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Simulations of two-dimensional femtosecond
infrared photon echoes of glycine dipeptide
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The multidimensional optical response of the amide I band of glycine dipeptide is calculated using a

vibrational–exciton model, treating each peptide bond as a localized anharmonic vibration. The 2D photon

echo signal is obtained by solving the non-linear exciton equations. Comparison of different models of

spectral broadening (homogeneous and diagonal and off-diagonal static disorder) shows completely different

2D signals even when the 1D infrared spectra are very similar. The phase of the 2D signal may be used

to distinguish between overtone and collective types of two-exciton states. Vanishing of the 2D signal along

certain directions can be attributed to the variation of the phase. Copyright  2000 John Wiley & Sons,

Ltd.

INTRODUCTION

Vibrational spectra of the 1600–1700 cm�1 amide I band
in proteins and polypeptides originate from the stretch-
ing motion of the CO bond coupled to in-phase N–H
bending and C–H stretching. This mode has a strong tran-
sition dipole moment and is clearly distinguishable from
other vibrational modes of the amino acid side-chains.
Early study of symmetric model polypeptides conducted
by Krimm and Bandeker1 have demonstrated that the tran-
sition dipole–dipole interaction between the CO stretching
modes results in the delocalization of amide I states, which
can be thought of as Frenkel excitons of vibrational nature.
The dependence of the coupling energy on relative orien-
tations and distances of the interacting dipoles results in
a unique amide I band signature of the particular sec-
ondary structure motif. This property is widely utilized in
polypeptide and protein structure determination.2 – 7 Good
agreement with experiment has been obtained by Torii and
Tasumi8 in the model calculation of the absorption line-
shape for a few mid-size (¾100 peptide) globular proteins
with known structures, assuming dipole–dipole coupling
between peptide groups.

The information extracted from ordinary (one-dimen-
sional, 1D) infrared spectra is limited since a protein
usually folds into a complex three-dimensional struc-
ture, which consists of several polypeptide segments
forming different types of secondary structures. The
amide I band thus contains a number of unresolved spec-
tral lines associated with vibrational motions of differ-
ent structural elements of the protein. Conformational
fluctuations within a particular three-dimensional protein
structure and local interaction with solvent induce inho-
mogeneous broadening and the spectrum is highly con-
gested. Fourier transform infrared (FTIR) spectroscopy
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has been employed to improve the resolution of these
spectra.2

Multidimensional spectroscopic techniques9 – 11 consti-
tute an effective tool for probing complex proteins and
polypeptide vibrational dynamics and could provide direct
information on the nature of intramolecular and pro-
tein–solvent interactions. Non-linear femtosecond spec-
troscopy provides a multidimensional view of complex
molecules and liquids and has the capability to dis-
entangle ordinary poorly resolved linear (1D) spectra.
The elimination of inhomogeneous broadening and cross
peaks among multiple excitations provide most valuable
dynamic and structural information.12 – 14 Electronically
resonant multidimensional techniques may be used to
probe chromophore aggregate.13,15,16 Nuclear (vibrational)
and solvent dynamics have been probed using Raman and
infrared spectroscopy.17 – 21

We should distinguish between off-resonant 2D
Raman9 – 11 and resonant IR21 – 23 spectroscopy, which
provide complimentary information on the vibrational
dynamics. In the impulsive 2D Raman spectroscopy a
sample is excited by a train of two pairs of optical
pulses which prepare a superposition of quantum states.
This superposition is probed by the scattering of the
probe pulse. The electronically off-resonant pulses interact
effectively with the electronic polarizability, which
depends parametrically on the vibrational coordinates,
corresponding to the fifth-order non-linear response. In 2D
resonant IR spectroscopy the incoming pulses are directly
coupled to the vibrational dipoles, inducing the third-order
non-linear response.

A complete description of one- and two-exciton dynam-
ics contributing to the 2D non-linear response is possible
using the non-linear exciton equations (NEE).24 The sig-
nal is represented in terms of one-exciton Green functions
and two-exciton scattering matrix. Four coherent ultra-
fast 2D techniques based on the NEE solution have been
proposed25 and computer simulations of the 2D response
were performed for model three-chromophore aggregates
where each chromophore was modeled as a two-level sys-
tem. It has been demonstrated that positions and absolute
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values of cross peaks provide information on the chro-
mophore coupling strength and consequently on aggregate
geometry.

Experimental 2D IR studies of carbonyls were carried
out by Rector et al.21 and 2D studies of the amide I
spectral region of small proteins such as apamin, scyl-
latoxin and bovine pancreatic trypsin inhibitor (BPTI)
were reported by Hamm et al.,22 who employed 2D IR
incoherent femtosecond pump–probe and dynamic hole
burning experiments. In this study the anharmonicity,
relaxation and energy equilibration times were measured,
and the disorder-induced delocalization length of vibra-
tional excitons was estimated. Similarly to 2D NMR
spectroscopy,26,27 the sensitivity of 2D IR signal to pro-
tein geometry can be used for structure determination.
This has been demonstrated experimentally on a model
pentapeptide cyclo-Abu-Arg-Gly-Asp-Mamb molecule,23

the structure of which is known from x-ray and NMR
studies.28 The cross-peak positions and intensities were
detected by dynamic hole burning measurements and the
coupling energies between the amide groups were deter-
mined.

In this work, we applied the NEE to compute 2D vibra-
tional IR photon echoes (PE)25 from glycine dipeptide
(CH3CONHCH2CONHCH3). This molecule has two CO
bonds, each modeled as a three vibrational level sys-
tem. Our calculations set the stage for the analysis of 2D
spectra of longer polypeptides and proteins. In the next
section we calculate one- and two-vibrational–exciton
states of glycine dipeptide including diagonal and off-
diagonal static disorder. In the subsequent section we
present numerical simulations of 2D PE signal for differ-
ent (homogeneous and inhomogeneous) models of spectral
broadening. We then examine the phase of the signal and
show that it has a distinct values characteristic for the
resonances associated with various types of two-exciton
states. Interference in certain directions is an important
signature of 2D signals.

