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Synopsis Unsteady aquatic locomotion is not an exception, but rather how animals often swim. It includes fast-starts

(C-start or S-start), escape maneuvers, turns, acceleration/deceleration, and even during steady locomotion the swimming

speed fluctuates, i.e., there is unsteadiness. Here, a review of the recent work on unsteady aquatic locomotion with

emphasis on numerical simulations is presented. The review is started by an overview of different theoretical and

numerical methods that have been used for unsteady swimming, and then the insights provided by these methods on

(1) unsteadiness in straight-line swimming and (2) unsteady fast-starts and turns are discussed. The swimming speed’s

unsteady fluctuations during straight-line swimming are typically less than 3% of the average swimming speed, but recent

simulations show that body shape affects fluctuations more than does body kinematics, i.e., changing the shape of the

body generates larger fluctuations than does changing its kinematics. For fast-starts, recent simulations show that the best

motion to maximize the distance traveled from rest are similar to the experimentally observed C-start maneuvers.

Furthermore, another set of simulations, which are validated against measurements of flow in experiments with live

fish, investigate the role of fins during the C-start. The simulations showed that most of the force is generated by the

body of the fish (not by fins) during the first stage of the C-start when the fish bends itself into the C-shape. However, in

the second stage, when it rapidly bends out of the C-shape, more than 70% of the instantaneous hydrodynamic force is

produced by the tail. The effect of dorsal and anal fins was less than 5% of the instantaneous force in both stages, except

for a short period of time (2 ms) just before the second stage. Therefore, the active control and the erection of the anal/

dorsal fins might be related to retaining the stability of the sunfish against roll and pitch during the C-start. At the end,

the needed future developments in the computational front and their possible applications on investigating stability

during unsteady locomotion are discussed.

Introduction

Unsteady aquatic locomotion is not the exception,

but the typical mode of locomotion in aquatic envi-

ronments. Unsteady aquatic locomotion is needed

during acceleration (Tytell 2004), deceleration

(Niiler and White 1969), turning and maneuvering

(Weihs 1972; Blake et al. 1995; Muller et al. 2000;

Fish and Nicastro 2003; Maresh et al. 2004; Parson

et al. 2011), burst and coast (Videler and Weihs

1982; Blake 1983; Stöcker and Weihs 2001; Burnett

et al. 2014), fast-starts for capturing prey (Webb

1984; Harper and Blake 1991; Canfield and Rose

1993), avoidance of predators (Walker et al. 2005),

mating (Wilson et al. 2010), and other activities. In

fact, even during steady, straight-line swimming, the

swimming speed is not constant and fluctuates, as

will be discussed in the Unsteadiness in steady swim-

ming section. Reviewing all the studies of unsteady

locomotion is not possible in a single paper.

Therefore, this article is focused on unsteadiness

(fluctuations) during steady swimming and fast

starts with emphasis on the insights obtained

through theoretical and numerical studies. The the-

oretical and numerical studies can complement ex-

perimental studies by providing detailed description

of the phenomena, e.g., 3D flow field, that are
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difficult to obtain experimentally, or by testing/sim-

ulating hypothetical cases, e.g., what if a sunfish did

not have a tail during the C-start, as an inverse prob-

lem to answer fundamental questions related to why

certain biological features appear in nature.

The motion of the body during fast-starts is quite

different than during steady swimming. In steady

swimming, the body’s motion can be closely approx-

imated by a backward traveling wave (Gray 1933;

Videler and Hess 1984). In contrast, in fast-starts,

the fish typically bends its body into a C-shape

(stage 1) and then rapidly bends out of the C-

shape (stage 2), which might be followed by one or

more beats of the tail (Weihs 1973). The kinematics

of C-starts has been studied from several viewpoints,

e.g., see Domenici and Blake (1991, 1993), Spierts

and Leeuwen (1999), and the review by Domenici

and Blake (1997). Fast-start kinematics has been

used to calculate the acceleration of the center of

mass of the fish and the forces generated during

this behavior (e.g., see Webb and Skadsen 1980;

Webb 1984; Harper and Blake 1988, 1991;

Domenici and Blake 1991, 1993; Webb et al. 1996,

among others; Domenici and Batty 1997; Bergstrom

2002; Domenici et al. 2004). The digitization and

numerical differentiation error of such calculations

has been discussed (Harper and Blake 1989; Walker

1998).

The acceleration of the fish’s center of mass is the

result of all forces acting on the center of mass, i.e.,

the total hydrodynamic force can be calculated

through acceleration, but how much each part of

the body/fins contributes to the total hydrodynamic

force cannot be calculated. Therefore, the muscle and

hydrodynamic forces need to be estimated for differ-

ent parts of body/muscle groups to gain such in-

sights. The C-start has been extensively studied in

terms of muscle activity (Jayne and Lauder 1993;

Wakeling and Johnston 1998, 1999; Westneat et al.

