0) is negligible, then the

effect of the scalar field is equivalent to a cosmological constant

which behaves as a perfect fluid, with P = −ρ or w = −1.

2.1 Classes of quintessence models

Two broad classes of quintessence models can be used to solve

both the fine-tuning and coincidence problems. The first is based

on the idea of the so-called tracker fields (Steinhardt, Wang &

Zlatev 1999). These fields adapt their behaviour to the evolution of

the scalefactor and hence track the background density. The other

class is referred to as ‘scaling solutions’ (Halliwell 1987; Wands,

Copeland & Liddle 1993; Wetterich 1995). In these models, the

ratio of energy densities, ρϕ/ρB, is constant.

In tracking models, the ϕ field rolls down its potential, V (ϕ), to

an attractor-like solution. The great advantage of these models is

that this solution is insensitive to the initial conditions of the scalar

field produced after inflation. A general feature of these tracking

solutions is that as the scalar field is tracking behind the dominant

matter component in the universe, its equation of state, wϕ , depends

on the background component as

ρϕ

ρB

= a3 (wB−wϕ ) , (5)

where ρB and wB denote the background energy density and the

equation of state, respectively, with wB = 1/3 (radiation era) and

wB = 0 (matter era). As a result, the energy density of the scalar

field remains subdominant during the radiation- and matter-

dominated epochs, although it decreases at a slower rate than the

background density. The quintessence field, ρϕ , naturally emerges

as the dominant component today and its equation of state is driven

towards w = −1. An example of a tracking model is the inverse po-

tential form proposed by Zlatev, Wang & Steinhardt (1999), V (ϕ) ∼
M4+αϕ−α , where M is a free parameter that is generally fixed by

the requirement that the dark energy density today �DE ∼ 0.7 and

so the quintessence potential must be V ∼ ρcrit. This implies that

ϕ is of the order of the Planck mass today, ϕ ∼ MPl. With α ≤ 6,

the quintessence field equation of state is approximately w0 ≤ −0.4

today.

In scaling quintessence models, the ratio of energy densities,

ρϕ/ρB, is kept constant, unlike tracking models, where ρϕ changes

more slowly than ρB. During the evolution of the energy density

in a ‘scaling’ model, if the dominant matter component advances

as ρ ∝ a−n, then the scalar field will obey �ϕ = n2/α2 after some

initial transient behaviour. Scaling quintessence models can suffer

from an inability to produce late-time acceleration, whilst at the

same time adhering to observational constraints, such as the lower

limit on �ϕ during nucleosynthesis (Bean, Hansen & Melchiorri

2001). Albrecht & Skordis (2000) used a modified coefficient in

their scaling potential, V (ϕ) = V pe−λ ϕ , where V p(ϕ) = (ϕ − B)α +
A, resulting in a model which can produce late-time acceleration as

well as satisfying cosmological bounds, for a variety of constants

A and B. Barreiro, Copeland & Nunes (2000) considered a linear

combination of exponential terms in the scalar field potential and

found that this yielded a larger range of acceptable initial energy

densities for ϕ compared with inverse models. Copeland, Nunes &

Rosati (2000) also consider supergravity (SUGRA) corrections to

quintessence models, where the resulting potential can exhibit either

‘tracking’ or ‘scaling’ behaviour depending on which path the scalar

field takes down its potential towards the minimum where it would

appear as a cosmological constant.

The physical origin of the quintessence field should be addressed

by models motivated by high-energy particle physics. As the vac-

uum expectation value of the scalar field today is of the order of

the Planck mass, any candidates for quintessence which arise in

supersymmetric (SUSY) gauge theories may receive SUGRA cor-

rections which will alter the field’s potential. It is this fact that

motivates many authors to argue that any quintessence model in-

spired by particle physics potentials must be based on SUGRA.

Brax & Martin (1999) discuss such models and employ the poten-

tial V (ϕ) = �4+α/ϕαeκ/2ϕ2
with a value of α ≥ 11 in order to drive

w0 close to −1 today.

In summary, in this paper we will consider six quintessence mod-

els which cover the behaviours discussed above. In particular, INV1

and INV2, which are plotted in Fig. 1, have inverse power-law po-

tentials and exhibit tracking solutions. The INV1 model is the ‘INV’

model considered by Corasaniti & Copeland (2003) and has a value

of w0 = −0.4 today. As current observational data favour a value of

w0 < −0.8 (Sanchez et al. 2009), the INV1 model will be used as

an illustrative model. We shall consider a second inverse power-law

model (INV2) which is in better agreement with the constraints

on w. As noted by Corasaniti (2004), the scale � in the inverse

power-law potential, V (ϕ) = �α+4/ϕα , is fixed by the value of �DE

today. Solving the coincidence problem requires this scale for � to

be consistent with particle physics models. For values of α ≥ 6, it

is possible to have energy scales of � ∼ 106 GeV. Setting α = 6

results in an equation of state with w0 = −0.4 (INV1). It is possible

Figure 1. The dark energy equation of state as a function of the expansion

factor, w(a), for six quintessence models motivated by particle physics,

which are either tracking or scaling solutions. The parametrization for w(a)

is given in equation (6) and the four parameter values which specify each

model are given in Table 1. Note that the left-hand side of the x-axis is the

present day.
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2184 E. Jennings et al.

to drive the equation of state closer to −1 today with lower values of

α, although the value of � is then pushed to an undesirable energy

range when compared with the typical scales of particle physics.

The second model INV2, which has w0 = −0.79 with α = 1, has

been added to illustrate a power-law potential with a dark energy

equation of state which agrees with constraints found on w0 using

CMB, SN and large-scale structure data (Sanchez et al. 2009). We

also use the SUGRA model of Brax & Martin (1999) which exhibits

tracking field behaviour. The potential in this case also contains an

exponential term which pushes the dark energy equation of state to

w0 = −0.82. The 2EXP model is an example of a scaling solution

and features a double exponential term in the scalar field poten-

tial (Barreiro et al. 2000). The AS model suggested by Albrecht &

Skordis (2000) belongs to the class of scaling quintessence fields.

As mentioned previously, the parameters in this potential can be

adjusted to have the fractional dark energy density, �DE, below the

nucleosynthesis bound in the early universe. The Copeland, Nunes

& Rosati (CNR) model (Copeland et al. 2000) has a tracking poten-

tial where the scalar field rolls down to its minimum and will settle

down to w0 = −1 after a series of small oscillations.

Each of the quintessence models we consider is one of a family

of such models with parameter values chosen in order to solve

the issues of fine-tuning and coincidence, as well as to produce a

value of w0 ∼ −1 today. These requirements limit the parameter

space available to a particular quintessence potential. For example,

this limits the range of the Brax & Martin (1999) SUGRA model.

The SUGRA model we simulate has a fixed parameter value in

the SUGRA potential but the dark energy equation of state for this

model does not depend strongly on this parameter (see fig. 4 in Brax

& Martin 1999).

2.2 Parametrization of w

Given the wide range of quintessence models in the literature it

would be a great advantage, when testing these models, to obtain

one model-independent equation describing the evolution of the

dark energy equation of state without having to specify the po-

tential V (ϕ) directly. Throughout this paper we will employ the

parametrization for w proposed by Corasaniti & Copeland (2003),

which is a generalization of the method used by Bassett et al. (2002)

for fitting dark energy models with rapid late-time transitions. Us-

ing a parametrization for the dark energy equation of state provides

us with a model-independent probe of several dark energy proper-

ties. The dark energy equation of state, w(a), is described by its

value during radiation domination, wr, followed by a transition to

a plateau in the matter-dominated era, wm, before making the tran-

sition to the present-day value w0. Each of these transitions can be

parametrized by the scalefactor ar,m at which they occur and the

width of the transition �r,m.

In order to reduce this parameter space we use the shorter version

of this parametrization for w, which is relevant as our simulations

begin in the matter-dominated era. The equation for w valid after

matter-radiation equality is

wϕ(a) = w0 + (wm − w0) ×
1 + e

am
�m

1 + e− a−am
�m

×
1 − e− a−1

�m

1 − e
1

�m

. (6)

Corasaniti & Copeland (2003) showed that this four-parameter fit

gives an excellent match to the exact equation of state. Table 1 gives

the best-fitting values for the equation-of-state parameters for the

different quintessence models taken from Corasaniti & Copeland

(2003), with the addition of the INV2 model. The parametrization

Table 1. The equation of state of the dark energy models simulated, ex-

pressed in the parametrization of Corasaniti & Copeland (2003). The evo-

lution of w(a) is described by four parameters: the value of the equation of

state today, w0, and during matter-domination era, wm, the expansion fac-

tor, am, when the field changes its value during matter domination and the

width of the transition, �m. We have added the INV2 model to this list as

an example of an inverse power-law potential with a value of w0 closer to

−1 than in the INV1 model.

Model w0 wm am �m

INV1 −0.4 −0.27 0.18 0.5

INV2 −0.79 −0.67 0.29 0.4

SUGRA −0.82 −0.18 0.1 0.7

2EXP −1.0 0.01 0.19 0.043

AS −0.96 −0.01 0.53 0.13

CNR −1.0 0.1 0.15 0.016

Figure 2. The dark energy density, �DE(a), as a function of the expansion

factor. The INV1, SUGRA, CNR, 2EXP and AS models have significant

levels of dark energy at early times. From z ∼ 9 until today, the 2EXP

and CNR models display the same energy density as �CDM. Note that the

x-axis scale on this plot goes to z > 300 on the right-hand side.

for the dark energy equation of state is plotted in Fig. 1 for the

various quintessence models used in this paper.

Fig. 2 shows the evolution of the dark energy density with the ex-

pansion factor in each quintessence model. Some of these models

display significant levels of dark energy at high redshifts in con-

trast to a �CDM cosmology. As the AS, CNR, 2EXP and SUGRA

models have non-negligible dark energy at early times, all of these

could be classed as ‘early dark energy’ models. As shown in Fig. 2,

both the CNR and the 2EXP models have high levels of dark en-

ergy at high redshifts compared to �CDM; after an early rapid

transition, the dark energy density evolves in the same way as in

a �CDM cosmology. Other models, such as the AS, INV1 and

SUGRA models, also have non-negligible amounts of dark energy

at early times, and after a late-time transition, the dark energy den-

sity mimics a �CDM cosmology at very low redshifts. In Section 4

we will investigate if quintessence models which feature an early

or late transition in their equation of state, and in their dark en-

ergy density, can be distinguished from �CDM by examining the

growth of large-scale structure. The luminosity distance and Hubble

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201
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Simulations of quintessential CDM 2185

Figure 3. The luminosity distance in different quintessence models com-

pared to that in a �CDM cosmology. In this case, we have assumed the

same matter density of �m = 0.26 today in each of the models. The CNR

and 2EXP models predict the same DL as in �CDM and are overplotted.

Figure 4. The ratio of the Hubble parameter for quintessence cosmologies

to that in �CDM.

parameter in the quintessence models are compared to �CDM in

Figs 3 and 4, respectively. In these plots, it is clear that the CNR and

the 2EXP models differ from �CDM only at very high redshifts.