VIBRATIONAL–EXCITON MODEL OF GLYCINE
DIPEPTIDE

Geometry optimization and normal modes of the glycine
dipeptide were computed at the density functional
B3LYP6–31CG(d) level using Gaussian 98.29 The
optimized structure is shown in Fig. 1. The molecule has
two identical peptide units, N5C2O3 and N9C7O8, which
form the amide I vibrational band. The CO bond length is
1.23 Å and the NC bond (within a peptide unit) length is
1.36 Å. Each CO bond has a dipole placed 0.868 Å from
the carbon atoms. The distance between the dipoles is
jR12j D 4.44 Å. Their orientations are set 25° with respect
to CO bonds. The angle between the dipole moments is
117°. The angle between the first dipole (N5C2O3 group)
and the vector R12 is 156° and that of the second dipole is
87°. These parameters are consistent with previous studies
of polypeptides.1,8,22,23 The vibrational normal modes have
been reported.30,31

The vibrational dynamics, including coupling to the
radiation field, is described by the interacting exciton
Hamiltonian given by Eqn (2.4) in Ref. 25. We shall
keep the notations of this paper. The localized high-
wavenumber anharmonic CO stretching modes are mod-
eled as primary excitations. Dipole–dipole interaction

Figure 1. Optimized geometry of glycine dipeptide. Transition
dipole moments of each peptide unit is denoted �1 and �2. R12

is the vector connecting their positions.

between CO vibrations leads to the formation of delo-
calized vibrational Frenkel excitons:

je1i D 1/
p

2⊲j0, 1i C j1, 0i⊳ ⊲1⊳

je2i D 1/
p

2⊲j0, 1i � j1, 0i⊳ ⊲2⊳

The computed normal mode energies are ε1 D 1687 cm�1,
ε2 D 1667 cm�1. Using Eqn (A5), we find the peptide
vibrational energy �0 D 1677 cm�1 and coupling J D
10 cm�1. We thus obtained the parameters of the one-
exciton Hamiltonian represented by the matrix hmn D
�0υmn C J⊲1 � υmn⊳ (n,m D 1, 2). The resulting coupling
is consistent with dipole–dipole interaction

J D ⊲�1 Ð �2⊳� 3⊲ Om Ð �1⊳⊲ Om Ð �2⊳

jR12j3
⊲3⊳

Using this expression and the computed geometry, we
obtain J D 10 cm�1, in agreement with the estimate based
on the normal modes.

For the sake of third-order spectroscopy, we only need
to consider the lowest three levels of each CO vibration.
This leads to two different types of doubly excited vibra-
tional states shown in Fig. 2(B). The first are overtones
(local) j2, 0i and j0, 2i, where a single bond is doubly
excited. The other j1, 1i is collective (non-local), where
two bonds are simultaneously excited. We shall denote the
former OTE (overtone two-excitation) and the latter CTE
(collective two-excitation).32 In general, there are N OTE
and N⊲N � 1⊳/2 CTE, for a total of N⊲N C 1⊳/2 states,
where N is a number of peptides. The two-exciton mani-
fold consists of linear combinations of the OTE and CTE
states. The one- and two-exciton manifolds of glycine
dipeptide are calculated in Appendix A.
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Figure 2. Level diagrams of glycine dipeptide. (A) Peptide units modeled as anharmonic vibrations with 0 1 transition energy �0 and
1 2 transition energy �0

0, and anharmonicity 0 D �0
0 � �0. Coupling energy between the vibrations is J and �J. The 0 1 transition

dipole is � and the 1 2 transition dipole is �0 D ��. (B) Excited-state manifold of the two uncoupled ⊲J D 0⊳ three-level anharmonic
vibrations. States j1,0i and j0,1i are single excitation of one of the peptide groups. States j2,0i and j0,2i are OTE and state j1,1i is
CTE. (C) Exciton states. Arrows show all possible transitions to one-exciton manifold fje1i, je2ig, and between one- and two-exciton
fjf1i, jf2i, jf3ig) manifolds.

The two-exciton manifold is determined by the other
two parameters: anharmonicity 0 and the dipole moment
ratio � D �0/�. We took 0 D �16 cm�1 from
experiment22,23 and � D

p
2 corresponds to a harmonic

mode. The coupling �2J [Eqn (A6)] between the OTE
and CTE leads to the formation of the two-exciton states
fjfˇig, ˇ D 1, 2, 3 [Fig. 2(C)]. Using Eqns (A7) and (A10)
and the above parameters we obtain

jf1i D 0.40⊲j2, 0i C j0, 2i⊳C 0.83j1, 1i ⊲4⊳

jf2i D �0.59⊲j2, 0i C j0, 2i⊳C 0.56j1, 1i ⊲5⊳

jf3i D 1/
p

2⊲j2, 0i � j0, 2i⊳ ⊲6⊳

with energies ε1 D 3368 cm�1, ε2 D 3325 cm�1 and
ε3 D 3338 cm�1 [Eqns (A9) and (A11)].

In summary, we have determined the complete
set of parameters characterizing the exciton manifolds
[Fig. 2(A)]: transition energy �0, the coupling energy
J, the anharmonicity 0 and the ratio of the transition
dipoles �.

Having established the basic structure and the coupling
parameters, we next turn to the line broadening. We have
employed the following four models:

(A) Small homogeneous dephasing rates of the first
excited state with respect to the ground state  D 0.4 cm�1

and doubly excited state with respect to the ground state
 ⊲2⊳ D 0.8 cm�1. This model uses an unrealistically small
linewidth in order to resolve all possible resonances.

(B) Large homogeneous dephasing rate  D 25 cm�1

and  ⊲2⊳ D 50 cm�1. For these parameters the linear
absorption linewidth is comparable to the experiment.22,23
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Figure 3. Infrared absorption (1D) spectra of glycine dipeptide
for models (A) (D).

(C) Static diagonal disorder. The nth peptide transition
energy is represented as

�n D �0 C �n, n D 1, 2 ⊲7⊳

where �0 is the energy average value and �n are random
variables representing energy disorder. We assume that
both �1 and �2 have uncorrelated Gaussian distributions
with the same variance �d D 25 cm�1. The anharmonicity
0 D �16 cm�1 is held fixed, independent on disorder.
 D 0.4 cm�1 and  ⊲2⊳ D 0.8 cm�1.