1998; Wakeling et al. 1999; Ellerby and Altringham

2001; Tytell and Lauder 2002), and neural control

(Fetcho 1991; Zottoli et al. 1995; Eaton et al. 2001;

Tytell and Lauder 2002; Koyama et al. 2011), and

will not be reviewed in this article. The theoretical

models, numerical simulations, and experimental

wake measurements have been performed to estimate

the hydrodynamic forces during the C-start (Weihs

1973; Wolfgang et al. 1999; Tytell and Lauder 2008;

Borazjani et al. 2012; Borazjani 2013; Li et al. 2014).

These theoretical models and computational meth-

ods are reviewed briefly in the Theoretical models

and computational techniques for unsteady swim-

ming section, and the insights provided by these

methods are discussed in the Insights from

theoretical and computational studies section. In

the Unsteadiness in steady swimming section, the

unsteadiness during steady swimming and the pa-

rameters affecting fluctuations in swimming speed,

e.g., Reynolds number (Re), body shape, and kine-

matics, are discussed. In the Fast-starts and turning

maneuvers section, the insights from theoretical and

numerical work on fast start and turning maneuvers

are reviewed and the role of fins during C-start is

discussed. Finally, different methods are compared,

their suitability for different types of problem is dis-

cussed, and future directions are suggested in the

Discussions and future directions section.

Theoretical models and computational
techniques for unsteady swimming

In this section, a brief overview of the theoretical and

computational methods, which can be used to inves-

tigate unsteady aquatic locomotion, is provided. The

theoretical models based on elongated-body theory

(EBT) are discussed in the Elongated body theory

section, followed by the inviscid-vortex methods in

the Inviscid methods (unsteady, vortex-panel meth-

ods) section. Finally, the techniques of computa-

tional fluid dynamics (CFD), which are capable of

simulating flows with unsteady body-movements of

the swimmers, are discussed in the Computational

fluid dynamics section.

Elongated body theory

The so-called slender-body, or EBT, pioneered by

(Lighthill 1960, 1969, 1970, 1971) and (Wu 1960,

1971a, 1971b, 1971c)—see the recent review by Wu

(2011), is one of the first approaches used to identify

the physical mechanism behind aquatic locomotion.

EBT has provided the first estimates for power P and

thrust T, leading to a simple formula for efficiency �
for steady swimming as � ¼ 1=2ð1þ U=V Þ, where U

is the speed of swimming and V is the velocity of the

backward-traveling wave of the body (Lighthill

1960). The EBT assumes the slenderness of the

body, i.e., the length of the body L is much larger

than its depth b, b/L� 1 (Lighthill 1960).

Furthermore, it assumes that the fluid is inviscid

with no vortex shedding, i.e., the boundary layer en-

veloping the fish is so thin that its thickness can be

neglected for evaluation of thrust T and power P of

fish locomotion (Lighthill 1970; Wu 1971a, 2011).

This is a good assumption at high Re ¼ UL=#
(where # is the kinematic viscosity of the fluid),

which represents the ratio of inertial to viscous

forces in the flow, if the flow does not separate.

Nevertheless, these methods are known to
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overestimate the forces and efficiency by several folds

because of their simplifying assumptions (Lighthill

1970).

Wu (1971a, 1971c) extended the EBT to handle

variable rectilinear speeds U(t) of two-dimensional

flexible plates, and applied it to find the initial op-

timum shape of the plate for constant acceleration

from rest. Weihs (1972) extended Lighthill’s EBT for

large-amplitude linear movements of slender bodies

in inviscid fluids (Lighthill 1971) to turning maneu-

vers. Because of the inviscid assumption of this

theory, only the changes in momentum due to the

motions perpendicular to the fish’s spinal column

are considered, and the forces due to tangential

movements are neglected (Weihs 1972). The forces

acting on the fish are equal to the change of the

momentum of the fish itself (Weihs 1972). These

forces arise from changes in the momentum of the

water surrounding the fish, and from the wake

caused by its passage (Weihs 1972). The slender-

body assumption only takes the changes in lateral

momentum into account, and to treat the contribu-

tions of each transverse section of the fish indepen-

dently (Weihs 1972). In an inviscid fluid, the changes

in momentum in the wake can be represented by the

summation of forces due to the acceleration of the

adjacent fluid to a body (added mass force) or due

to the circulatory (lift) forces created by differences

in velocity over different sides of fins/body sections

similar to airplane wings (Weihs 1972):

F
!