The adoption of a four-variable parametrization is essential to

accurately model the expansion history over the full range of red-

shifts probed by the simulations. Using a one- or two-parameter

equation of state whose application is limited to low-redshift mea-

surements restricts the analysis of the properties of dark energy

and cannot make use of high-redshift measurements such as the

CMB. As an example, Corasaniti (2004) demonstrated that a two-

parameter log expansion for w(z), proposed by Gerke & Efstathiou

(2002), can only take into account a quintessence model which

varies slowly and cannot faithfully reproduce the original w(z) at

high redshifts. Bassett et al. (2004) analysed how accurately vari-

ous parametrizations could reproduce the dynamics of quintessence

models. They found that parametrizations based on an expansion to

first order in z or log z showed errors of ∼10 per cent at z = 1. A gen-

eral prescription for w(z) containing more parameters than a simple

one- or two-variable equation can accurately describe both slowly

and rapidly varying equations of state (Bassett et al. 2004). For

example, the parametrization provided by Corasaniti & Copeland

(2003) can accurately mimic the exact time behaviour of w(z) to

<5 per cent for z < 103 using a four-parameter equation of state and

to <9 per cent for z < 105 with a six-parameter equation. Finally,

we note that the parametrization for w proposed by Corasaniti &

Copeland (2003) is similar to the four-parameter equation of state

in Linder & Huterer (2005) (Model 4.0) where the evolution of w

is described in terms of the e-fold variable, N = ln a, where a is

the scalefactor.

2.3 The expected impact of dark energy

on structure formation

The growth of structure is sensitive to the amount of dark energy,

as this changes the rate of expansion of the Universe. As a result, a

quintessence model with a varying equation of state could display

different large-scale structures from a �CDM model. Varying the

equation of state will result in different amounts of dark energy at

different times. It has been shown that models with a larger density

of dark energy at high redshift than �CDM have more developed

large-scale structure at early times, when normalized to the same

σ 8 today (Francis et al. 2008; Grossi & Springel 2009).

When the dark matter perturbations are small and the density

contrast δ(x, t) ≪ 1, the expression for the power spectrum as a

function of time, P (k, t), is separable as

P (k, t) =
D(t)2

D(t0)2
P (k, t0), (7)

where D(t0) is the linear growth factor at the present epoch. The

normalized growth factor G = D/a obeys the following evolution

equation (Linder & Jenkins 2003):

G′′ +
(

7

2
−

3

2

w(a)

1 + X(a)

)

G′

a
+

3

2

1 − w(a)

1 + X(a)

G

a2
= 0 , (8)

where

X(a) =
�m

1 − �m

e−3
∫ 1
a dlna′w(a′) , (9)

and w(a) is the dynamical dark energy equation of state. The linear

growth factor for each quintessence model is plotted in Fig. 5. In

Section 4.1, we present the simulation results for each quintessence

model where the initial conditions were generated using a �CDM

linear theory power spectrum and the background cosmological pa-

rameters are the best-fitting values assuming a �CDM cosmology

(stage I). The difference between the simulations is the result of

having a different linear growth rate for the dark matter perturba-

tions.

The presence of small but appreciable amounts of dark energy

at early times also modifies the growth rate of fluctuations from

that expected in a matter-dominated universe and hence changes

the shape of the linear theory P(k) from the �CDM prediction.

The quintessence scalar field can contribute at most a small fraction

of the total energy density at early redshifts. Constraints on this

amount come from big bang nucleosynthesis as well as from CMB

measurements. Bean et al. (2001) found a limit of �DE < 0.045

at a ∼ 10−6 using the observed abundances of primordial nuclides

and a constraint of �DE < 0.39 during the radiation-domination
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2186 E. Jennings et al.

Figure 5. The growth factor as a function of the expansion factor. The upper

panel shows the evolution of the linear growth factor in each quintessence

model. In the lower panel, the ratio of the growth factor in the quintessence

models compared to �CDM is plotted. The growth factor in each case has

been normalized to unity today.

era, a ∼ 10−4, from CMB anisotropies. Caldwell et al. (2003) dis-

cuss the parameter degeneracies which allow for different amounts

of dark energy at early times leaving the position of the CMB

peaks unchanged (see Section 4.3). Using the Wilkinson Microwave

Anisotropy Probe (WMAP) first-year data, Corasaniti et al. (2004)

found a limit of �DE < 0.2 at z ∼ 10. Some recent parametrization-

dependent constraints on early dark energy models found the dark

energy density parameter to be �DE < 0.02 at the last scattering

surface (Xia & Viel 2009). Note that all of the models we consider

are consistent with this constraint, except for the AS model (see

Fig. 2).

If the dark energy is not a cosmological constant, then there

will be dark energy perturbations present, δϕ , whose evolution will

affect the dark matter power spectrum and alter the evolution in

equation (8) (Ferreira & Joyce 1998; Weller & Lewis 2003). As

most of the quintessence models we will consider display a non-

negligible contribution to the overall density from dark energy at

early times, the matter power spectrum is affected in two ways

(Ferreira & Joyce 1998; Caldwell et al. 2003; Doran, Robbers &

Wetterich 2007). In the matter-dominated era, the growing mode

solution for dark matter density perturbations is proportional to

the expansion factor, δm ∝ a, in a universe without a scalar field

component. In a dark energy model which has appreciable amounts

of dark energy at early times, the dark matter growing mode solution

on subhorizon scales is modified to become

δm ∝ a[
√

25−24�DE−1]/4. (10)

The growth of modes on scales k > keq, where keq is the wavenum-

ber corresponding to the horizon scale at matter radiation equality,

is therefore suppressed relative to the growth expected in a �CDM

universe. For fluctuations with wavenumbers k < keq during the

matter-dominated epoch, the suppression takes place after the mode

enters the horizon and the growing mode is reduced relative to a

model with �DE ≃ 0. These two effects are illustrated for a scaling

quintessence model in Ferreira & Joyce (1998), whose fig. 7 shows

the evolution of δm for two wavenumbers: one that enters the hori-

zon around aeq(k = 0.1 Mpc−1) and one that comes in during the

radiation era (k = 1 Mpc−1), in a universe with �DE = 0.1 during

the matter-dominated era. There is a clear suppression of growth

after horizon crossing compared to a universe with no scalar field.

The overall result is a scale-independent suppression for subhorizon

modes, a scale-dependent red tilt (ns < 1) for superhorizon modes

and an overall broadening of the turnover in the power spectrum.

This change in the shape of the turnover in the matter power spec-

trum can be clearly seen in Fig. 6 for the AS model. This damping

of the growth after horizon crossing will result in a smaller σ 8 value

for the quintessence models compared to �CDM if normalized to

CMB fluctuations (see also Kunz et al. 2004).

We have used the publicly available parametrized post-Friedmann

(PPF) module for CAMB (Fang, Hu & Lewis 2008) to generate the lin-

ear theory power spectrum. This module supports a time-dependent

dark energy equation of state by implementing a PPF prescrip-

tion for the dark energy perturbations with a constant sound speed

Figure 6. Linear theory power spectra at z = 0 for dynamical dark energy

quintessence models and �CDM. In this plot, the spectra are normalized to

CMB fluctuations (on smaller wavenumbers than are included in the plot).

The presence of a non-negligible dark energy density fraction at early times

causes a scale-independent suppression of growth for scales k > keq, where

keq is the wavenumber corresponding to the horizon scale at matter radiation

equality and a scale-dependent suppression at k < keq. Models with high

�DE at the last scattering surface have a lower σ 8 today compared to �CDM

if normalized to CMB fluctuations.
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c2
s = 1. Fig. 6 shows the dark matter power spectra at z = 0 generated

by CAMB for each quintessence model and �CDM with the same

cosmological parameters, an initial scalar amplitude of As = 2.14 ×
10−9 and a spectral index ns = 0.96 (Sanchez et al. 2009). As can

be seen in this plot, models with higher fractional energy densities

at early times have a lower σ 8 today and a broader turnover in P(k).

In Section 4.2, a consistent linear theory power spectrum was used

for each quintessence model to generate the initial conditions for

the simulations (stage II).

Finally, quintessence dark energy models will not necessarily

agree with observational data when adopting the cosmological pa-

rameters derived assuming a �CDM cosmology. We consider how

the different quintessence models affect various distance scales. We

find the best-fitting cosmological parameters for each quintessence

model using the observational constraints on distances such as the

measurements of the angular diameter distance and sound horizon

at the last scattering surface from the CMB. The method and data

sets used are given in Appendix A and the corresponding simula-

tion results which use a consistent linear theory power spectrum for

each model together with the best-fitting cosmological parameters

are presented in Section 4.3. (stage III).

3 SIMULATION D ETAILS

We will determine the impact of quintessence dark energy on the

growth of cosmological structures through a series of large N-body

simulations. These simulations were carried out at the Institute

of Computational Cosmology using a memory-efficient version of

the TreePM code GADGET-2, called L-GADGET-2 (Springel 2005). As

our starting point, we consider a �CDM model with the following

cosmological parameters: �m = 0.26, �DE = 0.74, �b = 0.044, h =
0.715 and a spectral tilt of ns = 0.96 (Sanchez et al. 2009). The linear

theory rms fluctuation in spheres of a radius of 8 h−1 Mpc is set to be

σ 8 = 0.8. For each of the quintessence models, the parametrization

for the dark energy equation of state given in equation (6) was

used. In the first stage, we fix the cosmological parameters for all

of the quintessence models to those of �CDM. As a result, some

of the scalar field models do not match observational constraints

on the sound horizon at the last scattering or the angular diameter

distance. We shall discuss this further in Section 4.3 using the results

given in Appendix A.

The simulations use N = 6463 ∼ 269 × 106 particles to

represent the dark matter in a computational box of a comov-

ing length of 1500 h−1 Mpc. We chose a comoving softening

length of ǫ = 50 h−1 kpc. The particle mass in the simulation is

9.02 × 1011 h−1 M⊙ with a mean interparticle separation of r ∼
2.3 h−1 Mpc. The initial conditions of the particle load were set up

with a glass configuration of particles. This arrangement is obtained

by evolving a random distribution of particles with the sign of the

gravitational force reversed (White 1994; Baugh, Gaztanaga & Ef-

stathiou 1995). The particles are perturbed from the glass using the

Zeldovich approximation which can induce small-scale transients

in the measured power spectrum. These transients die away after

≃10 expansion factors from the starting redshift (Smith et al. 2003).

In order to limit the effects of the initial displacement scheme, we

chose a starting redshift of z = 200.

The linear theory power spectrum used to generate the initial

conditions was created using the CAMB package of Lewis & Bridle

(2002). In the first stage of our calculations, presented in Section 4.1,

the linear theory power spectrum used to set up the initial condi-

tions in the quintessence models was the same as �CDM. For the

purpose of computing the shape of P(k) in stage I, we have assumed

that the ratio of dark energy density to the critical density at the

last scattering surface (zlss ∼ 1000) is negligible and have ignored

any clustering of the scalar field dark energy. In Section 4.2, the

linear theory P(k) is generated for each quintessence model using a

modified version of CAMB which incorporates the influence of dark

energy on dark matter clustering at early times. In each model, the

power spectra at redshift zero have been normalized to have σ 8 =
0.8. Using the linear growth factor for each dark energy model,

the linear theory P(k) was then evolved backwards to the starting

redshift of z = 200 in order to generate the initial conditions for

L-GADGET-2. Snapshot outputs of the dark matter distribution as well

as the group catalogues were made at redshifts 5, 3, 2.5, 2, 1.5, 1,

0.75, 0.5, 0.25 and 0. The simulation code L-GADGET-2 has an inbuilt

friends-of-friends (FOF) group finder which was applied to produce

group catalogues of dark matter particles with 10 or more particles.