(D) Static off-diagonal disorder. The coupling is taken
to be

J D JC � ⊲8⊳

where J is average coupling energy and � is a random
variable with a Gaussian distribution with the variance
�od D 25 cm�1,  D 0.4 cm�1 and  ⊲2⊳ D 0.8 cm�1.
Anharmonicity 0 D �16 cm�1 is held fixed, independent
of disorder. In models (C) and (D) the disorder variances
�d and �od are chosen to coincide with the homogeneous
decay rate in model (B) in order to reproduce total
broadening compatible with experiment.22,23

The infrared absorption spectra for these models are
displayed in Fig. 3. In the absence of disorder the one-
exciton states are delocalized. Disorder may lead to exci-
ton localization. In order to describe the degree of exciton
localization we have computed the inverse participation
ratio33 – 35

P⊲ε⊳ D
〈 2
∑

nD1

j ε⊲n⊳j4

〉�1

⊲9⊳

where  ε⊲n⊳ is the nth component of one-exciton wave-
function with energy in the interval [ε, ε C dε]. For a
dimer it varies between P D 1 (localized state) and P D 2
(delocalized state). The distribution of inverse participa-
tion ratios is shown in Fig. 4. For models (A) and (B) the
exciton states are completely delocalized and their partic-
ipation ratios are the same. In model (C), static disorder
induces exciton localization, and the participation ratio has
the value ¾1.4 at the maximum. The localized one-exciton
manifold coincides with the first excited vibrational state
of a single peptide and the two-exciton manifold reduces
to the overtone vibrational state. In contrast to diagonal
disorder, off-diagonal disorder does not induce exciton

Figure 4. Inverse participation ratio of single exciton states for
models (A) (D).
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localization. This is clearly seen from the inverse partici-
pation ratio shown for model (D) fthe one-exciton wave-
functions [Eqn (A1)] of model (D) and, consequently, the
inverse participation ratio are independent of disorderg.

2D PHOTON ECHOES FOR VARIOUS LINE
BROADENING MECHANISMS

The expression for the 2D PE heterodyne signal
SI⊲�2,�1⊳ D S

⊲1⊳
I ⊲�2,�1⊳ C S

⊲2⊳
I ⊲�2, �1⊳ was derived

previously.25 The first component S
⊲1⊳
I ⊲�2, �1⊳ [Eqn (E1)

in Ref. 25] represents correlations between one-exciton
states shown by the Feynman diagram [Fig. 5(1)].* The
second component S

⊲2⊳
I ⊲�2, �1⊳ [Eqn (E2) in Ref. 25]

is due to the correlations between one- and two-exciton
states and is represented by the Feynman diagram in
Fig. 5(2). All three incident and the heterodyne pulses
have a parallel linear polarization. Numerical work
involved the calculation of the exciton-exciton scattering
matrix, following the procedure described in Appendix A
of Ref. 25, and evaluating the integral in Eqn (E2) in
Ref. 25. The 2D PE signal for models (C) and (D) was
averaged over 105 disorder realizations.

The absolute value jSI⊲�2,�1⊳j of the 2D PE signal
is shown in Plate 1. In Plate 2 we display separately
the two Feynman diagram contributions to the PE signal
[jS⊲1⊳I ⊲�2, �1⊳j (left column) and jS⊲2⊳I ⊲�2, �1⊳j (right col-
umn)] for our four models. In the following discussion we
shall refer also to the 1D spectra of Fig. 3. For model (A),
the 1D spectrum [Fig. 3(A)] has maxima at the one-
exciton resonances ε1 and ε2. The 2D spectra carry addi-
tional information. The diagonal 1 ⊲�ε1, ε1⊳, 10 ⊲�ε2, ε2⊳
and the off-diagonal 2 ⊲�ε1, ε2⊳, 20 ⊲�ε2, ε1⊳ peaks are
determined by the first component of the signal [Fig. 5(1)],

Figure 5. Double-sided Feynman diagrams, representing the
two Liouville space pathways contributing to photon echo
representing (1) correlations between one-exciton states and
(2) correlations between one- and two-exciton states.

* The components of the signal calculated according to these diagrams,
using the sum-over-states approach, coincide with those obtained in
Ref. 25 in the narrow line limit  − ⊲0, J⊳.

representing various correlations between the one-exciton
states. The cross-peaks 3 ⊲�ε1, ε1 � ε1⊳, 4 ⊲�ε1, ε2 � ε1⊳,
5 ⊲�ε1, ε3 � ε1⊳, 30 ⊲�ε2, ε1 � ε2⊳, 40 ⊲�ε2, ε2 � ε2⊳ and
50 ⊲�ε2, ε3 � ε2⊳ represent the correlations between the
one-exciton and two-exciton eigenstates [Fig. 5(2)] and
provide direct information on the two-exciton energies. An
increase in  increases the broadening of the cross peaks
in all directions and for model (B), with  > ⊲0, J⊳, both
1D and 2D spectra are unresolved.

The 1D IR absorption spectra of models (B)–(D) are
similar. In contrast, the 2D spectra are very different, illus-
trating the capacity of 2D spectra to distinguish between
the various broadening mechanisms. The 2D spectra of
model (C) show inhomogeneous broadening of all peaks
of model (A), along the ��1 D �2 direction. On the
other hand, as a consequence of exciton localization on a
single chromophore for most realizations of disorder, the
2D spectra show two resonances. One of them is repre-
sented by the inhomogeneously broadened diagonal peak
100 ⊲��0, �0⊳, due to the self-correlation of j1, 0i and
j0, 1i states of a single peptide unit. The other is the inho-
mogeneously broadened cross peak 200 ⊲��0,��0 �0⊳
due to the correlation of the single excited states j1, 0i
and j0, 1i with the j2, 0i and j0, 2i OTE states. The inho-
mogeneously broadened 2D resonances associated with
the localized exciton states represent the signals stretched
along the ��1 D �2 direction, and marked in Plate 1(C)
by dotted lines 100 and 200, respectively. For comparison,
in the inset in Plate 1(C) we show the inhomogeneously
broadened signal of the glycine dipeptide calculated by
setting J D 0 in model (C). This signal consists of the
two resonances alone. An additional, weaker, unmarked
feature in Plate 1(C) originates from the inhomogeneous
broadening of the cross peaks 3–5 and 30 –50 shown in
Plate 1(A). The anharmonicity 0 can be obtained from
Plate 1(C), as the �2 distance between maxima 100 and 200,
for fixed �1. The homogeneous relaxation parameters can
also be obtained from the same plot. The half-widths of
the 100 and 200 signals along �2 for a fixed value of �1