¼
@

@t

Z
mw n
!

da|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
added mass force

þ
Xk

i¼1

Li

!

|fflffl{zfflffl}
circularoy liftð Þ force

ð1Þ

where F
!

is the hydrodynamic force, t is the time, n
!

is the unit vector perpendicular to the backbone, da

is the small element along the direction of the back-

bone, m is the added mass of a cross-section, and w

is the velocity component perpendicular to the cen-

terline at that cross-section, and Li

!

is the force

caused by the circulatory (lift) forces from fin i,

and k is the number of fins. The first term in

Equation (1) can be considered as the rate of

change (time derivative) of momentum (mass times

velocity) due to the added mass. Note that if m in

Equation (1) were constant, then the first term

would reduce to added mass times the acceleration

dw/dt. The added mass of a cross-section is mainly

dependent on the dorsoventral depth of the cross-

section s and the density of the fluid � (Weihs 1972):

m ¼
1

4
��s2�; ð2Þ

where � is a coefficient sufficiently close to unity for

various configurations of the cross-section and for

gradual changes in cross-section and lateral velocity

along the backbone (Lighthill 1970). The circulatory

forces Li

!

can be calculated by the classical methods

of aerodynamics for each fin, e.g. (Weihs 1972):

Li ¼
1

2
�v2

i Ai CL;��i; ð3Þ

where Ai is the area of the fin, vi is the velocity of the

center of pressure of the fin, and CL;� is the lift co-

efficient with the angle of attack, and �i is the angle

of attack (measured between the fin’s zero lift line

and the direction of motion). CL;� is the only quan-

tity in Equation (3), which depends on the shape of

the fin. Weihs (1972) calculated CL;� by means of

well-known methods (Robinson and Laurmann

1956) for steady flow, and the correction for un-

steady flow was obtained by the indicial method

(Lomax 1960).

By calculating the added mass and lift forces from

Equations (2) and (3), respectively, for different sec-

tions of the fish, Weihs (1972) calculated the total

reactive force on the fish’s body during turns. Weihs

(1973) applied his method to study fast-starts, and

Frith and Blake (1991) used this method to investi-

gate the fast-start of the northern pike.

Inviscid methods (unsteady, vortex-panel methods)

Inviscid-flow methods can be applied to any complex

geometry with arbitrary motions without the as-

sumption of slenderness of the previous theoretical

work. Inviscid-flow methods are attractive because of

their low computational costs relative to the CFD

(section Computational fluid dynamics). However,

they cannot capture flow separation and dynamic

interaction between vortices in fish wakes due to

their assumption of inviscid flow. The main reason

for low computational costs of inviscid-flow methods

is that the flow equations can be simplified to reduce

the mathematical and computational complexity

(Wolfgang et al. 1999; Kanso et al. 2005; Kanso

2009). In fact, assuming inviscid, irrotational flow,

there exists a velocity potential ’ which satisfies the

Laplace equation for conservation of mass for in-

compressible flows, i.e., the equations governing

flow reduce to the Laplace equation r2’ ¼ 0.

Furthermore, the Laplace equation over the complete

volume of a domain reduces to a surface integral on

the boundaries of the domain using the divergence

theorem (Katz and Plotkin 2001). Because of the

linearity of the Laplace equation, several simple so-

lutions can be superimposed to obtain more complex

solutions, e.g., the potential vortex satisfies the
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Laplace equation, and by combining several potential

vortices, flows over more complex geometries can be

obtained (vortex-panel method). The unsteady,

vortex-panel method (Hess and Smith 1967; Katz

and Plotkin 2001) can be used to obtain the forces

during unsteady motions. In these methods, the ge-

ometry, i.e., the fish’s body and the wake, is covered

by vortex sheets whose strength � varies with loca-

tion such that the combined action of incoming flow

and vortex sheets makes the cross section of the body

a streamline of the flow. The midpoint of each panel

is a control point at which the boundary condition is

applied; i.e., at each control point, the component

velocity, induced by the vortex sheets and the free

flow, in the normal direction to the panel surface is

equal to the normal velocity of the panel wall (no

flux condition):

V1;n þ Vn ¼ Vw;n; ð4Þ

where V1;n is the normal component of the swim-

ming velocity V1, Vw;n is the normal component of

the velocity of the panel’s wall, and Vn is the normal

component of the induced velocity by vortex panels:

Vn ¼
@

@ni

½’ðxi; yi; ziÞ�; ð5Þ

where ’ is the velocity potential at ith panel control

point ðxi; yi; ziÞ due to all vortex panels (both body

and wake panels). Writing Equation (4) for all of the

panels and applying the Kutta condition at the trail-

ing edge provide a system of equations that can be

solved to obtain the vortex strength � of each panel.

At any instant of time, the strength of any previously

shed wake is known, except for the recently shed

vortices at the trailing edge. The unknown strengths

of the newest part of the wake sheet are addressed

through the Kutta condition (Wolfgang et al. 1999).

By knowing the vortex strength �, the velocity and

velocity potential at each panel is known. Therefore,

the pressure at each panel can be obtained using the

unsteady Bernoulli equation, neglecting the potential

energy:

p1 � p

�
¼
jV j2

2
þ
@’

@t
; ð6Þ

where p1 is the free-stream pressure, p is the static

pressure on the surface, � is the density of the fluid,

and V is the velocity. After obtaining the pressure

field, the forces will be calculated by integrating the

pressure over the surface of the fish’s body. Such

unsteady, vortex-panel method has been used to in-

vestigate the turning maneuver of a giant danio

(Wolfgang et al. 1999).