A linking length of 0.2 times the mean interparticle separation was

used in the group finder.

We investigate gravitational collapse in the six quintessence mod-

els listed in Table 1 by comparing the evolution of the power spec-

trum at various redshifts. The power spectrum was computed by

assigning the particles to a mesh using the cloud in cell (CIC) as-

signment scheme (Hockney & Eastwood 1981) and then performing

a fast Fourier transform on the density field. To restore the resolu-

tion of the true density field, this assignment scheme is corrected

for by performing an approximate deconvolution (Baumgart & Fry

1991).

4 R ESULTS

In the following sections, we present the power spectrum predic-

tions from the three stages of simulations carried out as described

in Section 2.3. The bottom line results are presented in Section 4.3,

in which we compare power spectra in �CDM with a subset of

dark energy models which also pass the currently available ob-

servational constraints. The reader pressed for time may wish to

skip directly to this section. Sections 4.1 and 4.2 show intermediate

steps away from �CDM towards the consistent dark energy models

presented in Section 4.3, to allow us to understand the impact on

P(k). In Section 4.1, the Friedmann equation was modified with the

quintessence model’s equation of state as a function of redshift and

a �CDM linear theory power spectrum was used to generate the

initial conditions for all the simulations (stage I). In Section 4.2, we

use a consistent linear theory power spectrum for each quintessence

model (stage II). In Section 4.3 we constrain a set of cosmological

parameters, using CMB, BAO and SN data, for each dark energy

model. The final stage of simulations uses a consistent linear the-

ory power spectrum for each model together with the best-fitting

cosmological parameters (stage III).

4.1 Stage I: changing the expansion rate of the Universe

In this first stage of simulations, the same �CDM initial power

spectrum and cosmological parameters were used for all models. In

Fig. 7 we plot the power spectrum at redshifts z = 0, 1, 5 in �CDM

(orange lines) and in the AS model (green lines), together with the

linear theory power spectra for �CDM (black lines). The AS model

has a linear growth rate that differs from �CDM by ∼20 per cent at

z = 5. We also plot the Smith et al. (2003) ‘Halofit’ empirical fitting

function for �CDM and the AS model. The Halofit function has

been incorporated into the CAMB package, and this code was used to

generate the output at various redshifts seen in Fig. 7. As this plot
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2188 E. Jennings et al.

Figure 7. Power spectra in a �CDM cosmology (orange lines) and AS

quintessence model (green lines) at redshift 0, 1 and 5. The red dashed

lines corresponds to the Smith et al. (2003) analytical expression for the

non-linear P (k) in �CDM; the blue dotted lines show the equivalent for

the AS model. The solid black line is the linear theory for �CDM at the

corresponding redshift outputs. The Smith et al. (2003) expression for the

AS model has been scaled with the appropriate growth factor for this model

at each redshift.

shows, the Smith et al. (2003) expression accurately describes the

evolution of the power spectrum at redshift 0 in both models and at

earlier times. As the normalization and linear spectral shape is the

same in these two models, Halofit accurately reproduces the non-

linear power in each model at various redshifts once the appropriate

linear growth factor for the dark energy model at that redshift is used.

The Smith et al. expression agrees with the simulation output at z =
0 to within 4 per cent for k < 1 h Mpc−1 for both the quintessence

model and �CDM. At higher redshifts, the difference between the

simulation output and the Halofit prediction for all the models is

just under 10 per cent on scales k < 0.3 h Mpc−1 at z = 5.

To highlight the differences in the power between the different

models, we plot in Fig. 8 the measured power divided by the power

at z = 5, after scaling to take into account the difference in the linear

theory growth factors for the output redshift and z = 5, for �CDM.

This removes the sampling variance from the plotted ratio (Baugh

& Efstathiou 1994). A ratio of unity in Fig. 8 would indicate linear

growth at the same rate as expected in �CDM.

Fig. 8 shows four epochs in the evolution of the power spectrum

for all of the quintessence models and �CDM. The black line in the

plot shows the P(k) ratio for �CDM (note that the yellow curve for

the CNR model is overplotted). Non-linear growth can be seen as an

increase in the power ratio on small scales, k > 0.3 h Mpc−1 at z =
3 and k > 0.1 h Mpc−1 at z = 0. Four of the quintessence models

(INV1, INV2, SUGRA and AS) differ significantly from �CDM

for z > 0. These models show advanced structure formation, i.e.

more power than �CDM, and a large increase in the amount of non-

linear growth. All models are normalized to have σ 8 = 0.8 today

and as a result all the power spectra are very similar at redshift

zero in Fig. 8. There are actually small differences between the

quintessence models at z = 0 as seen on the expanded scale in

Figure 8. The non-linear growth of the power spectra in the various

quintessence models as indicated by the key in the top left-hand panel.

Each panel shows a different redshift. The power spectra in each case have

been divided by the �CDM power spectrum at redshift 5 scaled to take out

the difference between the �CDM growth factor at z = 5 and the redshift

plotted in the panel. This removes the sampling variance due to the finite box

size and highlights the enhanced non-linear growth found in quintessence

cosmologies compared to �CDM. A deviation of the power ratio from unity

therefore indicates a difference in P (k) from the linear perturbation theory

of �CDM.

Fig. 9. This increase in non-linear power at small scales in the

quintessence models is due to the different growth histories.

The power spectra predicted in the 2EXP and CNR models show

minor departures from that in the �CDM cosmology. This is ex-

pected as Figs 1 and 2 show that the equations of state and the dark

energy densities in these two models are the same as �CDM at low

redshifts and all three simulations begin from identical initial con-

ditions. It could be possible to distinguish these two models from

the concordance cosmology at higher redshifts if we do not ignore

the dark energy perturbations or changes in the growth factor which

alter the form of the linear theory power spectrum. We shall discuss

this more in the next stage of our simulations in Section 4.2.

Finally, we investigate if the enhanced growth in the power

spectrum seen in Fig. 8 in the quintessence models is due solely to

the different linear growth rates at a given redshift in the models.

In order to test this idea, the power spectrum in a quintessence

model and �CDM are compared not at the same redshift but at

the same linear growth factor.1 As the growth rates in some of the

quintessence models are very different from that in the standard

�CDM cosmology, the power spectra required from the simulation

will be at different output redshifts in this comparison. For example,

the normalized linear growth factor is D = 0.5 at a redshift of z =
1.58 in a �CDM model and has the same value at z = 1.82 in the

SUGRA model, at z = 1.75 in the AS model and at z = 2.25 in the

INV1 quintessence model. In Fig. 10 we show the power spectrum

of simulation outputs from the INV1, AS, SUGRA and CNR models

divided by the power spectrum output in �CDM at the same linear

1 We thank S. D. M. White for this suggestion.
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Simulations of quintessential CDM 2189

Figure 9. Ratio of power spectra output from the simulations in the six

quintessence models compared to the non-linear �CDM P (k) at redshift 0.

Note the expanded scale on the y-axis. As expected, the 2EXP and CNR

models show no difference from �CDM while the difference in the INV1,

INV2, SUGRA and AS models is under 10 per cent for wavenumbers k <

1 h Mpc−1.

Figure 10. The ratio of the quintessence model power spectra to the �CDM

power spectrum output from the simulations at three values of the linear

growth factor D = 1, D = 0.5 and D = 0.3. Each panel shows the results

of this exercise for the AS, CNR, 2EXP and SUGRA quintessence models.

The growth factors correspond to z = 3.4 (D = 0.3), z = 1.6 (D = 0.5)

and z = 0 (D = 1) for �CDM. For each model, the choice of growth factor

corresponds to slightly different redshifts, with the biggest difference being

for the INV1 model. A ratio of unity would indicate that the growth factor

is the only ingredient needed to predict the power spectrum in the different

quintessence models. Note the expanded scale on the y-axis.

growth rate. We ran the simulations taking three additional redshift

outputs where the linear growth rate had values of D = 1, D = 0.5

and D = 0.3. It is clear from Fig. 10 that scaling the power spectrum

in this way can explain the enhanced linear and most of the excess

non-linear growth seen in Fig. 8 for scales k < 0.1 h Mpc−1. For

example, in the INV1 model the enhanced non-linear growth, on

scales k ∼ 0.3 h Mpc−1 at fixed D = 0.3, differs from �CDM by at

most 5 per cent in Fig. 10 as opposed to at most 30 per cent at z =
5 in Fig. 8. At earlier redshifts when the linear growth rate is D =
0.3, the non-linear growth in the quintessence models agrees with

�CDM on smaller wavenumbers k < 0.3 h Mpc−1. As in Fig. 8, the

CNR model shows no difference from �CDM when plotted in this

way.

Note in Fig. 10 that the INV1 model has less non-linear growth

at D = 0.3 and D = 0.5 compared to the AS model. The AS and

SUGRA models have a growth rate of D = 0.5 at lower redshifts

compared to the INV1 model and so are at a later stage in their

growth history. The INV1 model has a growth rate of D = 0.5 at

z = 2.25 whereas for the AS model this occurs at z = 1.75 and

at 1.82 for the SUGRA model. The reason for the success of this

simple model – matching the growth factor to predict the clustering

– can be traced to the universality of the mass function, which we

discuss in Section 4.4. In this stage I calculation, the models have

the same mass function when plotted at the epoch corresponding to

a common growth factor. This means that the two-halo contribution

to the clustering is therefore the same. Can this simple halo picture

of the clustering also explain the clustering on small scales (high

k)? Although the abundance of haloes in the models is the same at

the epochs corresponding to a given value of the growth factor, the

concentrations of the haloes will not be the same. In cosmologies

where the haloes formed at a higher redshift (i.e. roughly the red-

shift corresponding to a particular value of D), one would expect

these haloes to have higher concentrations than their counterparts

in the other models (Eke, Navarro & Steinmetz 2001). A higher

concentration would be expected to yield stronger non-linear clus-

tering and hence more power at high k in Fig. 10. Unfortunately,

our simulations do not have the resolution to probe the required

range of wavenumbers to uncover this behaviour. The ratios plotted

in Fig. 10 stop at wavenumbers approximately equivalent to the

collapsed radius of a massive halo.

Hence, it seems that scaling the power spectrum using the lin-

ear growth rate can be used to predict the linear growth in the

quintessence dark energy simulations and can reproduce some of

the non-linear growth at early redshifts. In Fig. 10, there are still

some differences in the small-scale growth in quintessence models

compared to �CDM which cannot be explained by the different

linear growth rates. We find that non-linear evolution is not just a

function of the current value of the linear growth rate but also de-

pends on its history through the evolution of the coupling between

long- and short-wavelength modes.

