
A&A 426, 755–765 (2004)
DOI: 10.1051/0004-6361:20035896
c© ESO 2004

Astronomy
&

Astrophysics

Simulations of vertical shear instability in accretion discs

R. Arlt1 and V. Urpin2

1 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

e-mail: rarlt@aip.de
2 A.F. Ioffe Institute for Physics and Technology, 194021 St. Petersburg, Russia

Received 18 December 2003 / Accepted 20 June 2004

Abstract. The nonlinear evolution of the vertical shear instability in accretion discs is investigated using three-dimensional

hydrodynamic simulations. A vertical dependence of the angular velocity destabilizes the disc and leads to the generation of

velocity fluctuations enhancing the angular momentum transport. The instability emerges in the numerical models for large

radial perturbation wave numbers. The growth time is a few tens of orbital revolutions.
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1. Introduction

The standard accretion disk implies sufficiently strong turbu-

lence to enhance angular momentum transport. Differential ro-

tation has ever been suspected of the most promising source

of turbulence despite the radial dependence of the angular ve-

locity satisfies the Rayleigh stability criterion. The conditions

in astrophysical disks, however, have a number of differences

compared to simple shear flows (vertical and radial stratifica-

tion, baroclinity, vertical shear, etc.). In such conditions, the

Rayleigh criterion of stability is of limited applicability in ac-

cretion disks. Therefore, some linear instabilities can occur

even if the Rayleigh criterion is fulfilled.

The origin of turbulence in disks is often attributed to

the well known magneto-rotational instability (Velikhov 1959;

Kurzweg 1963) which can arise in magnetic, differentially

rotating fluids. The properties of this instability has been

analyzed in detail for stellar conditions (see Fricke 1969;

Acheson 1978, 1979) where the instability becomes opera-

tive if the angular velocity decreases from the pole to the

equator. The role of the magneto-rotational instability in the

turbulization of astrophysical disks has been recognized by

a number of authors (e.g. Safronov 1969; Balbus & Hawley

1991). Three-dimensional numerical simulations (e.g. Balbus

& Hawley 1998, and references therein; Brandenburg et al.

1995; Torkelsson et al. 1997; Arlt & Rüdiger 2001) indicate

that the magneto-rotational instability can provide an efficient

mechanism of the angular momentum transport.

Most likely, however, the magneto-rotational instability is

not the only instability that occurs in such complex bodies as

accretion disks. Turbulence of hydrodynamic origin is an op-

tion which still demands critical examination. The problem of

instability for increasing angular momentum with axis distance

was re-examined by Richard & Zahn (1999) – the interesting

case for astrophysical disks. Longaretti (2002) used pheno-

menological arguments to suggest that shearing sheet flows

should be turbulent and that the lack of turbulence in simula-

tions is likely caused by a lack of resolution. Note, however,

that an important paper is neglected in these publications

which shows analytical and experimental stability for in-

creasing angular momentum in a Taylor-Couette experiment

(Schultz-Grunow 1956). More work on that subject is required

and is already in progress, e.g. at CEA, Saclay.

It seems that hydrodynamic stability of accretion disks is

not well understood. For example, the vertical stratification de-

spite being usually stable can provide a catalyzing effect which

under certain conditions induces a linear non-axisymmetric in-

stability of anticyclonically sheared flow (Molemaker et al.

2001). In a recent paper, Dubrulle et al. (2002) re-examined this

instability by making use of a different approach and found that

it can occur in accretion disks. Klahr & Bodenheimer (2003)

have found that accretion disks can also be subject to an in-

stability caused by a negative radial entropy gradient and re-

sulting in vigorous turbulence enhancing angular momentum

transport. A sound wave instability was found by Drury (1985)

and Papaloizou & Pringle (1984) which requires a reflecting

boundary. Since we do apply reflecting boundaries, we will

come back to this instability in the one but last section of our

paper.

One more potential source of instability – the one studied

here – is provided by a dependence of the angular velocity

on the vertical coordinate. This dependence seems to be in-

evitable in accretion disks (see, e.g., Kippenhahn & Thomas

1982; Urpin 1984; Kley & Lin 1992). It has first been argued

by Kippenhahn & Thomas (1982) that a slight baroclinity is

necessary to fulfill hydrostatic and thermal equilibrium in ac-

cretion disks. The dependence of Ω on z is relatively weak but
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it is a driving force for the well known Goldreich-Schubert

instability (Goldreich & Schubert 1967). Recently, hydrody-

namic stability of accretion disks under the action of the ver-

tical shear has been considered by Rüdiger et al. (2002). The

authors considered linear and non-linear small scale perturba-

tions, using the ZEUS-3D code, and concluded that the vertical

shear cannot overcome the stabilizing effect of stratification if

perturbations are adiabatic. However, small scale motions in

disks are essentially non-adiabatic, and the exchange of heat

between perturbations and the surrounding medium substan-

tially reduces the influence of the buoyancy force and decrease

the stabilizing effect of stratification. Therefore, the behavior

of perturbations in adiabatic and non-adiabatic cases is qualita-

tively different (Urpin & Brandenburg 1998; Urpin 2003).