Computational fluid dynamics

The governing equations for the flow around aquatic

swimmers during unsteady locomotion are the un-

steady, incompressible Navier–Stokes equations.

These equations are typically discretized and solved

over a finite number of discrete points in space, i.e.,

the grid. The main challenge involved in simulations

of aquatic swimmers is handling complex geometries

and their motion (moving-boundary problem). For

grid-based techniques, there are two main classes of

methods for handling moving boundaries: (1)

boundary-conforming and (2) non-boundary-con-

forming (fixed grid) methods. In boundary-conform-

ing methods, the grid moves with the moving

boundary, and the governing equations need to be

modified to incorporate the grid velocities, i.e., the

Arbitrary Lagrangian–Eulerian (ALE) formulation

(Donea et al. 2004). In non-boundary-conforming

methods, in contrast, the grid is fixed and the effects

of the boundary’s motion need to be transferred

onto the grid nodes in the vicinity of the moving

boundary. There are different non-boundary-con-

forming methods, e.g., immersed-boundary method

(Mittal and Iaccarino 2005), cut-cell method (Ji et al.

2008), level-set method (Sethian 1999), and

Brinkman penalization method (Angot et al. 1999;

Coquerelle and Cottet 2008).

Boundary-conforming methods can preserve high

resolution near the moving boundaries, but may

result in highly skewed grids when the deformations

are large. To improve the mesh quality when the

deformations are large, remeshing might be neces-

sary, which can be computationally expensive. The

non-boundary-conforming methods do not need

remeshing because the grid is fixed, but they require

additional work in terms of identifying the grid

nodes adjacent to the moving boundaries and of

transferring the effects onto those nodes.

The ALE method has been used to investigate un-

steady maneuvers of a larval fish (Li et al. 2012,

2014). In this method a multi-block, curvilinear

grid is used to discretize the computational

domain, and the equations are solved using an arti-

ficial compressibility method. One curvilinear grid

block that conforms to the fish’s body and its move-

ments (inner block) is placed over another grid block

(background grid). The far-field boundary conditions

are applied on the background grid, while the no-slip

boundary conditions are applied on an inner block

that moves with the fish’s body (Li et al. 2012). The

boundary conditions at the interface of two grids and

their overlapping region is reconstructed through in-

terpolation (Li et al. 2012).
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Non-boundary-conforming methods do not require

mesh movements, but need to transfer the effects of

moving boundaries to the grid points adjacent to

those boundaries. In the original immersed-boundary

method, pioneered by Peskin (1972, 1977; Peskin and

McQueen 1980, 1989), which has been applied to

aquatic locomotion (Fauci and Peskin 1988), the pres-

ence of moving boundaries in the flow is accounted

for by adding forcing terms to the right-hand side of

the Navier–Stokes equations on the nodes adjacent to

the moving boundaries. These forcing terms are

smeared over several grid nodes using a delta function

for stability, i.e., the interface is diffused over several

grid nodes, which requires additional resolution near

the boundary. However, due to high costs, the major-

ity of simulations using this method has been two-

dimensional (Tytell et al. 2010; Bhalla et al. 2013).

To overcome the limitations of diffuse interface in

the classic immersed-boundary method, a number of

sharp-interface, immersed-boundary methods have

been developed (Borazjani et al. 2008; Mittal et al.

2008). In these methods, sharp-interface is main-

tained by reconstructing the boundary conditions

at the grid nodes that are in the immediate vicinity

of the moving boundaries through interpolation

along the local normal to the boundary (Gilmanov

and Sotiropoulos 2005; Mittal et al. 2008). The nodes

adjacent to the immersed boundaries need to be

identified at each time instant that the boundary is

moving. Borazjani et al. (2008) used an efficient ray-

tracing algorithm to identify these nodes.

Gazzola et al. (2012) used a remeshed-vortex

method (Koumoutsakos and Leonard 1995;

Eldredge 2006; Gazzola et al. 2011), which solves

the Navier–Stokes equations through Lagrangian par-

ticle advection followed by remeshing of particles

(reordering of particles’ locations onto a uniform

grid while interpolating the old vorticity onto new

locations of particles), along with the Brinkman pe-

nalization (Coquerelle and Cottet 2008) method to

simulate the fast-start behavior of larval fish. The

penalization term added to the Navier–Stokes equa-

tions approximates the no-slip-boundary condition

at the body interface, and can be viewed as the

Lagrangian counterpart of the forcing term in the

classical immersed-boundary method. The unsteady

maneuvering of fish was also simulated using the

adaptive version of this method (Gazzola et al. 2014).

Insights from theoretical and
computational studies

In this section, the insights obtained through theo-

retical models and numerical simulations are

reviewed for fluctuations in swimming speed

during steady swimming (section Unsteadiness in

steady swimming) and fast starts (section Fast-starts

and turning maneuvers).