4.2 Stage II: use of a self-consistent linear theory P(k)

We have again run the simulations presented in the previous section

but this time using the appropriate linear theory P(k) for each

model (shown in Fig. 6) normalized to σ 8 = 0.8 today (stage II).

After normalizing the power spectra in this way, the difference

between the quintessence models P(k) and �CDM can be seen in

Fig. 11. The INV2 model was not included in this set of simulations

as there is a negligible difference in the linear theory power spec-

trum from �CDM. Note that Francis et al. (2008) also generate

the linear theory power spectrum for ‘early dark energy’ models and

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
0
1
/4

/2
1
8
1
/1

1
2
2
5
5
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



2190 E. Jennings et al.

Figure 11. Ratio of linear theory power spectra for quintessence models

shown in Fig. 6 to that in �CDM. In this plot, each P (k) has been normalized

so that σ 8 = 0.8 today; this is the normalization used in our simulations.

normalize all P(k) to have the same σ 8 today. Francis et al. (2008)

make a equivalent plot to Fig. 11 but find a decrease in this ratio

with decreasing scale (k > 0.2 h Mpc−1), using the parametrization

for early dark energy proposed by Doran & Robbers (2006), in

contrast to the ratio of unity we find on small scales in Fig. 11.

This difference is due to the different parametrizations used for

the dark energy equation of state, as a ratio of unity is obtained

on small scales for the same ‘early dark energy’ model using the

parametrization suggested by Wetterich (2004) (Francis, private

communication).

In the first row of Fig. 12 we plot the power spectrum for the

stage II SUGRA model at z = 0, 1 and 3 divided by the simulation

output in �CDM at z = 5 as in Fig. 8 (red dashed lines). The

result from Fig. 8, stage I SUGRA, is also plotted here to highlight

how changing the spectral shape affects the non-linear growth in

the simulations. On large scales, the growth is not modified by the

altered spectral shape. The growth of perturbations on small scales

in the simulation is affected by the modified linear theory used in the

initial conditions. Normalizing the power spectra to σ 8 = 0.8 results

in more power on large scales in the quintessence models compared

to �CDM, as can be seen in Fig. 11. This enhanced large-scale

power couples to the power on smaller scales and results in a small

increase in the non-linear power spectrum for k > 0.1 h Mpc−1 in

the stage II SUGRA simulation compared to the one using �CDM

linear theory P(k) in stage I.

Figure 12. Ratios of power spectra for the SUGRA (first row), AS (second row) and CNR (third row) quintessence models compared to �CDM from the three

stages of simulations in this paper. The plot shows the growth in the quintessence models using �CDM linear theory P (k) in the initial conditions in black

(stage I) and using a self-consistent linear theory P (k) for each quintessence model (dashed coloured line) (stage II). The dotted lines shows the P (k) ratio

from the simulation for the quintessence models using the best-fitting parameters in Table A3 (stage III). The power spectra in each case have been divided by

the �CDM power spectrum at redshift 5 with appropriate scaling of �CDM growth factors. The linear theory power spectra in each case have been normalized

to σ 8 = 0.8.
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In the second row of Fig. 12, we plot the power spectrum for the

stage II AS model as green dashed lines at z = 0, 1 and 3 divided by

the simulation output in �CDM at z = 5 as in Fig. 8. The growth

of dark matter perturbations is greatly suppressed in the AS model

due to the large fractional dark energy density at high redshifts.

After fixing σ 8 = 0.8, there is more power on large scales in the AS

model compared to �CDM. As in the first row of Fig. 12, there is

a small increase in non-linear power for the AS model in stage II.

Although the excess large-scale power is significantly larger than

in the SUGRA model case, it does not result in more non-linear

power on small scales through mode coupling, as can be seen in

the panels in the second row in Fig. 12. The linear theory power

spectrum for these quintessence models has a scale-dependent red

tilt on large scales which shifts the position of the BAO peaks which

is the origin of the oscillation apparent in the second row of Fig. 12

at z = 3. The difference in BAO peak positions is very prominent

when we plot the ratio of the power spectrum in the AS model to

the �CDM power spectrum and can be clearly seen in Fig. 12.

4.3 Stage III: consistency with observational data

In this section we present the power spectra results in �CDM

and a subset of the dark energy models, measured from simula-

tions which use a consistent linear theory power spectrum for each

model together with the best-fitting cosmological parameters. We

have simulated the SUGRA, AS and CNR models using the best-

fitting cosmological parameters from Table A3 and the linear theory

power spectrum specific to each model as discussed in Section 2.3.

We chose to simulate these three models following the analysis

and results of Sections 4.1, 4.2 and Appendix A. Any of the dark

energy models listed in Section 2.2 which showed similar results

in Section 4.2 to �CDM and similar cosmological parameters in

Appendix A have not been simulated again.

Table A3 shows the best-fitting values for �mh2, �bh
2 and

H0 for each quintessence model, found by minimizing χ 2
total =

χ 2
WMAP+SN+BAO. The SUGRA, AS and CNR models had the biggest

improvement in the agreement with observational constraints, on al-

lowing �mh2, �bh
2 and H0 to vary. The results for the SUGRA, AS

and the CNR model are shown as dotted coloured lines in Fig. 12

and are referred to as stage III in the legend to distinguish them

from the results of Sections 4.1 and 4.2 which are also plotted.

In each row, we show the simulation outputs at z = 0, 1 and 3.

The simulation results for each quintessence model use the models’

linear theory and the best-fitting parameters from Table A3. Using

the best-fitting parameters for each model together with the correct

linear theory changes the growth of structure in the simulation.

In Fig. 12, the measured power spectrum for each model is divided

by the power for �CDM at z = 5 which has been scaled using the

difference in the linear growth factor between z = 5 and the redshift

shown. Plotting the ratio in this way highlights the differences in

growth between the quintessence models and �CDM as well as

removing sampling variance.

The measured power for the SUGRA model is plotted in the

first row in Fig. 12. The power spectra have all been normalized to

σ 8 = 0.8 resulting in a large increase in the large-scale power (k <

0.1 h Mpc−1) seen in Fig. 12 compared to �CDM. There is a large

increase in the linear and non-linear growth in this model at z > 0

(dotted red line) compared to �CDM (dot–dashed grey line). The

second row in Fig 12 shows that there is a significant enhancement

in the growth in the AS power spectrum measured compared to

�CDM for z < 3. The power measured from the simulations of the

CNR model are plotted in the third row of Fig. 12. We find that there

is a small reduction in the amount of linear and non-linear growth

in this model compared to �CDM.

In Fig. 12, we also plot the simulation results for these three

models from Section 4.1 (stage I), where �CDM linear theory was

used in the initial conditions (black lines). The dashed coloured

lines show the simulation results from Section 4.2 (stage II), where

the quintessence model linear theory was used. The SUGRA power

spectrum measured in stage III has less non-linear growth at high

redshifts compared to the SUGRA P(k) from stage I or II due to

changes in the spectral shape. The measured power for the AS model

using the best-fitting parameters (stage III) shows enhanced growth

on all scales compared to the power for the AS model in stage I

[using �CDM parameters and linear theory P(k)] or stage II (using

�CDM parameters).

These results show the importance of each of the three stages in

building up a complete picture of a quintessence dark energy model.

Models whose equation of state is very different from �CDM at

low redshifts, for example the SUGRA and the AS model, show

enhanced non-linear growth today compared to �CDM. Models

whose equation of state is very different to �CDM only at early

times, for example the CNR model, will show no difference in the

non-linear growth of structure if we use the �CDM spectral shape

(stage I). In stages II and III, the shape of the power spectrum in

the CNR model has changed and is very different to �CDM on large

scales as can be seen in Fig. 12. Using the best-fitting cosmological

parameters for this model, we find a very small reduction (<2 per

cent) in the non-linear growth at z = 0 compared to �CDM.

4.4 Mass function of dark matter haloes

In this section, we present the mass function of dark matter haloes

in the quintessence models using the three stages of simulations

discussed in Sections 4.1–4.3, respectively.

Press & Schechter (1974, hereafter P-S) proposed an analytical

expression for the abundance of collapsed objects with mass M in

the range M to M + dM at redshift z, based on the spherical collapse

model in which a perturbation can be associated with a virialized

object at z = z′, if its density contrast, extrapolated to z = z′ using

linear theory, exceeds some threshold value, δc, the critical linear

density contrast. It has been shown that the P-S approach fails to

reproduce the abundance of haloes found in simulations, overpre-

dicting the number of haloes below the characteristic mass M∗ and

underpredicting the abundance in the high-mass tail (Efstathiou &

Rees 1988; White, Efstathiou & Frenk 1993; Lacey & Cole 1994;

Eke, Cole & Frenk 1996; Governato et al. 1999).

It is thought that the main cause of this discrepancy is the spheri-

cal collapse approximation, as the perturbations in the density field

are inherently triaxial. After turnaround, each axis may evolve sep-

arately until the final axis collapses and the object virializes. Sheth,

Mo & Tormen (2001) and Sheth & Tormen (2002, hereafter S-T)

modified the P-S formalism, replacing the spherical collapse model

with ellipsoidal collapse, in which the surrounding shear field as

well as the initial overdensity determines the collapse time of an

object. Sheth et al. (2001) found a universal mass function for any

CDM model. Jenkins et al. (2001) found a universal empirical fit

to the form of the mass function measured from a suite of cosmo-

logical simulations. The Jenkins et al. mass function can accurately

predict halo abundances over a range of cosmologies and redshifts

(see also Warren et al. 2006; Reed et al. 2007; Crocce et al. 2009).

We use a FOF halo finder, with a constant linking length of

b = 0.2, to identify haloes in all cosmologies. In Fig. 13, we

plot groups containing 20 particles or more to ensure that the
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2192 E. Jennings et al.