give  and  ⊲2⊳ C , respectively.
The 2D signal in model (D) reflects some very spe-

cial properties of a symmetric dimer with off-diagonal
disorder: the one-exciton wavefunctions, the two-exciton
wavefunction of the state jf3i and the energies ε1 Cε2 and
ε3 do not depend on a disorder realization. This implies
that, in contrast to model (C), some of the cross peaks are
broadened in directions different from ��1 D �2. The
2D spectrum in Plate 1(D) is dominated by the inhomo-
geneously broadened in the ��1 D �2 direction diagonal
peaks ⊲�ε1, ε1⊳, ⊲�ε2, ε2⊳, marked by the dotted lines 1
and 10, and the inhomogeneously broadened in the same
direction cross peaks ⊲�ε1, ε1 � ε1⊳ and ⊲�ε2, ε2 � ε2⊳
related to the two-exciton mixed states, and marked by
the dotted lines 3, and 40, respectively. We also note
that the inhomogeneously broadened peaks 1 and 3 are
stretched only in the upper half-plane whereas peaks 10

and 40 stretch in the lower half-plane. There is no contribu-
tion to the spectrum from the off-diagonal peaks ⊲�ε1, ε2⊳
and ⊲�ε2, ε1⊳, which if they existed would be represented
as an inhomogeneously broadened signal, stretched along
the �1 D �2 direction, since ε1 C ε2 does not depend on
a disorder realization. We explain this effect in the next
section by looking at the 2D phase behavior. The other
weaker broadened cross peaks cannot be clearly resolved,
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producing a background signal. The homogeneous relax-
ation parameters can be obtained from Plate 1(D) in the
same way as described for model (C).

PHASE DISCRIMINATION OF TWO-EXCITON
STATES: OVERTONE VS COLLECTIVE TYPE

The 2D signal is complex. Its real and imaginary parts
can be probed separately. So far we have considered only
its absolute value. Its phase

 D arctanfIm[SI⊲�2, �1⊳]/Re[SI⊲�2,�1⊳]g ⊲10⊳

carries additional information. The calculation phase of
the 2D signals of models (A)–(D) is displayed in Plate 3.
For model (A) the phase has a dispersive behavior near
the resonances. If the exciton scattering matrix were a
real function in the vicinity of each resonance, then the
phase discontinuity would take place exactly at the 2D
resonance positions. However, it is slightly shifted owing
to the additional phase contribution of the complex exci-
ton scattering matrix, which carries information on the
two-exciton states [Eqns (4)–(6)]. The phase at each
cross peak depends on its relative OTE and CTE char-
acter.

The phase of model (A) in the vicinity of off-diagonal
peak 2 ⊲�ε1, ε2⊳ and cross peaks 5 ⊲�ε1, ε3 � ε1⊳,
3 ⊲�ε1, ε1 � ε1⊳ and 4 ⊲�ε1, ε2 � ε1⊳ is displayed
in Plate 3(a)–(d) (right column), respectively. Crosses
mark the positions of the resonances. It is clearly seen
that they are slightly off the discontinuity line (the
edge between the red and blue regions). Since spectral
lines overlap, the phase of a particular resonance has
additional contributions from other resonances. We have
subtracted these contributions from each cross- and off-
diagonal peaks and summarized the results in Table 1.
Expressions for the phase of cross peaks associated
with jf3i and the jf1i and jf2i two-exciton state are
derived in Appendix D, and given by Eqn (D4) and
Eqns (D7)–(D13), respectively. Resonant phase of off-
diagonal peaks is also given by Eqn (D1). According
to Eqns (D1) and (D4), resonant phase values of off-
diagonal peaks 2 ⊲�ε1, ε2⊳ and 20 ⊲�ε2, ε1⊳ and cross-
peaks 5 ⊲�ε1, ε3 � ε1⊳ and 50 ⊲�ε2, ε3 � ε2⊳ must be
identical, as illustrated in Table 1. This suggests that
purely OTE resonances can be identified as cross peaks
which have the same phase value as off-diagonal peaks.

The other (3, 4, 30 and 40) cross-peaks related to two-
exciton states representing superpositions of OTE and
CTE have phase values different from the off-diagonal
peaks [Eqn (D8)]. According to Eqn (D8), their values
depend only on ⊲�1, �2⊳ coordinates of the cross peaks
and their homogeneous widths  along the �1 axis for
fixed �2 and homogeneous widths ⊲2⊳ along the �2 axis
for fixed �1. By comparing the cross-peak value measured
in an experiment and calculated according to Eqn (D8),
the cross peaks associated with superposition of OTE and
CTE can be identified.

When model (A) is modified to have  ⊲2⊳ different from
2, the resonant phase has an additional shift given by
Eqns (D5) and (D9) induced by the anharmonicity. To
illustrate this we set in model (A)  ⊲2⊳ D 0.4 cm�1. The
results are summarized in Table 2. Despite the anhar-
monicity phase shift, the cross peaks 5 and 50 associ-
ated with OTE still have the same phase as the off-
diagonal peaks 2 and 20. The anharmonicity phase shift
� [Eqn (D5)] of the cross peaks 5 and 50 can be cal-
culated directly from the spectrum, by subtracting �0

[Eqn (D6)] from the signal phase �. The resonant phase
of the cross peaks 3, 30, 4 and 40 associated with the two-
exciton states representing the mixture of CTE and OTE is
different from the phase of the off-diagonal peaks 2 and 20.
The phase shift  1 [Eqn (D9)] of the cross peaks 3 and
30 and the phase shift  2 [Eqn (D9)] of the cross peaks
4 and 40 can be determined from the spectrum by subtract-
ing  0 [Eqn (D8)]. It is clearly seen from Table 2 that for
different cross peaks associated with the same two-exciton
state the anharmonicity phase shift is the same. Increase

Table 1. Phase (in radians) of off-diagonal and cross peaks
for the photon echo signal from glycine dipeptide,
model (A)a