Unsteadiness in steady swimming

In self-propelled simulations of swimmers using dif-

ferent CFD techniques (Borazjani and Sotiropoulos

2010; Li et al. 2012; Borazjani and Daghooghi 2013),

the swimmer is initially at rest but starts accelerating

as it starts to undulate. The velocity of swimming

increases until it reaches the quasi-steady state at

which the average swimming speed remains con-

stant—e.g., see Fig. 1A. However, there are fluctua-

tions around the mean value, even when the

swimmer reaches a quasi-steady state, e.g., see

Fig. 1A, Fig. 7 of Li et al. (2012), or Fig. 3 of van

Rees et al. (2013). In fact, this has been observed in

experiments as well. Observations of swimming eels

have revealed about 10% (Muller et al. 2001) or 4%

(Tytell and Lauder 2004) fluctuations about the

mean velocity, while swimming mullets have been

found to exhibit fluctuations of velocity of more

than 20% of the mean (Muller et al. 1997; Nauen

and Lauder 2002). Furthermore, the swimming speed

of zebra fish larvae at Re� 300 fluctuates between 14

and 24 Ls�1 (L is the length of a fish) (Muller et al.

2008), while for an adult eel swimming at

Re� 10,000 the swimming speed fluctuates within a

much narrower range between 0.9 and 1.1 of the

average velocity (Muller et al. 2001; Tytell and

Lauder 2004).

It is not clear if the above difference in fluctua-

tions is because of the shape of the body, kinematics,

or Reynolds number. Using a sharp-interface,

immersed-boundary method, Borazjani and

Sotiropoulos (2010) separated the effects of body

shape and kinematics in their simulations by recon-

structing virtual swimmers that have the same kine-

matics but different shapes of the body, and vice

versa (Fig. 1), and carried out simulations at three

Re of about 300, 4000, and Re!1. Figure 1B plots

the root-mean-squared (rms) of fluctuations in ve-

locity over the average velocity for swimmers with

different bodies, kinematics, and Re (Borazjani

and Sotiropoulos 2010). Several trends are observed

(Fig. 1B): (1) For a given swimmer and kinematics,

the fluctuations decrease as Re increases; (2) under

similar Re, the mackerel’s body shape creates higher

fluctuations in velocity than does lamprey’s body

shape; and (3) under similar Re and body shape,

the lamprey’s kinematics creates lower fluctuations

than does the mackerel’s kinematics. Furthermore,
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it can be observed in Fig. 1B that in these simula-

tions, body shape has a greater effect on fluctuations

than does the Re, and the least effect is from kine-

matics, e.g., at Re 4000 and with mackerel kinematics

changing the shape of the body from mackerel to

lamprey reduced fluctuations by 75%, whereas with

the mackerel body changing the kinematics from

mackerel to lamprey reduced the fluctuations by

about 35%. For the mackerel (MM swimmer in the

figure), changing Re from 300 to 4000 reduces the

fluctuations by 52%, and from 4000 to 1 by 44%,

i.e., more than the effect of kinematics but less than

the effect of body shape. It can be observed that the

change in fluctuations from Re 300 to 4000 is much

larger than the change from Re 4000 to 1., i.e., as

Re approaches zero the fluctuations in velocity in-

crease even faster. In fact, for smaller animals that

swim at lower Re, e.g., larval fish (Muller et al. 2008)

or copepods (Strickler 1975; Yen and Strickler 1996;

van Duren and Videler 2003), the fluctuations are

higher. For the copepods, the velocity increases and

suddenly decreases after the hop. The simulations of

a copepod (Borazjani et al. 2010) also show that the

force coefficients on the body of the copepod in-

crease (both during power strokes and return strokes

of the appendages) as the Re decreases, which is in

agreement with the current trend.

The reasons behind these trends might not be

readily clear. The Re can be viewed as the ratio of

inertial to viscous forces. As Re decreases, the pro-

portion of the inertia, which tends to keep the swim-

mer’s speed constant, to viscous force, i.e., skin

friction, which tends to reduce the swimmer’s

speed, decreases. Therefore, the swimmer decelerates

faster and requires larger thrust force, which leads to

higher fluctuations. The reason for a lamprey’s (eel-

like) kinematics always generating lower fluctuations

relative to the mackerel-like kinematics is due to the

shorter wavelength and higher amplitudes of the

lamprey’s traveling wave, which always accelerates

the adjacent fluid backward by some part of the

body, i.e., the generation of force is smoother. The

reason that the mackerel’s body shape increases fluc-

tuations more than do kinematics or Re is probably

related to the recently found leading-edge vortices

that are generated on the fish’s tail (Borazjani and

Daghooghi 2013). The leading-edge vortices, gener-

ated on the mackerel’s tail, create a large peak in the

force as they are generated, which will vanish when

these vortices are diminished, i.e., a highly oscillatory

force is generated by the mackerel’s body that creates

oscillatory acceleration, and consequently, oscilla-

tions in velocity. A lamprey’s tail does not have a

sharp leading edge similar to the mackerel’s, i.e., no

leading-edge vortex will be generated on the lam-

preys’ tail.