Figure 13. Dark matter halo mass functions for the SUGRA (first row) and AS (second row) quintessence models compared with that in �CDM from the

stage III simulations at z = 0, 1 and 2. The mass function in �CDM is shown as open black circles throughout this plot. In the first row, the red filled squares

show the mass function from the simulation for the SUGRA model using the best-fitting parameters in Table A3 (stage III). Underneath each panel in the

first row, we plot the log of the ratio of the measured mass function for �CDM (open black circles) and stage III SUGRA (red squares) to the Jenkins mass

function for �CDM. In the second row, the green filled squares show the mass function from the simulation for the AS model using the best-fitting parameters

in Table A3 (stage III). For the AS stage III simulation, �mh2 = 0.086, giving rise to a change in the spectral shape of the linear theory power spectrum. As a

result, there are fewer low-mass haloes and a similar number of high-mass haloes at z = 0 compared to �CDM (�mh2 = 0.1334). The difference between the

Jenkins et al. mass function for �CDM and the measured mass function for �CDM (open black circles) and stage III AS (green squares) is plotted underneath

each panel in the second row. The black horizontal line indicates a ratio of unity in the ratio plots. In the first and second rows, the solid black (red/green) lines

are the predicted abundances in the �CDM (SUGRA/AS) model using the Jenkins et al. fitting function at various redshifts. In the top left-hand panel, for

reference, we have also plotted the Sheth & Tormen mass function (blue dashed line) for �CDM.

systematic uncertainties in the mass function are at or below the

10 per cent level; tests show that 90 per cent or more of such haloes

are gravitationally bound (Springel et al. 2005). The first row in

Fig. 13 shows the mass function for SUGRA and �CDM at z =
0, 1 and 2. The filled red squares represent the mass function from

stage III of the simulations where a consistent linear theory and cos-

mological parameters were used for the SUGRA model. The mass

function for �CDM (open black circles) and the SUGRA model

are plotted together with the Jenkins et al. mass function shown in

black (red) for �CDM (SUGRA). The S-T mass function is shown

in the top left-hand panel in the first row of this figure (blue dashed

line) for comparison. The abundances in both �CDM and SUGRA

agree with each other at redshift 0 and with the Jenkins et al. and S-T

models, although the fitting formulae seem to slightly underpredict

the number of haloes at the high-mass end (M > 1015 h−1 M⊙). In

the first row of Fig. 13, the number of haloes in the two models start

to differ at z = 1, and at z = 2 there is a large difference in the mass

functions. The linear growth factor for the SUGRA model together

with the best-fitting cosmological parameters from Table A3 have

been used to obtain the Jenkins et al. fit at the earlier redshifts. The

Jenkins et al. fit describes the data slightly better at the high-mass

end at higher redshifts than the S-T prescription. This is as expected

as the Jenkins et al. fit was explicitly tested at the high-mass end

of the mass function. Each model shows only small (<20 per cent)

differences between the measured value and the Jenkins et al. fitting

formula for M < 1015 h−1 M⊙ at z = 0. Underneath each panel in

the first row in Fig. 13, we plot the ratio between the measured mass

function for �CDM and the SUGRA model in stage III, and the

Jenkins at al. mass function for �CDM.

The second row of Fig. 13 repeats this comparison for the AS

model. In this row the mass function for �CDM (open black circles)

and the AS model from stage III (green squares) of the simulations

at z = 0, 1 and 2 are plotted. The Jenkins et al. mass function for

�CDM (black line) and the AS model for stage III (green line) are

also plotted. The AS model has a greater abundance of haloes than

�CDM at z= 2. For the stage III simulation, the AS model has �mh2

= 0.086 giving rise to a change in the spectral shape of the linear

theory power spectrum from �CDM linear theory (�mh2 = 0.133).

As a result there are fewer low-mass haloes and a similar number

of high-mass haloes at z = 0 compared to �CDM. This change

accounts for the decrease in the mass function for M < 1015 h−1 M⊙
seen at z = 0 in the AS model (green squares). At z = 0, there are

only small (<20 per cent) differences between the measured value

and the Jenkins et al. fitting formula for M < 1015 h−1 M⊙ for
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�CDM and the AS model from stage III. The ratio of the Jenkins

et al. mass function for �CDM to the measured mass function for

�CDM and the AS model from stage III is plotted underneath each

panel in the second row in Fig. 13.

Only the SUGRA and AS models are plotted in Fig. 13 but similar

differences in halo abundances are seen in the INV models com-

pared to �CDM, whilst only negligible differences with �CDM

were found in the mass functions of 2EXP and CNR. Grossi &

Springel (2009) found similar results for the mass function over

the range 1011–1014 h−1 M⊙ in an ‘early dark energy’ model, using

much smaller volume simulations than ours. They found a higher

number density of haloes corresponding to groups and clusters in

non-standard dark energy models at high redshifts compared to

�CDM, while at z = 0 all the models agreed with one another.

We find similar results although using the cosmological parame-

ters from Table A3 for each quintessence model can give different

abundances at z = 0 in those models compared to �CDM because

although σ 8 is the same the shape of the linear theory can be differ-

ent. Also, we have been able to probe a higher mass range for the

dark matter haloes. The high-mass end of the mass function is very

sensitive to changes in the current value of the linear growth factor

in the different cosmologies.

In Fig. 14, we plot the fraction of the total mass in haloes of

mass M rather than simply the abundance as shown in Fig. 13. We

compare the Jenkins et al. analytic fit to our simulated halo mass

functions in the SUGRA and AS models and in �CDM at z = 0

and 1 in Fig. 14. In this plot the quantity ln σ−1(M , z) is used as the

mass variable instead of M, where σ 2(M , z) is the variance of the

linear density field at z = 0. This variance can be expressed as

σ 2(M, z) =
D2(z)

2 π2

∫ ∞

0

k2P (k)W 2(k; M)dk , (11)

where W (k; M) is a top hat window function enclosing a mass

M , D(z) is the linear growth factor of perturbations at redshift z

and P(k) is the power spectrum of the linear density field. Plotting

different masses at different redshifts in this way takes out the

redshift dependence in the power spectrum. Note that a large value

of ln σ−1(M , z) corresponds to a rare halo. Using this variable,

Jenkins et al. found that the mass function at different epochs has

a universal form, for a fixed power spectrum shape. Note that in

our case, the stage III simulations have somewhat different power

spectra, which account for the bulk of the dispersion between the

simulation results at the rare object end of Fig. 14; in stage I, the

simulation results agree with the Jenkins et al. universal form to

within 25 per cent at ln σ−1 = 1.0. As shown in Fig. 14, we find

that the Jenkins et al. fitting formula is accurate to ∼20 per cent at

z = 0 for all the models in the range M < 1015 h−1 M⊙. At higher

redshifts, the measured mass function for the SUGRA model and

�CDM differs from the Jenkins et al. mass function by ∼30 per cent

over the same mass range while for the AS model the difference is

∼50 per cent at z = 1. In previous work, Linder & Jenkins (2003)

also found that the predicted mass function for a SUGRA–QCDM

simulation, which would be the equivalent of our stage I simulations,

was well fitted (within 20 per cent) by the Jenkins et al. formula.

4.5 The appearance of baryonic acoustic oscillations

in quintessence models

In this section, we examine the BAO signal in the matter power

spectrum for the AS, SUGRA and CNR models. Angulo et al.

(2008) presented a detailed set of predictions for the appearance

of the BAO signal in the �CDM model, covering the impact of

non-linear growth, peculiar velocities and scale-dependent redshift-

space distortions and galaxy bias. Here we focus on the first of

these effects and show power spectra in real space for the dark

matter. We do not consider the INV1 model as it is not consistent

with observational constraints (Appendix A), or the INV2 or 2EXP

models as they are indistinguishable from �CDM, and hence were

not simulated again in stage III (Section 4.3).

In stage I of our simulations (Section 4.1), we would expect the

linear theory comoving BAO for the quintessence models to be

identical to �CDM as the same linear theory power was used for all

models. In stage II (Section 4.2), some of the quintessence models

have large amounts of dark energy at early times which will alter the

sound horizon in these models compared to �CDM (see Table A3),

and as a result we would expect to see a corresponding shift in

the BAO peak positions. The best-fitting cosmological parameters

found in stage III were derived using CMB, BAO and SN distance

measurements (see Appendix A). Stage III of our simulations (Sec-

tion 4.3) uses these parameters and we would expect models with

the same BAO distance measures to have the same peak pattern in

the matter power spectrum as �CDM.

The BAO are approximately a standard ruler and depend on

the sound horizon, rs, given in equation (A3) (Sanchez, Baugh &

Angulo 2008). The apparent size of the BAO scale depends on

the distance to the redshift of observation and on the ratio r s/Dv ,

where Dv is an effective distance measure which is a combination

Figure 14. The halo mass function for the SUGRA and AS model and �CDM at z = 0 and 1 compared to the Jenkins et al. (2001) analytic fit. The Jenkins

et al. mass function is plotted as solid black (red/green) lines for �CDM (SUGRA/AS). Underneath each panel, the ratio of the mass function measured from

the simulation to the Jenkins et al. mass function is plotted for all models. Note that a logarithmic scale is used on the y-axis in the ratio plots.
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2194 E. Jennings et al.

Figure 15. The ratio of the distance measure Dv(z) (left-hand panel) and the ratio of rs(zd)/Dv (right-hand panel) for four quintessence models compared to

�CDM as indicated by the key in the right-hand panel. The grey circles are estimate points from Percival et al. (2007) at z = 0.2 and z = 0.35 measured using

the observed scale of BAO calculated from the SDSS and 2dFGRS main galaxy samples. Sanchez et al. (2009) combined CMB data with information on the

shape of the redshift-space correlation function using a larger LRG data set and found Dv(z = 0.35) = 1300 ± 31 Mpc and rs(zd)/Dv = 0.1185 ± 0.0032 at

z = 0.35 (blue squares). The data points from Percival et al. (2009) for Dv and rs(zd)/Dv at z = 0.275 using WMAP 5-yr data + SDSS DR7 are plotted as

black triangles.

of DA and H, given in equation (A6). In most quintessence models,

rs remains unchanged unless there is appreciable dark energy at

last scattering. Models which have the same ratio of r s/Dv are

impossible to distinguish using BAO.

To calculate the power spectrum for a galaxy redshift survey,

the measured angular and radial separations of galaxy pairs are

converted to comoving separations and scales. This conversion is

dependent on the cosmological model assumed in the analysis.

These changes can be combined into the single effective measure,

Dv . Once the power spectrum is calculated in one model, we can

simply rescale P(k) using Dv to obtain the power spectrum and

BAO peak positions in another cosmological model (see Sanchez

et al. 2009). In the left-hand panel of Fig. 15, we plot the ratio of

Dv in four quintessence models compared to �CDM up to z =
1.5. Percival et al. (2007) found Dv = 564 ± 23 h−1 Mpc at z =
0.2 and Dv= 1019 ± 42 h−1 Mpc at z = 0.35 using the observed

scale of BAO measured from the Sloan Digital Sky Survey (SDSS)

Data Release 5 (DR5) galaxy sample and Two-Degree Field Galaxy

Redshift Survey (2dFGRS). These data points are plotted as grey

circles in Fig. 15. Note that at face value, none of the models we

consider is consistent with the Percival et al. (2007) point at z =
0.35. These authors report a 2.4σ discrepancy between their results

using BAO and the constraints available at the time from SNe. The

blue square plotted in the left-hand panel in Fig. 15 is the constraint

Dv= 1300 ± 31 Mpc at z = 0.35 found by Sanchez et al. (2009).

This constraint was found using a much larger luminous red galaxy

(LRG) data set and improved modelling of the correlation function

on large scales. The constraint found by Sanchez et al. (2009) using

CMB and BAO data is fully consistent with CMB and SN results.

The results from Percival et al. (2009) for Dv and r s(zd)/Dv at z =
0.275 using WMAP 5-yr data together with the SDSS DR7 galaxy

sample are also plotted (black triangles). The Percival et al. (2009)

results are in much better agreement with those of Sanchez et al.

(2009).

Over the range of redshifts plotted in Fig. 15 the distance measure,

Dv , in the AS, 2EXP and CNR models differs from �CDM by at

most 2 per cent and is <1 per cent in these models for z < 0.2.