In the present Paper, we perform simulations of the vertical

shear instability in accretion disks in a non-adiabatic approxi-

mation. The ZEUS-3D code was used for the integration of the

hydrodynamic equations. We calculate the main parameters of

turbulence caused by the vertical shear instability and argue

that the vertical shear existing in accretion disks is sufficient to

enhance turbulent angular momentum transport.

The paper is organized as follows: in Sect. 2, the properties

of the instability are briefly reviewed and discussed, while the

numerical setup is described in Sect. 3. The results from simu-

lations with and without perturbations are presented in Sect. 4.

Our findings are summarized in Sect. 5.

2. Basic equations and the vertical shear

instability

We consider a non-magnetic axisymmetric disk of finite ver-

tical extent. The unperturbed angular velocity can generally

depend on both r and z coordinates, Ω = (Ω(r, z), 0, 0).

Throughout this paper, z, r and ϕ are cylindrical coordinates;

the unit vectors in these directions are ez, er, and eϕ. In the

unperturbed state, the disk is assumed to be in hydrodynamic

equilibrium,

∇p

ρ
= G = g + rΩ2

er, (1)

where g is the gravity of the central object. Solving Eq. (1)

together with the thermal balance equation, one can generally

obtain r- and z-dependences of ρ, p, and Ω. It turns out that Ω

always depends on z in the unperturbed state (see e.g. Kley &

Lin 1992). For the sake of simplicity, we assume the disk to be

isothermal.

In the present paper, we treat numerically only short wave-

length disturbances with a wavelength much shorter than the

half-thickness of a disk, H. The amplitude of such disturbances

can grow due to the vertical shear instability, and they may

evolve in a non-linear regime but still remaining short-wave.

Short wavelength disturbances are approximately isothermal

in accretion disks because of the high thermal conductivity.

The isothermal approximation applies for disturbances with the

wave vector k = (kz, kr, kϕ) satisfying the condition

k > kmin =
√

γvs/χ, (2)

where γvs is the growth rate of the vertical shear instability,

and χ is the thermal diffusivity. In accretion disks, we have

γvs ∼ ΩH/r ∼ cs/r (see Urpin 2003) where cs is the sound

speed. Then, we have from Eq. (2)

kH ≫ kminH ∼

(

H

r

)1/2
(

csH

χ

)1/2

· (3)

In disk models, χ is typically large, and disturbances with

kH ≫ 1 can usually be treated as isothermal.

The behavior of isothermal disturbances is governed by the

continuity and momentum equations

∂ρ

∂t
+ ∇ · (ρu) = 0 (4)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + ρg. (5)

where u is the velocity of disturbances. Our consideration does

not include self-gravity in the disk.

For the purpose of illustration, we show in this section that

the model governed by Eqs. (4) and (5) leads to the vertical

shear instability in a linear regime. Consider the behavior of ax-

isymmetric short-wavelength disturbances with the space-time

dependence exp(γt − ik · r) where k = (kz, kr, 0) is the wave

vector and r = (z, r, ϕ) is a locus; |k · r| ≫ 1. Small pertur-

bations will be marked by the subscript 1, whilst unperturbed

quantities will have no subscript. The unperturbed velocity is

represented by rotation with the angular velocity Ω. Then, the

linearized Eqs. (4) and (5) read

γρ1 = iρ(k · u1), (6)

γu1 + 2Ω × u1 + eϕr(u1 · ∇)Ω = −
∇p1

ρ
+ G
ρ1

ρ
, (7)

where u1, p1 and ρ1 are perturbations of the hydrodynamic

velocity, pressure and density, respectively. In our isothermal

model, p1 = c2
sρ1. Then, replacing p1 and ρ1 in Eq. (7), we

obtain an equation containing u1 alone

γu1 + 2Ω × u1 + eϕr(u1 ·∇)Ω =
i

γ
(k · u1)

(

ikc2
s + G

)

. (8)

Under the assumption that the growth rate of the vertical shear

instability is small compared to the sound speed, kcs ≫ γ,

Eq. (8) yields the following simple dispersion relation,

γ2 = −Q2, (9)

where

Q2 = 4Ω2
k2

z

k2
+ 2Ωr

kz

k

(

kz

∂Ω

∂r
− kr

∂Ω

∂z

)

· (10)

The first term on the r.h.s. of Eq. (10) is equal to the square of

the frequency of so-called inertial waves that can exist even in a

rigidly rotating fluid, and the second term represents the effects

associated with a departure from rigid rotation.