Fast-starts and turning maneuvers

The early work on fast-starts and turns was pio-

neered by the EBT model of Weihs (1972, 1973).

Weihs (1972) observed the turning maneuver of a

goldfish (Cyprinus auratus) and a rudd (Cyprinus

erythrophthalmus), finding several distinct stages:

(1) the initial swimming; (2) turning by bending

Fig. 1 (A) The non-dimensional velocity is plotted in time t (divided by tail-beat duration T) for different swimmers at Re 300. It can be

observed that the swimming speed increases from zero until it reaches the quasi-steady state, but even in quasi-steady state it is not

constant and fluctuates around an average value. (B) The percentage of room-mean-squared (rms) of the velocity fluctuations over

average velocity during quasi-steady state at different Re for different swimmers. MM, mackerel body and mackerel kinematics; ML,

mackerel body and lamprey kinematics; LM, lamprey body and mackerel kinematics; LL, lamprey body and lamprey kinematics. Adopted

from Borazjani and Sotriopoulos (2010). (This figure is available in black and white in print and in color at Integrative and Comparative

Biology online.)
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the body into an arc; and (3) bending out of the arc

and swimming in the new direction. The total forces

and moments obtained by EBT during the turning

maneuvers were about 30% lower than the observed

change in momentum, likely due to numerical

errors, uncertainties of measurement, and viscous

forces, which are ignored in this theory (Weihs

1972). Wolfgang et al. (1999) used an unsteady-

panel method to simulate the flow on the 2D mid-

plane of giant danio during a 608 turn. The flow field

generated by this method near the caudal fin showed

qualitative similarities to the experimental

measurements.

Weihs (1973) applied his theory to fast starts.

Again, he identified several stages that he named:

the preparatory stage (stage 1) in which the body

is arced into a C-shape; the propulsive stage (stage

2) in which the body bends out of the C-shape; and

the final stage (stage 3), which involves continuous

swimming or coasting. Based on his EBT analysis,

the optimum motion during fast starts to maximize

forces is when the caudal fin moves at fast speeds

perpendicular to the direction of motion, while being

at low angle of incidence (Weihs 1973). Recently,

Gazzola et al. (2012) studied the C-start of larval

fish using simulations with the remeshed vortex

and Brinkman penalization method at moderate

Reynolds numbers with an evolutionary optimization

for the kinematics. They found that the best motions

to maximize the distance traveled from rest are sim-

ilar to the experimentally observed C-start

maneuvers.

Borazjani et al. (2012) simulated a sunfish whose

geometry and body motion was reconstructed, based

on the experimental measurements of a C-start ma-

neuver (Tytell and Lauder 2008). The simulations

were validated against the measurements of flow,

which could reproduce all the experimentally ob-

served features of flow such as the three jet-flows

(Borazjani et al. 2012)—see Fig. 2A, B.

Furthermore, these simulations revealed, for the

first time, the 3D wake structure consisting of mul-

tiple connected vortex loops, through which the

three jets flow (Fig. 2C). Furthermore, the forces cal-

culated on the basis of the measured and simulated

flow on the 2D midplane of the fish show good

agreement (Fig. 3A). Comparing the forces calculated

on the basis of the 2D flow field (Fig. 3A) and the

3D flow field (Fig. 3B) and observing their differ-

ences shows the need for calculating the forces

based on 3D flow and pressure fields.

Li et al. (2012) prescribed the body motion of a

zebra fish larva from experimental observations in

their ALE simulations, and calculated the motion

of the center of mass. The calculated motion of the

center of mass resembled the experimental one, and

the maximum deviation occurred during the prepa-

ratory stroke. Nevertheless, the simulations captured

all the features of flow observed in experiments (Li

et al. 2012). More recently, Li et al. (2014) investi-

gated the effect of previously shed wake on the C-

start by artificially removing the previously shed

wake and comparing the trajectory of the center of

mass with the simulations when the wake was not

removed. Their simulations show that the previously

shed wake can reduce the fish’s turning angle by 58,
but it did not significantly affect the required power

or the acceleration in the direction of the escape

trajectory (Li et al. 2014).

It can be observed in Fig. 3B that the forces for

Re¼1 have fluctuations about the forces for simu-

lations of Re¼ 4000, but they are similar and follow

the same trend, i.e., in the high Re regimes (Re� 1)

the forces during C-start are not affected by Re.

However, if the Re is further reduced, e.g., reducing

it to Re¼ 1, there is a large difference in the forces,

i.e., the performance of C-start degrades as Re is

decreased. This is consistent with the finding of

Danos and Lauder (2012) that increasing the viscos-

ity by 20 times did not affect the timing of the stages

of C-start, but decreased the maximum velocity and

displacement of the center of mass. The numerical

simulations of Li et al. (2014) also show decrease in

the displacement of the center of mass, and also

changes the final direction of escape direction by

the fish larva.