Rescaling the power spectrum for these dark energy cosmologies

would result in a small shift of ∼1 per cent in the position of

the peaks at low redshifts. The value of Dv in the SUGRA model

differs from �CDM by at most 9 per cent up to z = 1.5. The

right-hand panel in Fig. 15 shows the ratio of r s(zd)/Dv in the

quintessence models compared to �CDM, where rs is the comoving

sound horizon scale at the drag redshift, zd, which we discuss in

Appendix A. The value of r s(zd)/Dv can be constrained using the

position of the BAO in the power spectrum. In the right-hand panel

of Fig. 15, the grey symbols are the results from Percival et al.

(2007) at z = 0.2 and z = 0.35. From this plot, it is clear that the

SUGRA and AS models are within the 1σ limits at z = 0.2. The

2EXP and CNR models lie just outside the 1σ errors at z = 0.35.

Note that the value of r s(zd)/Dv for �CDM at z = 0.35 also lies

outside the 1σ errors; see Percival et al. (2009) for more detail. The

blue square plotted in the right-hand panel in Fig. 15 is r s(zd)/Dv =
0.1185 ± 0.0032 at z = 0.35 and was obtained using information

on the redshift-space correlation function together with CMB data

(Sanchez et al. 2009).

In Figs 16 and 17, we plot the z = 0 and z = 3 power spectra

in the AS and SUGRA models divided by a linear theory �CDM

reference spectrum which has been smoothed using the coarse re-

binning method proposed by Percival et al. (2007) and refined by

Angulo et al. (2008). After dividing by this smoothed power spec-

trum, the acoustic peaks are more visible in the quasi-linear regime.

In Figs 16 and 17, the measured power in each bin has been multi-

plied by a factor, f , to remove the scatter due to the small number

of large-scale modes in the simulation (Baugh & Efstathiou 1994;

Springel et al. 2005). This factor, f = P (k)linear/P (k)N−body, is the

ratio of the expected linear theory power to the measured power in

each bin at z = 5, at which time the power on these scales is still

expected to be linear. Multiplying by this correction factor allows

us to see the onset of non-linear growth around k ∼ 0.15 h Mpc−1

more clearly.

In Fig. 16 (17), we plot the AS (SUGRA) power spectrum as grey

circles from stage I, blue (purple) squares from stage II and green

(red) triangles from stage III. The black line represents the linear

theory power in �CDM divided by the smooth reference spectrum.

In both plots and for all power spectra, the same reference spectrum

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201
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Simulations of quintessential CDM 2195

Figure 16. The real space power spectrum for the AS model on large scales at z = 0 (left-hand panel) and z = 3 (right-hand panel). All power spectra have

been divided by a smoothed linear ‘no-wiggle’ theory P (k) for �CDM. The factor, f , removes the scatter of the power measured in the simulation around the

expected linear theory power. Stage I in our simulation is represented by grey circles, stage II is represented by open blue squares and stage III results are

shown as green triangles. The black solid line represents the linear theory power spectrum in �CDM divided by the smooth reference spectrum. The vertical

dashed (dotted) lines show the position of the first two acoustic peaks (positions of ± 5 per cent) for a �CDM cosmology.

Figure 17. The real space power spectrum for the SUGRA model on large scales at z = 0 and z = 3. All power spectra have been divided by a smoothed linear

theory P (k) for �CDM. Stage I in our simulation is represented by grey circles, stage II is represented by open purple squares and stage III results are shown

as red triangles. The black solid line represent the linear theory power spectrum in �CDM divided by the smooth reference spectrum. The vertical dashed

(dotted) lines show the position of the first two acoustic peaks (positions of ±5 per cent) for a �CDM cosmology.

is used. The reference is a simple ‘wiggle-free’ CDM spectrum, with

a form controlled by the shape parameter Ŵ = �mh (Bardeen et al.

1986). The difference between the AS and �CDM linear theory,

as shown in Fig. 11, results in an increase in large-scale power on

scales k < 0.04 h Mpc−1. The vertical dashed (dotted) lines show

the first two positions of the acoustic peaks (positions of ± 5 per

cent) for a �CDM cosmology.

As shown in Fig. 16, we find that the position of the first acous-

tic peak in the AS model from stage I is the same as in �CDM.

The position of the first peak for the AS model, measured in stage

II of our simulations (blue squares), is slightly shifted (∼4 per

cent) to smaller scales compared to �CDM as the sound horizon is

altered in the AS model. In stage III, when the best-fitting cosmo-

logical parameters for the AS model are used, the sound horizon

in the AS model and in �CDM are very similar at z ∼ 1090 and

there is a very small (<1 per cent) shift in the position of the first

peak (green triangles). As there is less non-linear growth at z =
3, the higher order peaks are more visible in the right-hand plot in

Fig. 16.

In Fig. 17, the SUGRA power spectrum from stages I, II and III is

plotted. The SUGRA P(k) from stages I and II have identical peak

positions to �CDM as the sound horizon is the same as in �CDM

in these cases. There is a shift (∼5 per cent) in the position of the

first peak in the SUGRA model using the P(k) measured in stage

III. Note that the units on the x-axis are h Mpc−1 and from Table A3,

h = 0.67 for the stage III SUGRA model compared to h = 0.715

for �CDM. On small scales, the BAO signature is damped due to

more non-linear structure formation at z = 0 compared to z = 3 as

shown in Fig 17. We find a large increase in the power in the region

of the second peak, k ∼ 0.15 h Mpc−1, in both the AS and SUGRA

models, measured in stage III, compared to �CDM. For brevity, we

have not included the plots of the power spectra for the CNR model
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showing the BAO. We find identical peak positions in �CDM and

this model in all stages at z = 0.

The AS and SUGRA models are very different to �CDM at late

times and as result they affect the growth of structure at z > 0 as

seen in Sections 4.3 and 4.4. We have found that models like this do

not necessarily have different BAO peak positions to �CDM in the

matter power spectrum. These results suggest that distinguishing a

quintessence model, such as the AS model used in this paper, using

measurements of the BAO peak positions in future galaxy surveys,

will be extremely difficult. The BAO peak positions for the CNR

model will be shifted by at most 2 per cent in the range z < 1.5

compared to �CDM after rescaling the power spectra by Dv . In con-

clusion, it is possible to have quintessence cosmologies with higher

levels of dark energy at early times than in �CDM and still measure

the same peak positions for the BAO in the matter power spectrum.

5 C O N C L U S I O N S A N D S U M M A RY

Observing the dynamics of dark energy is the central goal of fu-

ture galaxy surveys and would distinguish a cosmological con-

stant from a dynamical quintessence model. Using a broad range

of quintessence models, with either a slowly or rapidly varying

equation of state, we have analysed the influence of dynamical dark

energy on structure formation using N-body simulations.

We have considered a range of quintessence models that can

be classified as either ‘tracking’ models, for example the SUGRA

and INV models, or ‘scaling’ solutions, such as the AS, CNR or

2EXP model, depending on the evolution of their equation of state

(see Table 1 and Section 2.1). The models feature both rapidly and

slowly varying equations of state and the majority of the models

could be classified as ‘early dark energy’ models as they have a

non-negligible amount of dark energy at early times.

In order to accurately mimic the dynamics of the original

quintessence models at high and low redshifts, it is necessary to

use a general prescription for the dark energy equation of state

which has more parameters than the ubiquitous two-variable equa-

tion. Parametrizations for w which use two variables are unable

to faithfully represent dynamical dark energy models over a wide

range of redshifts and can lead to biases when used to constrain

parameters (Bassett et al. 2004). Our task has been made easier

by the availability of parametrizations which accurately describe

the dynamics of the different quintessence models (Corasaniti &

Copeland 2003; Linder & Huterer 2005). This allows us to modify

the Friedmann equation in the simulation, using the equation of state

as a function of redshift. We use the parametrization of Corasaniti &

Copeland (2003). In its full six-parameter form, this framework can

describe the quintessence model back to the epoch of nucleosynthe-

sis. Four parameters are sufficient to describe the behaviour of the

quintessence field over the redshift interval followed by the simula-

tions. With this description of the equation of state, our simulations

are able to accurately describe the impact of the quintessence model

on the expansion rate of the Universe, from the starting redshift to

the present day. This would not be the case with a two-parameter

model for the equation of state.

In this paper, we have taken into account three levels of modifi-

cation from a �CDM cosmology which are necessary if we wish to

faithfully incorporate the effects of quintessence dark energy into

a N-body simulation. The first stage is to replace the cosmological

constant with the quintessence model in the Friedmann equation. A

quintessence model with a different equation of state from w = −1

will lead to a universe with a different expansion history. This in

turn alters the rate at which perturbations can collapse under gravity.

The second stage is to allow the change in the expansion history and

perturbations in the quintessence field to have an impact on the form

of the linear theory power spectrum. The shape of the power spec-

trum can differ significantly from �CDM on large scales if there is

a non-negligible amount of dark energy present at early times. This

alters the shape of the turnover in the power spectrum compared

to �CDM. Thirdly, as the quintessence model should be consistent

with observational constraints, the cosmological parameters used

for the dark energy model could be different from the best-fitting

�CDM parameters. In the three stages of simulations, we look at the

effect each of the above modifications has on the non-linear growth

of structure. Deconstructing the simulations into three stages allows

us to isolate specific features in the quintessence models which play

a key role in the growth of dark matter perturbations.

In the first stage of comparison, in which all that is changed is

the expansion history of the universe, we found that some of the

quintessence models showed enhanced structure formation at z >

0 compared to �CDM. The INV1, INV2, SUGRA and AS models

have slower growth rates than �CDM. Hence, when normalizing

to the same σ 8 today, structures must form at earlier times in these

models to overcome the lack of growth at late times. Models such

as 2EXP and CNR have the same recent growth rate as �CDM

and showed no difference in the growth of structure. The difference

in linear and non-linear growth can largely be explained by the

difference in the growth factor at different epochs in the models. At

the same growth factor, the power in the models only diverges at

the 15 per cent level well into the non-linear regime.

In the second stage, a self-consistent linear theory P(k) was used

for each quintessence model to generate the initial conditions in

the simulations. The amount of dark energy present at early times

will determine the impact on the linear theory dark matter power

spectrum and the magnitude of deviation from the �CDM spectrum.

High levels of dark energy at early times suppress the growth of the

dark matter on scales inside the horizon, resulting in a broader

turnover in the power spectrum. We found that models with the

highest levels of dark energy at the last scattering surface, such

as the AS and CNR models, have linear theory P(k) which differs

the most from �CDM. The results of the N-body simulations of

the AS and SUGRA models show a very small increase in non-

linear growth compared to the results in stage I. The increase in the

linear theory power is on very large scales and does not change the

small-scale growth significantly.

In our final stage of simulating the effects of quintessence, we

found the best-fitting cosmological parameters for each model,

�mh2, �bh
2 and H0, consistent with the current CMB, SN and

BAO measurements. For quintessence dark energy models, it is im-

portant to consider the changes in more than just one cosmological

parameter when fitting to the observational data. For example, for a

given dark energy equation of state, the values of �mh2 and H0 may

change in such a way to compensate one another and give similar

growth rates and expansion histories to �CDM. These compensat-

ing effects will be missed if, for example, only �m is changed for

the dark energy model as in recent work (Alimi et al. 2009). Models

with cosmological parameters which fit the data but were signifi-

cantly different from �CDM were simulated again (Section 4.3).