Cross peak �1 cm�1 �2 cm�1  cm�1 ⊲2⊳ cm�1 Phase radi

2 �1687 1667 0.4 0.4 � D �0 D 1.52

2’ �1667 1687 0.4 0.4 � D �0
0 D 1.52

3 �1687 1680.54 0.4 1.2  
⊲0⊳
1 D 1.45

3’ �1667 1700.54 0.4 1.2  
⊲0⊳0

1 D �1.55

4 �1687 1637.46 0.4 1.2  
⊲0⊳
2 D 1.56

4’ �1667 1657.46 0.4 1.2  
⊲0⊳0

2 D 1.49

5 �1687 1651 0.4 1.2 �0 D 1.52

5’ �1667 1671 0.4 1.2 �0
0 D 1.52

a Contributions from other overlapping resonances are sub-
tracted in each case. ⊲2⊳ is width of a resonant peak along
the �2 axis for fixed �1.

Table 2. Phase (in radians) of off-diagonal and cross peaks for the photon echo signal from glycine
dipeptidea

Cross peak �1 cm�1 �2 cm�1  cm�1 ⊲2⊳ cm�1 Phase radi

2 �1687 1667 0.4 0.4 �0 D 1.49,� D 0.03 � D 1.52

2’ �1667 1687 0.4 0.4 �0 D 1.49,� D 0.03 � D 1.52

3 �1687 1680.54 0.4 1.07  
⊲0⊳
1 D 1.47, 1 D �0.01,  1 D 1.46

3’ �1667 1700.54 0.4 1.07  
⊲0⊳0

1 D �1.55, 1 D �0.01,  0
1 D �1.56

4 �1687 1637.46 0.4 0.93  
⊲0⊳
2 D 1.56, 2 D �0.03,  2 D 1.53

4’ �1667 1657.46 0.4 0.93  
⊲0⊳0

2 D 1.52, 2 D �0.03, 0
2 D 1.49

5 �1687 1651 0.4 0.8 �0 D 1.55,� D �0.03, � D 1.52

5’ �1667 1671 0.4 0.8 �0 D 1.55,� D �0.03, � D 1.52

a Model (A) is modified by setting  ⊲2⊳ D 0.4 cm�1. Contributions from other overlapping resonances are
subtracted in each case. ⊲2⊳ is width of a resonant peak along the �2 axis for fixed �1.
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in inhomogeneous broadening corresponds to strong line
overlap and as shown for model (B) none of the peaks in
model (A) may be resolved.

Interference effects due to the phase are important
for 2D signals in models (C) and (D). By looking at
panels (A) and (a)–(d) in Plate 3 we note that in the
vicinity of each resonance the phase varies slowly and
can be approximated as a constant along the ��1 D �2

direction. In contrast, it shows fast dispersive behavior
along the �1 D �2 direction. This behavior is the same
for the resonances due to the localized exciton states
in model (C) for each disorder realization. For close
disorder realizations, the resonances stretched along the
��1 D �2 direction are in-phase, producing the average
signal shown in Plate 3. Here the phase discontinuity
(the sharp edge between the blue and the red colors)
stretched along the ��1 D �2 direction occurs near
the 300 resonance. The phase jump (the edge between
the yellow and blue regions) stretched parallel to 300 is
resonance 100.

The same mechanism corresponds to the formation of
the diagonal peaks 1 and 10, in addition to cross peaks 3
and 40, in model (D). The phase discontinuity lines (the
sharp edges between the blue to red regions) and the lines
of the phase jump (the sharp edges between the yellow to
blue regions) reproduce the directions of inhomogeneous
broadening. However, for close disorder realizations, the
signal represented by the off-diagonal peaks, stretched
along the �1 D �2 direction, is out of phase and vanishes.
This is the case since the phase of each off-diagonal peak
has fast dispersive behaviour in the �1 D �2 direction.
The background signal seen in Plates 1 and 2 is due
to the contribution of the other cross peaks, which are
stretched in directions different from ��1 D �2. Their
weak intensities can be explained in the same way as for
the off-diagonal peaks.

DISCUSSION

In this work we have applied non-linear exciton equations
(NEE) to calculate the 2D PE signal from glycine dipep-
tide in the amide I spectral region. Glycine dipeptide
is the simplest molecule whose vibrational CO motion
can be described as delocalized exciton states. It is also
the simplest model which allows for OTE and STE
states. The signal has been calculated for different mod-
els of line broadening, which reproduce the total IR (1D)
absorption spectra. In contrast to 1D spectra, completely
different 2D patterns were obtained for various mod-
els of the homogeneous and inhomogeneous broadening
(diagonal or off-diagonal static disorder). By perform-
ing the 2D PE heterodyne experiment, one can mea-
sure the real and imaginary parts of the signal sep-
arately, and obtain its absolute value as well as the
phase. In particular, we have demonstrated how phase
measurement is sensitive to the relative OTE and STE
character of the state as well as how 2D inhomoge-
neous signal depends on the phase variations in different
directions.

Both diagonal disorder due to the interaction of peptide
groups with local environment and off-diagonal disorder
due to the slow conformational fluctuations exist in pro-
teins. The diagonal disorder variance was obtained by

fitting of 2D pump–probe spectra in Ref. 22; however,
off-diagonal disorder was taken into account by averag-
ing the signal over different conformations of proteins
available from NMR and x-ray studies and no value of
its variance has been determined. It should be possible to
determine this value once the effect of the off-diagonal
disorder on 2D spectra is known. This may require the
employment of different models for the coupling energy
distribution. Complete delocalization of exciton states in
the presence of off-diagonal disorder for glycine dipeptide
holds only for dimers. For larger peptides the localization
within pairs of peptide groups and other disorder-induced
effects can take place.36,37 Slow conformational motion of
proteins38,39 can also be detected by observing the changes
in inhomogeneously broadened spectra and distinguishing
the off-diagonal contribution.