Role of fins

The EBT model of Weihs (1973) predicts that the

caudal fin generates the majority of hydrodynamic

force during the C-start because the highest acceler-

ation occurs in that region, i.e., high added mass

force. Webb (1977) studied the effect of different

fins on live fish by measuring the average acceleration

of fish whose fins are amputated in eight different

ways (Webb 1977): control (pelvic rays amputated);

dorsal fin; anal fin; dorsal lobe of caudal fin and

ventral lobe of caudal fin; ventral lobe of caudal fin

and anal fin; dorsal and ventral lobes of caudal fin;

and both caudal-fin lobes and anal fin. The series

represents a progressive reduction in the area of

fins and of the body, as well as reduction in the

areas where lateral movements are largest (Webb

1977); thus, the acceleration of fish should decrease

progressively in the series according to the EBT.

However, in contrast to the theory, the reduction

in performance of C-start caused by the removal of
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dorsal/anal fins was not statistically significant (less

than 5%), while the removal of the caudal fin caused

a statistically significant reduction in the performance

(more than 5%). This might be because trout were

used in these experiments; they do not have enlarged

dorsal and anal fins and the dorsal fin is located away

from the tail. Nevertheless, no definitive conclusions

on the effect of removal of the dorsal and anal fins

could be made due to the statistically insignificant

differences (Webb 1977).

Borazjani (2013), using a sharp-interface, im-

mersed-boundary method, tackled this problem by

simulating sunfish whose fins were removed or

erected, but moving the same as the sunfish with

all the fins intact (Borazjani et al. 2012)—see

Fig. 4. It can be observed in Fig. 4 that only the

removal of the tail generates a large deviation from

the forces generated by the original sunfish. In fact,

more than 70% of the instantaneous force is gener-

ated by the tail during the second stage (Fig. 4).

Fig. 2 The flow in the midplane of the sunfish visualized by velocity vectors and contours of non-dimensional vorticity at t¼ 41 ms

obtained from PIV measurements (A) and the simulation (B). The three dominant jet flows are labeled in (A) and the vortices in (B).

(C) Three-dimensional vortical structures are visualized by the iso-surfaces of the q-criterion from the simulations. Adopted from

Borazjani et al. (2012).

Fig. 3 (A–D) Two-dimensional estimates of force and momentum from CFD and experiments (from Tytell and Lauder 2008) and (E)

the three-dimensional estimates of forces from CFD. CFD and experimental results match well, although the CFD results have larger

fluctuations. Comparing the estimates of force based on two-dimensional (B) and three-dimensional (E) flow field shows the need for

calculations of 3D flow. Momentum (A) and force (B) in the x direction are estimated in the same way in the horizontal midline plane

for each jet. The current CFD results are shown with solid lines, and previous experimental results are indicated by dashed lines. Panels

C and D show the direction and magnitude of the momentum in each jet at two and three example points in time, respectively, with

the silhouette of the fish body shown in gray. Adopted from Borazjani et al. (2012). (This figure is available in black and white in print

and in color at Integrative and Comparative Biology online.)
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However, the forces generated by the sunfish whose

anal/dorsal fins were removed or erected are quite

similar to the original one (less than 5% difference

at any instant in time except for a short period of

time [2 ms] just before the second stage). This is in

contrast with the estimate by Tytell and Lauder

(2008) that about 37% of the momentum was con-

tributed by anal and dorsal fins by the end of stage 2.

The discrepancy between these estimates can be ex-

plained by several factors: (1) the estimate by Tytell

and Lauder (2008) is made by calculating the mo-

mentum in the wake on the 2D planes that passes

through the anal and dorsal fins, but because of the

three-dimensionality of the flow some of the mo-

mentum in these planes might have been contributed

by the tail or the body; (2) as discussed in Fig. 3 the

estimates of force from the 2D flow field can have

inaccuracies; and (3) the simulations did not take

into account the exact motion of the anal and

dorsal fins, e.g., the traveling wave that passes

through these fins, as reported by Chadwell et al.

(2012a). Nevertheless, even if the anal/dorsal fin do

not contribute much to the total hydrodynamic

force, they are actively controlled during the

C-start as shown through measurements of muscle

activity (Jayne et al. 1996; Standen and Lauder 2005;

Lauder et al. 2007; Chadwell and Ashley-Ross 2012;

Chadwell et al. 2012a, 2012b). It is hypothesized that

the active control of these fins is related to control-

ling the stability of the fish during the C-start, rather

than to the generation of hydrodynamic forces

(Borazjani 2013).