We will now summarize and discuss the main results for each

model. The key features of each of the quintessence models are

presented in Table 2. The INV1 model was unable to fit the data

with a reasonable χ 2/ν (Table A3). This toy model had the largest

growth factor ratio to �CDM at z = 5 and as a result showed the

most enhanced growth in stage I of our simulations. The linear

growth factor for the INV2 model is very different to �CDM at

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
0
1
/4

/2
1
8
1
/1

1
2
2
5
5
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2
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Table 2. The key features in the evolution of the quintessence models simulated. �D(z = 5) is the ratio of

the linear growth factor for each quintessence model compared to �CDM at z = 5. A late-time transition

in the equation of state is defined as occurring at z < 2. The AS, CNR, 2EXP and SUGRA models can be

considered as ‘early dark energy ’ models as they have non-negligible amounts of dark energy present at

early times.

Model Transition type Transition redshift �DE(z = 300) �D (z = 5)

INV1 Gradual ∼4.5 ∼0.009 ∼50 per cent

INV2 Gradual ∼5 Negligible ∼10 per cent

SUGRA Rapid ∼9 ∼0.01 ∼20 per cent

2EXP Rapid ∼4 ∼0.015 0 per cent

CNR Rapid ∼5.5 ∼0.03 0 per cent

AS Rapid ∼1 ∼0.11 20 per cent

early times and gives rise to enhanced growth at z > 0 as seen in

Section 4.1. This model has negligible dark energy at early times

and so the spectral shape is not altered in stage II. In the 2EXP model

the rapid transition to w = −1 in the equation of state early on leaves

little impact on the growth of dark matter, and as a result the power

spectra and mass function are indistinguishable from �CDM. As

both the INV2 and 2EXP models already agree with cosmological

measurements with very similar values for �mh2, �bh
2 and H0 to

�CDM, we did not run these simulations again.

The SUGRA model has enhanced linear and non-linear growth

and halo abundances compared to �CDM at z > 0 and an altered

linear theory power spectrum shape. The mass function results for

all stages of our simulations for the SUGRA model show enhanced

halo abundances at z > 0. Analysing the SUGRA power spectra,

from a stage III simulation which used the best-fitting parameters

for this model, reveals an ∼5 per cent shift in the position of the first

BAO peak. We find that the distance measure Dv for the SUGRA

model differs by up to 9 per cent compared to �CDM over the

range 0 < z < 1.5. Rescaling the power measured for the SUGRA

model by the difference in Dv would result in an even larger shift

in the position of the BAO peaks.

The CNR model has high levels of dark energy early on which

alters the spectral shape on such large scales that the non-linear

growth of structure is only slightly less than �CDM at z < 5. This

model has a halo mass abundance at z < 5 and BAO peak positions

at z = 0 which are the same as in �CDM. For z < 0.5 the distance

measure, Dv , for the CNR model differs from �CDM by ∼1 per

cent; as a result, there would be a corresponding small shift in the

BAO peak positions. The rapid early transition at z = 5.5 in the

equation of state to w0 = −1 in this model seems to remove any

signal of the large amounts of dark energy at early times that might

be present in the growth of dark matter perturbations.

The AS model has the highest levels of dark energy at early times,

and so its linear theory spectrum is altered the most. This results in

a large increase in large-scale power, when we normalize the power

spectrum to σ 8 = 0.8 today. The results from stage III using the

best-fitting parameters show both enhanced linear and non-linear

growth at z < 5. The linear theory P(k) is altered on scales k ∼
0.1 h Mpc−1 which drives an increase in non-linear growth on small

scales compared to �CDM. The mass function results in stage

III for this model show enhanced halo abundances at z > 0. We

find that using the best-fitting cosmological parameters for the AS

model produces a BAO profile with peak positions similar to those

in �CDM. At low redshifts there is an ∼1 per cent shift in the

first peak compared to �CDM after rescaling the power with the

difference in the distance measure Dv between the two cosmologies.

These results from stage III of our N-body simulations show that

dynamical dark energy models in which the dark energy equation of

state makes a late (z < 2) rapid transition to w0 =−1 show enhanced

linear and non-linear growth compared to �CDM at z> 0 and have a

greater abundance of dark matter haloes compared to �CDM for z>

0. We found that dynamical dark energy models can be significantly

different from �CDM at late times and still produce similar BAO

peak positions in the matter power spectrum. Models which have

a rapid early transition in their dark energy equation of state and

mimic �CDM after the transition show the same linear and non-

linear growth and halo abundance as �CDM for all redshifts. We

have found that these models can give rise to BAO peak positions in

the matter power spectrum which are the same as those in a �CDM

cosmology. This is true despite these models having non-negligible

amounts of dark energy present at early times.

Overall, our analysis shows that the prospects of detecting dy-

namical dark energy, which features a late-time transition, using the

halo mass function at z > 0 are good, provided a good proxy can

be found for mass. Parameter degeneracies allow some quintessence

models to have identical BAO peak positions to �CDM and so these

measurements alone will not be able to rule out some quintessence

models. Although including the dark energy perturbations has been

found to increase these degeneracies (Weller & Lewis 2003), incor-

porating them into the N-body code would clearly be the next step

towards simulating quintessential dark matter with a full physical

model. Although in many quintessence models the dark energy clus-

ters on very large scales today (k < 0.02 h Mpc−1) (Weller & Lewis

2003) and the perturbations are generally small (δDE ∼ 10−1), these

perturbations may nevertheless have some impact on the dark matter

structure in a full N-body simulation of the non-linear growth.

AC K N OW L E D G M E N T S

EJ acknowledges receipt of a fellowship funded by the European

Commission’s Framework Programme 6, through the Marie Curie

Early Stage Training project MEST-CT-2005-021074. This work

was supported in part by grants from the Science and Technol-

ogy Facilities Council held by the Extragalactic Cosmology Re-

search Group and the Institute for Particle Physics Phenomenology

at Durham University. We acknowledge helpful conversations with

Simon D. M. White, Ariel G. Sánchez, Shaun Cole and Lydia Heck

for support in running the simulations.

REFERENCES

Albrecht A. J., Skordis C., 2000, Phys. Rev. Lett., 84, 2076

Alimi J., Fuzfa A., Boucher V., Rasera Y., Courtin J., Corasaniti P., 2009,

preprint (arXiv:0903.5490)

Angulo R., Baugh C. M., Frenk C. S., Lacey C. G., 2008, MNRAS, 383,

755

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
0
1
/4

/2
1
8
1
/1

1
2
2
5
5
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



2198 E. Jennings et al.

Barreiro T., Copeland E. J., Nunes N. J., 2000, Phys. Rev. D, 61, 127301

Bassett B. A., Kunz M., Silk J., Ungarelli C., 2002, MNRAS, 336, 1217

Bassett B. A., Corasaniti P. S., Kunz M., 2004, ApJ, 617, L1

Baugh C. M., Efstathiou G., 1994, MNRAS, 270, 183

Baugh C. M., Gaztanaga E., Efstathiou G., 1995, MNRAS, 274, 1049

Baumgart D. J., Fry J. N., 1991, ApJ, 375, 25

Bean R., Hansen S. H., Melchiorri A., 2001, Phys. Rev. D, 64, 103508

Bond J. R., Efstathiou G., Tegmark M., 1997, MNRAS, 291, L33

Brax P., Martin J., 1999, Phys. Lett. B, 468, 40

Caldwell R. R., Dave R., Steinhardt P. J., 1998, Phys. Rev. Lett., 80, 1582

Caldwell R. R., Doran M., Mueller C. M., Schafer G., Wetterich C., 2003,

ApJ, 591, L75

Carroll S. M., 2001, Living Rev. Rel., 4, 1
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APPENDIX A : O BSERVATIONA L

DI STANCE PRI ORS

In this section, we outline the method used to find the best-fitting

cosmological parameters for each of the quintessence models using

CMB, BAO and SN data. The method suggested in Komatsu et al.

(2009) employs three distance priors from measurements of the

CMB together with the ‘UNION’ SN samples (Kowalski et al. 2008)

and the BAO in the distribution of galaxies (Percival et al. 2007) to

explore the best-fitting parameters for the dynamical dark energy

models. In Sections 4.1 and 4.2, all of the quintessence simulations

were run using the best-fitting cosmological parameters assuming

a �CDM model. While this is useful for isolating the effect of the

different expansion histories on the growth of structure, this does not

yield quintessence models which would automatically satisfy the

constraints on distance measurements. Using CMB, SNe and BAO

data in this way is very useful for testing and perhaps even ruling

out some of the dark energy quintessence models. In Section 4.3,

we consider the impact of using these new cosmological parameters

on the non-linear growth of structure.

These distance priors are derived parameters which depend on

the assumed cosmological model and yield constraints on dark en-

ergy parameters which are slightly weaker than a full Markov Chain

Monte Carlo (MCMC) calculation, as only part of the full WMAP

data is used, i.e. the Cl spectrum is condensed into two or three num-

bers describing peak position and ratios and the polarization data

are ignored. The assumed model is a standard FLRW universe with

an effective number of neutrinos equal to 3.04 and a nearly power-

law primordial power spectrum with negligible primordial gravity

waves and entropy fluctuations. These WMAP distance priors are

extremely useful for providing cosmological parameter constraints

at a reduced computational cost compared to a full MCMC calcu-

lation.

We shall briefly review the distance scales used in this paper

and the method for finding the best-fitting parameters for the dark

energy models. From measurements of the peaks and troughs of the

acoustic oscillations in the photon–baryon plasma in the CMB, it is

possible to measure two distance ratios (Komatsu et al. 2009). The

first ratio is quantified by the ‘acoustic scale’, lA, which is defined

in terms of the sound horizon at decoupling, r s(z∗), and the angular

diameter distance to the last scattering surface, DA(z∗), as

lA = (1 + z∗)
πDA(z∗)

rs(z∗)
. (A1)

Assuming a flat universe, the proper angular diameter distance is

defined as

DA(z) =
c

(1 + z)

∫ z

0

dz′

H (z′)
, (A2)
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and the comoving sound horizon is given by

rs(z) =
c

√
3

∫ 1/(1+z)

0

da

a2H (a)
√

1 + (3�b/4�γ )a
, (A3)

where �γ = 2.469 × 10−5 h−2 for T CMB = 2.725 K (Komatsu

et al. 2009) and �b is the ratio of the baryon energy density to the

critical density. We shall use the fitting formula proposed by Hu &

Sugiyama (1996) for the decoupling epoch z∗ which is a function

of �bh
2 and �mh2 only. The second distance ratio measured by the

CMB is called the ‘shift parameter’ (Bond, Efstathiou & Tegmark

1997). This is the ratio of the angular diameter distance to the

Hubble horizon size at the decoupling epoch which is written as

R(z∗) =
√

�mH 2
0

c
(1 + z∗)DA(z∗). (A4)

Equation (A4) assumes a standard radiation- and matter-dominated

epoch when calculating the sound horizon. The expression for the

shift parameter will be modified for quintessence models of dark

energy. The proper expression for the shift parameter is given by

(Kowalski et al. 2008)

R(z∗) = Rstd(z∗)

(

∫ ∞

z∗

dz/
√

�m(1 + z)3

∫ ∞
z∗

dzH0/H (z)

)

, (A5)

where Rstd is the standard shift parameter given in equation (A4).