We have demonstrated that one- and two-exciton homo-
geneous dephasing rates can be obtained from PE signal
as the �2 half-widths of the diagonal and off-diagonal
peaks. The two-exciton homogeneous dephasing rate is
the �2 half-widths of the cross peaks. Dynamic hole
burning experiments22,23 were employed to measure the
one-exciton state relaxation parameters and its values
have been well established. However, the two-exciton
state dephasing rate in amide I region, which may reveal
new information related to the CO group coupling with
intra-protein vibrational modes, has not been reported.
The value of the 1–2 dephasing rate was measured
using the PE technique for a single CO group attached
to the hemo pocket of hemoglobin protein and several
model molecules.21

Two-dimensional PE measurement can also provide the
value of the vibrational anharmonicity. In polypeptides
with well localized excited states, knowledge of each is
important for structure determination.23 Since 2D PE spec-
troscopy is a femtosecond impulsive technique, it can
be used for real-time study of early events in protein
folding, which are the focus of extensive effort. Two-
dimensional NMR spectroscopic methods27 are limited to
much slower time-scales (milliseconds), hence 1D IR3 – 7

and luminescence40 spectroscopy are employed for fol-
lowing faster conformational changes. Two-dimensional
IR spectroscopy should provide more detailed informa-
tion.

The advantage of the NEE approach is that modeling
of the two-exciton dynamics requires calculation of the
exciton scattering matrix which scales as N2, where N is
number of peptide units. The total 2D signal computa-
tional time scales as ¾N4, allowing further application
to study the response of small polypeptides and aver-
age the signal over a sufficient number of Monte Carlo
runs to account for the static disorder. Moreover, interfer-
ence effects are naturally built-in, making it particularly
suitable for inverting 2D signals to yield the structure
and dynamic parameters. The pump–probe simulations of
Refs 22 and 23 were carried out using the sum over one-
and two-exciton states approach. This requires the diag-
onalization of the two-exciton Hamiltonian, which scales
as N4. The total 2D signal computational time scales as
¾N6 in this case. The NEE which take into account the
coupling with a thermal bath allows one also to model
the exciton relaxation dynamics. In particular, the cal-
culation based on the exciton scattering matrix accounts
for the renormalization of the two-exciton dephasing rate
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[provided 2 6D  ⊲2⊳], determined by the relative con-
tribution of OTE and CTE to a specific two-exciton
state.

Finally, we note that the other 2D techniques proposed
in Ref. 25 can be complementary to PE spectroscopy and
can also be modeled using NEE. In particular, energy
equilibration in proteins and polypeptides22,23 can be

observed using the transient grating and the reverse tran-
sient grating techniques.
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APPENDIXES

A: ONE- AND TWO-EXCITON MANIFOLD OF A
SYMMETRIC DIMER

In this Appendix, we present expressions for one- and two-
exciton eigenstates of a symmetric dimer. Diagonalization
of the one-exciton Hamiltonian hnm D �nυnmCJnm24 yields
the one-exciton states in the form

je˛i D sin �˛j1, 0i C cos �˛j0, 1i, ˛ D 1, 2 ⊲A1⊳

where j1, 0i D B
†
1j0i, j0, 1i D B

†
2j0i and

�˛ � arctan[⊲�2 ��1⊳/2JC ⊲�1⊳˛C1

ð
√

[⊲�2 ��1⊳/2J]2 C 1] ˛ D 1, 2 ⊲A2⊳

The one-exciton energies are

ε˛ D ⊲�2 C�1⊳/2 C ⊲�1⊳˛C1

ð
√

[⊲�2 ��1⊳/2]2 C J2, ˛ D 1, 2 ⊲A3⊳

For a symmetric dimer ⊲�1 D �2 � �0⊳, one-exciton
wavefunctions [Eqn (A1)] simplify to the form
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Plate 1. Absolute value |S1(Ω2,Ω1)| of 2D infrared photon echo signal from glycine dipeptide for models (A)–(D)
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Plate 2. Absolute value of 2D PE signal components (1) |S1
(1)(Ω2,Ω1)| and (2) |S1

(2)(Ω2,Ω1)| from glycine 
dipeptide for models (A)–(D)
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Plate 3. Left column: phase (in radians) of 2D infrared photon echo signal [Eqn (10)] 
from glycine dipeptide for models (A)-(D). Right column: the phase of panel 
(A) is displayed on an expanded scale in the vicinity of various resonances:

(a) (ε1, ε2), (b) (ε1, ε3 – ε1), (c) (ε1, ε1 – ε1) and (d) (ε1, ε2 – ε1)



SIMULATIONS OF 2D IR PHOTON ECHOES OF GLYCINE DIPEPTIDE 133

je˛i D 1/
p

2⊲j1, 0i C ⊲�1⊳˛C1j0, 1i⊳ ˛ D 1, 2 ⊲A4⊳

and the one-exciton energies become

ε˛ D �0 C ⊲�1⊳˛C1J, ˛ D 1, 2 ⊲A5⊳

The two-exciton Hamiltonian in the bases set of OTE
j2, 0i D ⊲B

†
1⊳

2j0i, j0, 2i D ⊲B
†
2⊳

2j0i, and CTE j1, 1i D
B

†
1B

†
2j0i matrix elements of the Hamiltonian given by

Eqn (2.4) in Ref. 25, without the radiation and phonon
interaction terms, is

h⊲2⊳ D
(

�2⊲�0 C g/2⊳ 0 �2J
0 �2⊲�0 C g/2⊳ �2J
�2J �2J 2�0

)

⊲A6⊳

where the ratio � of the 1–2 transition dipole moment
to the 0–1 transition dipole moment determines the exci-
ton statistics. The parameter g is the exciton scattering
energy, defined as g D 2��2[0 � ⊲�2 � 2⊳�0], where
0 D �0

0 ��0 is the anharmonicity (�0
0 is the 1–2 transi-

tion energy). (In the Hamiltonian of Eqn (A6), g D Re⊲ Qg⊳,
where Qg given by Eqn (B7) is the complex exciton scat-
tering energy appearing in the exciton scattering matrix,
when the exciton–phonon interaction is eliminated result-
ing in the relaxation kernels.) The two-exciton manifold
determined by the Hamiltonian [Eqn (A6)] consists of
three two-exciton states. Two of them are linear combina-
tions of OTE and CTE:

jfˇi D sinˇ⊲j0, 2i C j2, 0i⊳C cosˇj1, 1i, ˇ D 1, 2
⊲A7⊳

with

ˇ D arctan

(

2�0 � εˇ

2�2J

)

, ˇ D 1, 2 ⊲A8⊳

and the energies

εˇ D 2�0 C 1/2[⊲�2 � 2⊳�0 C �2g/2]

ð [1 C ⊲�1⊳ˇC1
p

1 C 2A2], ˇ D 1, 2 ⊲A9⊳

where A D 2�J/[⊲�2 � 2⊳�0 C �2g/2]. The other two-
exciton state is due to the OTE states only:

jf3i D 1p
2
⊲j2, 0i � j0, 2i⊳ ⊲A10⊳

and has the energy

ε3 D �2⊲εC g/2⊳ ⊲A11⊳

which does not depend on the coupling J. The structure
of the two-exciton states [Eqns (A7) and (A10)] is deter-
mined by the dimer symmetry.