During the C-start the fish mainly changes its ori-

entation around the yaw-axis, but not rotating

around the roll-axis or pitch-axis, i.e., remains in

the horizontal plane—see Fig. 5 for the definition

of roll, pitch, and yaw. To be stable during C-start,

the angular acceleration around the pitch and roll

axes should be small, i.e., €� i ¼ Mi=Ii� 1, where €� i,

Mi, and Ii are angular acceleration, torque, and the

moment of inertia around axis i (pitch or roll), re-

spectively. The erection and movements of the fins

might stabilize in two different ways (Borazjani

2013): (1) passively by increasing the moment of

inertia Ii around the pitch and roll axes and (2) ac-

tively by counteracting the torque created by other

parts of the body and that lowers the total torque Mi.

Discussions and future directions

The main methods for simulating unsteady aquatic

locomotion were reviewed in the Theoretical models

and computational techniques for unsteady swim-

ming section. Each of these methods has its own

advantages and disadvantages. The main advantage

of the theoretical and inviscid-flow methods is

their low computational costs relative to CFD. This

becomes important when low-cost estimates are

necessary, for example, for real-time control and ma-

neuvering of bio-inspired swimmers, or for optimi-

zation studies in which a large parameter space needs

to be investigated to identify why some biological

features have evolved in nature, i.e., if these features

evolved in ways that optimized a function such as

acceleration or energy efficiency during unsteady

swimming. However, the results from these methods

need to be closely examined to ensure that their

simplifying assumptions does not affect the conclu-

sions. The main simplifying assumption of the EBT

and vortex-panel methods is the assumption of in-

viscid flow, which ignores the boundary layer, and

cannot capture flow separation, vortex-shedding, and

the interaction of the shed vortices in the wake.

Therefore, one area of recent interest is developing

reduced-order models that improve the estimate of

EBT or inviscid-vortex methods. CFD techniques do

not have the above simplifying assumptions, and can

provide detailed information on the 3D flow and

pressure fields. They are particularly suitable for

complementing experiments of unsteady locomotion

in which the body shape, motion, and flow at a few

planes are measured. The body shape and motion are

used as input to the numerical simulations to obtain

the 3D flow field, which can be validated against the

measured flow field. The validated simulations can

provide different parameters of swimming

Fig. 4 Force in the escape (x) direction for swimmers with dif-

ferent fins removed/erected. The insets show the body shape and

the flow of the sunfish with no tail at t of 5 ms (A), 21 ms (B),

41 ms (C), and 71 ms (D). Adopted from Borazjani (2013). (This

figure is available in black and white in print and in color at

Integrative and Comparative Biology online.)
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performance such as force, power, and efficiency

based on the 3D flow and pressure fields, which, as

discussed in the Fast-starts and turning maneuvers

section (Fig. 3), is required to correctly estimate

these parameters for unsteady swimming.

The main limitation of current simulations is the

computational cost that has restricted them to lower

Re regimes, two-dimensions, or the limit of inviscid

flow (Wolfgang et al. 1999; Borazjani et al. 2012;

Gazzola et al. 2012, 2014; Borazjani 2013; Li et al.

2014). This is due to the fact that the computational

cost increases with the increase of the Re, because as

the Re increases the smallest eddies in the turbulent-

flow regime, called the Kolmogorov scale, become

smaller. As the Kolmogorov scale becomes smaller

the grid needs to be refined to resolve the smaller

scales. This increases the computational cost drasti-

cally as Re is increased, which makes direct numer-

ical simulations quite challenging, if not impossible,

at the typical Re at which most adult fish swim

(Re4105). To carry out simulations at realistic Re,

modeling of turbulence is needed. Turbulence

models based on Reynolds-averaged Navier–Stokes

equations are too dissipative and not good candi-

dates to model unsteady aquatic locomotions.

Large-eddy simulation is a numerical technique in

which only the large eddies are resolved and the

small eddies, which mainly dissipate energy, are

modeled (sub-grid scale model). Therefore, larger

grid size, which only resolve the larger eddies, can

be used to reduce the cost of numerical simulations

at high Re. The large-eddy simulation with a simple

sub-grid scale model has recently been implemented

in the immersed-boundary method (Kang et al.

2012), and applied to swimming (Borazjani and

Daghooghi 2013). Even in simulations of large

eddies the resolution of the grid near the moving

body needs to be refined to capture the thin bound-

ary layer. To reduce the computational costs the res-

olution of the grid can be refined locally, using static

(Li et al. 2012; Borazjani et al. 2013) or dynamic

refinement of the grid (Tytell et al. 2010; Gazzola

et al. 2014). Such methods show good promise for

use in simulating unsteady aquatic locomotion.

The insights obtained through theoretical and

computational work were discussed in the Insights

from theoretical and computational studies section.

The active control of anal and dorsal fins during C-

start was hypothesized in the Fast-starts and turning

maneuvers section to be related to the stability of

sunfish. In fact, the stability of aquatic swimmers

during unsteady swimming is an area that needs fur-

ther investigation. Numerical simulations can help in

understanding the mechanisms of stability that fish

use during unsteady locomotion, e.g., by quantifying

the torque, moment of inertia; motion around the

axes of yaw, roll, and pitch; and the contribution/

effect of the fins and their erection/movements on

these quantities during unsteady maneuvers.
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