This correction to the shift parameter can be substantial for

quintessence models with non-negligible amounts of dark energy

at early times and so we include this correction for all of the scalar

field models in this paper. The 5-yr WMAP constraints on lA, R and

the redshift at decoupling z∗ are the WMAP distance priors used to

test models of dark energy (Komatsu et al. 2009).

The angular diameter distance at the decoupling epoch can be

determined from measurements of the acoustic oscillations in the

CMB. These BAO are also imprinted on the distribution of matter.

Using galaxies as tracers for the underlying matter distribution, the

clustering perpendicular to the line of sight gives a measurement

of the angular diameter distance, DA(z). BAO data also allow us to

measure the expansion rate of the universe, H (z), from observations

of clustering along the line of sight. Recently, Gaztanaga, Cabre &

Hui (2008) made a direct measurement of the Hubble parameter as a

function of redshift providing for the first time a measure of DA(z)

and H (z) individually. Using a spherically averaged correlation

function to reveal the BAO signal results in an effective distance

measure given by (Eisenstein et al. 2005)

DV (z) =
(

(1 + z)2D2
A(z)

cz

H (z)

)1/3

. (A6)

It is the ratio of DV (z) to the sound horizon, rs, at the drag epoch,

zdrag, which determines the peak positions of the BAO signal. The

drag epoch is the redshift at which baryons are separated from

photons and is slightly later than the decoupling epoch, z∗. For

a wide angle survey, Dv is used, which is motivated on dimen-

sional grounds and equal sampling of all axes (e.g. Dv for a pencil

beam survey would have different exponents of DA and H). Perci-

val et al. (2007) provide r s(zd)/DV (z) at two redshifts, z = 0.2 and

z = 0.35, taken from the SDSS and 2dFGRS. The two values are

r s(zd)/DV (0.2) = 0.198 ± 0.0058 and r s(zd)/DV (0.35) = 0.1094 ±
0.0033, respectively.

The UNION SNe compilation (Kowalski et al. 2008) consists of

307 low-redshift SN all processed using the SALT light-curve fitter

(Guy et al. 2005). This compilation includes older data sets from

the Supernova Legacy Survey and ESSENCE Survey as well as a

recent data set observed with the Hubble Space Telescope (HST).

Type Ia SNe data are extremely useful in breaking parameter de-

generacies such as the w, �DE degeneracy in the CMB data. A wide

range of these two parameters can produce similar angular diam-

eter distances at the redshift of decoupling and so SN constraints,

which are almost orthogonal to CMB constraints, help to reduce

this parameter space. The current SN data cover a wide range of

redshifts, 0.02 ≤ z ≤ 1.7, but is only able to weakly constrain a

dynamical dark energy equation of state, w, at z ≥ 1. Also, due to

a degeneracy with �m, the current SN data by themselves are not

able to tightly constrain the present value of w and including mea-

surements involving �m such as CMB or BAO observations breaks

this degeneracy.

Following the prescription of Komatsu et al. (2009) for using the

WMAP distance priors, it is necessary to find the vector x = (lA, R,

z∗) for each quintessence model in order to compute the likelihood,

L, as χ 2 = −2 lnL = (xi − di)C
−1
ij (xj − dj ), where d = (lWMAP

A ,

RWMAP, zWMAP
∗ ) and C−1

ij is the inverse covariance matrix for the

WMAP distance priors.

In order to find the best-fitting cosmological parameters for each

quintessence model, we minimize the function χ 2
total = χ 2

WMAP +
χ 2

BAO + χ 2
SN with respect to �mh2, �bh

2 and H0. In appendix D of

Komatsu et al. (2009), it can be seen that including the systematic

errors has a very small effect on the �CDM parameters but can

have a significant impact on dark energy parameters. Using a two-

parameter equation of state for the dark energy, Komatsu et al.

(2009) found that the parameter constraints weakened considerably

after including systematic errors. In calculating χ 2
SN in this paper,

we have used the covariance matrix for the errors on the SN distance

moduli without systematic errors.

Table A1 shows the WMAP distance priors computed for each

dark energy model using the cosmological parameters from Sanchez

Table A1. Distance priors based on WMAP observations (Komatsu et al. 2009) for each quintessence model using

�mh2, �bh
2 and H0 parameters from Sanchez et al. (2009). These parameters were derived assuming a �CDM

cosmology. lA(z∗) is the acoustic scale at the epoch of decoupling, z∗, and R(z∗) is the shift parameter. χ2
total =

χ2
WMAP+SN+BAO and ν is the number of degrees of freedom.

z∗ lA(z∗) R(z∗) χ2
total/ν

WMAP 5-yr ML 1090.51 ± 0.95 302.10 ± 0.86 1.710 ± 0.019 0

INV1 – 261.05 1.49 15.34

INV2 – 294.34 1.67 1.81

SUGRA – 284.03 1.62 3.88

2EXP – 303.85 1.74 1.09

AS – 289.69 1.74 2.04

CNR – 306.71 1.79 1.37

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201
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Table A2. BAO distance measurements (Percival et al. 2007) for each quintessence model using �mh2, �bh
2 and H0

parameters from Sanchez et al. (2009). These parameters were derived assuming a �CDM cosmology. A fitting formula

proposed by Eisenstein & Hu (1998) was used for the drag redshift zdrag.

zdrag rs(zdrag) rs(zdrag)/Dv(z = 0.2) rs(zdrag)/Dv(z = 0.2)

WMAP 5-yr 1020.5 ± 1.6 153.3 ± 2.0 Mpc - -

Percival et al. (2007) – 154.758 Mpc 0.198 ± 0.0058 0.1094 ± 0.0033

INV1 – 152.5 Mpc 0.208 0.130

INV2 – 152.7 Mpc 0.198 0.121

SUGRA – 152.5 Mpc 0.198 0.121

2EXP – 152.0 Mpc 0.192 0.115

AS – 143.9 Mpc 0.183 0.111

CNR – 150.7 Mpc 0.191 0.114

Table A3. Best-fitting values for �mh2, �bh
2 and H0 with 68.3 per cent confidence intervals by minimizing χ2

total =
χ2

WMAP+SN+BAO for each quintessence model. wCDM WMAP 5 yr are the parameter constraints assuming a dynamical dark

energy model (Komatsu et al. 2009).

102�bh
2 H0 (km s−1 Mpc−1) �mh2 χ2

total/ν

�CDM WMAP 5-yr mean 2.267+0.058
−0.059 70.5 ± 1.3 0.1358+0.0037

−0.0036

wCDM WMAP 5-yr mean 2.27 ± 0.06 69.7 ± 1.4 0.1351 ± 0.0051

Sanchez et al. (2009) 2.267+0.049
−0.05 71.5 ± 1.1 0.13343 ± 0.0026 1.09

INV1 3.78 ± 0.145 63.13 ± 0.5 0.115 ± 0.0103 2.27

INV2 2.35 ± 0.094 68.21 ± 0.7 0.124 ± 0.0065 1.07

SUGRA 2.68 ± 0.105 67.63 ± 0.7 0.111 ± 0.0075 1.25

2EXP 2.22 ± 0.115 70.01 ± 0.8 0.138 ± 0.0031 1.05

AS 2.12 ± 0.121 70.42 ± 0.9 0.086 ± 0.0121 1.07

CNR 2.09 ± 0.185 70.05 ± 1.2 0.140 ± 0.0133 1.12

et al. (2009). The BAO scale and drag redshift, zd, are given in

Table A2 using the same parameters. From these tables, it is clear

that some quintessence models with �CDM cosmological parame-

ters fail to agree with the distance measurements within the current

constraints.

With the assumption that �mh2, �bh
2 and H0 are tightly con-

strained by WMAP, BAO and SN data, and as a result their posterior

distribution is close to a normal distribution, minimizing χ 2
total =

χ 2
WMAP + χ 2

BAO + χ 2
SN with respect to these three parameters will be

the same as marginalizing the posterior distribution. We have fixed

the dark energy equation-of-state parameters for each quintessence

model, and the 68.3 per cent confidence intervals for each parameter

by minimizing χ 2
total are shown in Table A3. The final column in this

table is χ 2/ν, where ν is the number of degrees of freedom. From

Table A3, it is clear that the INV1 model is unable to fit the data and

has a poor χ 2/ν = 2.27 statistic. Most of the quintessence models

favour a lower �mh2 compared to �CDM in order to fit the dis-

tance data. As can be seen from Table A3, the confidence intervals

on the three fitted parameters �mh2, �bh
2 and H0 are quite large.

Once the best-fitting parameters from Table A3 are used, all of the

quintessence models apart from INV1 which we rule out produce a

better fit to the data, as seen in Tables A4 and A5, for the WMAP

distance priors and the BAO distance measures, respectively. As

we noted earlier, the WMAP distance priors do not contain all of

the WMAP power spectrum data and only use the information from

the oscillations present at small angular scale (high multipole mo-

ments). Neglecting the Sachs–Wolfe (SW) effect at large angular

scales (small multipole moments) as well as polarization data leads

to weaker constraints on cosmological parameters in these dark

energy models. We have not considered how these distance priors

would change with the inclusion of dark energy perturbations (Li

et al. 2008). These results are in agreement with previous work fit-

ting cosmological parameters of quintessence models using WMAP

first-year CMB data and SN data (Corasaniti et al. 2004).

Table A4. WMAP distance priors (Komatsu et al. 2009) for each quintessence model using the

best-fitting parameters �mh2, �bh
2 and H0 given in Table A3.

z∗ lA(z∗) R(z∗)

�CDM WMAP 5-yr ML 1090.51 ±0.95 302.10 ± 0.86 1.710 ± 0.019

Sanchez et al. 2009 1090.12 ± 0.93 301.58 ± 0.67 1.701 ± 0.018

INV1 1076.17 292.54 1.519

INV2 1088.71 301.69 1.676

SUGRA 1083.96 298.51 1.596

2EXP 1091.75 302.91 1.749

AS 1087.98 300.23 1.684

CNR 1093.97 303.51 1.809

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2181–2201
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Table A5. BAO distance measurements (Percival et al. 2007) for each quintessence model using

the best-fitting parameters �mh2, �bh
2 and H0 given in Table A3.

zdrag rs(zdrag) rs/DV (z = 0.2) rs/DV (z = 0.35)

WMAP 5-yr 1020.5 ± 1.6 153.3 ± 2.0 Mpc – –

Percival et al. (2007) – 154.758 Mpc 0.198 ± 0.0058 0.1094 ± 0.0033

INV1 1045.1 146.259 Mpc 0.1765 0.1103

INV2 1021.2 154.946 Mpc 0.1921 0.1167

SUGRA 1026.4 155.803 Mpc 0.1908 0.1161

2EXP 1019.9 150.983 Mpc 0.1879 0.1123

AS 1010.5 157.745 Mpc 0.1947 0.1161

CNR 1017.1 150.597 Mpc 0.1876 0.1128

This paper has been typeset from a TEX/LATEX file prepared by the author.
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