B: EXCITON SCATTERING MATRIX FOR A
SYMMETRIC DIMER IN THE EXCITON
REPRESENTATION

In this Appendix, the expressions for the two-exciton
scattering matrix components are derived in the case of

a symmetric dimer. The general procedure that we fol-
low to compute  is described elsewhere.11,24,25,A1,A2 The
interaction-free two-exciton Green function of a dimer, in
the site representation given by Eqn (B5) in Ref. 25, has
the following components:

G11⊲ω⊳ D G22⊲ω⊳ D 2[ω � ⊲Qε1 C Qε2⊳]
2 � [Qε1 � Qε2]2

2[ω � 2Qε1][ω � 2Qε2][ω � ⊲Qε1 C Qε2⊳]

⊲B1⊳

G12⊲ω⊳ D G21⊲ω⊳ D [Qε1 � Qε2]2

2[ω � 2Qε1][ω � 2Qε2][ω � ⊲Qε1 C Qε2⊳]

⊲B2⊳

where the complex single exciton energies are denoted
Qε˛ D ε˛ � i, ˛ D 1, 2 and ε˛ is given by Eqn (A5).
Substitution of Eqns (B1) and (B2) into Eqn (A4) from
Ref. 25, inversion of the matrix F⊲ω⊳ and its further sub-
stitution into Eqn (A3) from Ref. 25 gives the following
components of the two-exciton scattering matrix in the
site representation:

11⊲ω⊳ D 22⊲ω⊳ D F11⊲ω⊳[�
2 QgC ω⊲�2 � 2⊳]/D⊲ω⊳

⊲B3⊳

12⊲ω⊳ D 21⊲ω⊳ D �F12⊲ω⊳[�
2 QgC ω⊲�2 � 2⊳]/D⊲ω⊳

⊲B4⊳

where

F11⊲ω⊳ D �2 � G11⊲ω⊳[�
2 QgC ω⊲�2 � 2⊳] ⊲B5⊳

F12⊲ω⊳ D �G12⊲ω⊳[�
2 QgC ω⊲�2 � 2⊳] ⊲B6⊳

with the exciton statistics parameter �, defined in the
second section, and the on-site exciton scattering energy:A1

Qg D 2��2[ Q� ⊲�2 � 2⊳�0] ⊲B7⊳

where Q D 0 C i00 is the complex anharmonicity. Its
imaginary part 00 is determined by the irreducible two-
exciton operator in the NEE.24 In this paper we adopt it
in the form 00 D �2�  ⊲2⊳. The auxiliary function D⊲ω⊳
in Eqns (B3) and (B4) has the following form:

D⊲ω⊳ D 4[ω � Qε1][ω � Qε2][ω � �2/2⊲Qε1 C Qε2 C Qg⊳]
[ω � 2Qε1][ω � 2Qε2][ω � ⊲Qε1 C Qε2⊳]

⊲B8⊳
where

Qεˇ D Qε1 C Qε2 C 1/4[�2 QgC ⊲�2 � 2⊳⊲Qε1 C Qε2⊳]

C ⊲�1⊳ˇC112, ˇ D 1, 2 ⊲B9⊳

and

12 D 1/4
√

[⊲Qε1 C Qε2⊳⊲�2 � 2⊳C �2 Qg]2 C 8�2⊲Qε1 � Qε2⊳2

⊲B10⊳

In accordance with Eqn (B10) in Ref. 25, the non-
vanishing components of the exciton scattering matrix in
the exciton basis set are

��,˛˛⊲ω⊳ D [�2 QgC ⊲�2 � 2⊳ω][ω � 2Qε1][ω � 2Qε2]

4[ω � Qε1][ω � Qε2]
⊲B11⊳

�˛,�˛⊲ω⊳ D [�2 QgC ⊲�2 � 2⊳ω][ω � ⊲Qε1 C Qε2⊳]

4[ω � �2/2⊲Qε1 C Qε2 C Qg⊳] ⊲B12⊳
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where �, ˛ D 1, 2 and � 6D ˛. The real parts of the scatter-
ing matrix poles Qε1, Qε2 and Qε3 D �2/2⊲Qε1 CQε2 C Qg⊳ represent
the two-exciton eigenenergies, while their imaginary parts
are related to the two-exciton states dephasing rates. If
00 D 0, the real parts of Qε1, Qε2 and Qε3 coincide with the
two-exciton state energies given by Eqns (A9) and (A11).
If 00 6D 0, the mixed exciton state energies [Eqn (A9)]
are renormalized according to Eqn (B9), while the intra-
chromophore energy Eqn (A11) stays the same.

C: 2D PE SIGNAL FROM A SYMMETRIC DIMER

In this Appendix, we present the final expressions for
2D PE signal in the wavenumber domain. According to
Ref. 25, the photon echo signal has two components. The
first component represents the correlations between one-
exciton states and is given by Eqn (E1) in Ref. 25. Making
substitution of the components of the scattering matrix
[Eqns (B11) and (B12)] into Eqn (E1) from Ref. 25, one
obtains

S⊲1⊳
I ⊲�2�1⊳ D i

4

2
∑

�,�D1

[

��������

[�1 C ε� C i][�2 � ε� C i]

ð [�2 QgC 2ε�⊲�
2 � 2⊳][ε� � Qε1][ε� � Qε2]

[2ε� � Qε1][2ε� � Qε2][ε� � Qε�]

� ⊲1 � υ��⊳
1/2⊲���� C ����⊳����

[�1 C ε� C i][�2 � ε� C i]

ð �2 QgC ⊲�2 � 2⊳⊲Qε1 C Qε2⊳C 2⊲�2 � 2⊳i

�2/2QgC ⊲�2 � 2⊳/2⊲Qε1 C Qε2⊳� 2i

]

⊲C1⊳

In this equation the first term in the brackets corresponds
to the diagonal peaks ⊲�ε�; ε�⊳, � D 1, 2, and the second
term to the off-diagonal peaks ⊲�ε�; ε�⊳, � D 1, 2, � 6D �.

The second component of the signal given by Eqn (E2)
in Ref. 25 represents the correlations between the one-
and two-exciton states and directly probes the two-exciton
resonances which are determined by the scattering matrix
poles. Making substitution of Eqns (B11) and (B12) into
Eqn (E2) from Ref. 25 and evaluating the integral over
dω, one obtains

S⊲2⊳
I ⊲�2�1⊳ D � i

4

2
∑

�,�D1

[

2
∑

ˇD1

⊲�1⊳ˇC1

ð ��������

[�1 C ε� C i][�2 � ⊲Qεˇ � Qε�⊳C 2i]

ð [�2 QgC ⊲�2 � 2⊳Qεˇ][Qεˇ � 2Qε1][Qεˇ � 2Qε2]

[Qε1 � Qε2][Qεˇ � 2Qε� � 2i][Qεˇ � 2Qε�]

C ⊲1 � υ��⊳
�2

2

⊲���� C ����⊳����

[�1 C ε� C i]
[�2 � [�2/2⊲Qε1 C Qε2 C Qg⊳� Qε�] C 2i]

ð �2 QgC ⊲�2 � 2⊳⊲Qε1 C Qε2⊳

�2/2QgC ⊲�2 � 2⊳/2⊲Qε1 C Qε2⊳� 2i

]

⊲C2⊳

The expression in the brackets is a sum of two terms. The
first term has resonances associated with the jf1i and jf2i
two-exciton states [Eqns (4) and (5)], whereas the other
one has resonances associated with the jf3i two-exciton
state [Eqn (6)].

D: RESONANT PHASES FOR A SYMMETRIC
DIMER

In this Appendix, the expressions for the resonant values
of the 2D PE signal phase are derived starting with
Eqns (C1) and (C2). In our derivation we do not account
for the contribution of the other resonances into the phase
value, originating from the overlap of the spectral lines.

According to Eqn (C1), the resonant phases of the off-
diagonal peaks ⊲�ε1, ε2⊳ and ⊲�ε2, ε1⊳ are identical and
have the form

� D �0 C� ⊲D1⊳

where we define

�0 � arctan⊲0/[00 C �2]⊳ ⊲D2⊳

and
� � arctan⊲00/0⊳ ⊲D3⊳

according to Eqn (C2). The resonant phases of the cross
peaks ⊲�ε˛, Qε3 � ε˛⊳ ⊲˛ D 1, 2⊳, associated with the jf3i
two-exciton state, are identical and have the form

� D �0 C� ⊲D4⊳

where �0 is defined by Eqn (D2) and the phase shift is

� � arctan⊲[00 � ⊲�2 � 2⊳]/0⊳ ⊲D5⊳

Equation (D2) can be conveniently recast in terms of the
cross-peak coordinates as

�0 D arctan⊲[�⊲0⊳
1 C�⊲0⊳

2 ]/[⊲2⊳ � ]⊳ ⊲D6⊳

where �
⊲0⊳
2 � Qε3 � ε˛ is the �2 position of one of the

cross peaks and �
⊲0⊳
1 � �εˇ is the �1 position of the

other cross peak (ˇ 6D ˛, and ˛ D 1, 2, ˇ D 1, 2).
⊲2⊳ D ⊲�2 � 1⊳ � 00 represents the homogeneous
width of the cross peaks along the �2 axis and  is its
homogeneous width along the �1 axis.

The resonant phase of the cross peaks ⊲�ε˛, Qεˇ � ε˛⊳,
˛ D 1, 2 and ˇ D 1, 2 determined by jf1i and jf2i
two-exciton states [Eqns (4) and (5)], in accordance with
Eqn (C2) is

 ˇ D  ⊲0⊳
ˇ C ˇ ⊲D7⊳

where

 ⊲0⊳
ˇ � arctan⊲[�

⊲ˇ⊳

1 C�
⊲ˇ⊳

2 ]/[⊲2⊳ � ]⊳ ⊲D8⊳

with �
⊲ˇ⊳

1 � �ε˛, �⊲ˇ⊳

2 � Qεˇ � ε˛. Equation (D8) means
that the phase  

⊲0⊳
ˇ is a sum of the (�1, �2) cross-peak

coordinates, divided by the difference of its homogeneous
widths along the �2 and �1 axis, respectively. The phase
shift in Eqn (D7) has three components:

 ˇ D  ⊲1⊳
ˇ C ⊲2⊳ C ⊲3⊳

ˇ , ˇ D 1, 2 ⊲D9⊳
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which are

 ⊲1⊳
ˇ � arctan









00/2 C ⊲�2 � 2⊳/⊲�2 C 2⊳
⊲⊲�1⊳ˇC100

12 � ⊳

0/2 C ⊲�1⊳ˇC1⊲�2 � 2⊳/⊲�2 C 2⊳0
12









,

ˇ D 1, 2 ⊲D10⊳

 ⊲2⊳ � arctan⊲00
12/

0
12⊳, ⊲D11⊳

and

 ⊲3⊳
ˇ � arctan⊲Cˇ/[1 C rBˇ]⊳, ˇ D 1, 2 ⊲D12⊳

The following auxiliary variables are used in Eqn (D12):

Cˇ � [00/2 C ⊲�1⊳ˇC100
12 � ⊲�2 � 2⊳/2]

[0/2 C ⊲�1⊳ˇC10
12]

⊲D13⊳

Bˇ � [ω1 � ω2]/[0/2 C ⊲�1⊳ˇC10
12]

r � [�1�1 � �2�2]/[�1�1 C �2�2]

and �˛�˛ ⊲˛ D 1, 2⊳ are first and second dipoles in
Eqn (C2).
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