The instability occurs if

Q2 < 0, (11)
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or

k2
z

k2
·
∂

r3∂r

(

r4Ω2
)

−
kzkr

k2
· 2Ωr

∂Ω

∂z
< 0. (12)

For thin disks, the radial dependence of Ω is approximately

given by the Keplerian law,Ω ∝ r−3/2, and hence, the first term

on the r.h.s. of the inequality (12) is positive. The sign of the

second term depends on the direction of the wave vector, and

this term may cause a destabilizing effect. In thin disks with

z/r ≪ 1, the vertical dependence of Ω can be calculated an-

alytically expanding all quantities around the midplane into a

parabola (see e.g. Urpin 1984; Kley & Lin 1992). Then we have

∂Ω/∂z ≈ qΩz/r2 (13)

where q = q(r) ∼ 0.1 is the parameter in the series expansion

of Ω(z, r) around the equator. The term associated with the ver-

tical shear dominates the r.h.s. of the inequality (12) if

kr >| (kz/2q)(r/z) | . (14)

The instability arises only for perturbations with wavelengths

much shorter in the radial direction than vertically.

Note that, for any dependence of Ω on z, there exists a

region in the plane (kz, kr) where the condition of instability,

Q2 < 0, is satisfied. In the general case, the instability arises if

the components of a wave vector satisfy the inequality

∣

∣

∣

∣

∣

kr

kz

∣

∣

∣

∣

∣

>
|∂(r4Ω2)/∂r|

|2Ωr4∂Ω/∂z|
, (15)

and kr and kz are of the same/opposite sign if the quantity

[∂(r4Ω2)/∂r]/[∂Ω/∂z] is positive/negative.

This simple consideration shows that accretion disks are

always unstable as soon as disturbances have a very short radial

length-scale. The growth rate is given by

γ ∼ |Q|. (16)

Since the condition (12) can be satisfied only for perturbations

with |kr/kz| ≫ 1, the growth rate depends on the ratio kz/kr

rather than on the wavelength of perturbations. The maximum

growth rate is reached at

kz

kr

≈
r4Ω(∂Ω/∂z)

∂(r4Ω2)/∂r
· (17)

In a Keplerian disk, this ratio reads

kz

kr

≈ q ·
z

r
, (18)

and the corresponding maximum growth rate is given by

γvs ≈ Ω

∣

∣

∣

∣

∣

qz

r

∣

∣

∣

∣

∣

· (19)

The growth time of the instability is thus rather short and can

even be as small as the order of magnitude of the time scale of

vertical shear.

Table 1. Overview of numerical configurations. All values are in the

arbitrary units of the code.

Small model S

zmin, zmax −1 +1

rmin, rmax 4 6

ϕmin, ϕmax 0 2π

grid Nz × Nr × Nϕ 81 × 251 × 161

kz, λz π 2

kr , λr 157 0.04

kr/kz 50

M 105

Mdisk 56

Large model L

zmin, zmax −1 +1

rmin, rmax 3 7

ϕmin, ϕmax 0 2π

grid Nz × Nr × Nϕ 81 × 500 × 161

kz, λz 2π 1

kr , λr 98.2 0.06

kr/kz 15.6

M 105

Mdisk 116

Open-boundary model O

Same as model L, but open radial boundaries

3. Numerical model

The setup for our three-dimensional simulations applies a

global, cylindrical computational domain with full azimuthal

range, dimensionless radii from 4 to 6 and from 3 to 7, and

a vertical extent of 2 density scale heights on average, which

translates to −1 to +1 in our models and in dimensionless units.

Two main configurations provided the results of the following

investigation; their details are given in Table 1.

The ZEUS-3D code (developed by Stone & Norman

1992a,b; Stone et al. 1992) was used for the integration of the

compressible hydrodynamics. The configuration is very close

to the one given in Arlt & Rüdiger (2001); we also compute

in an isothermal gas. Isothermality does not provide a vertical

shear unless meridional motions are present in the disk. In our

simulations this will be the relaxation motions around the equi-

librium solution and the imposed initial perturbations.

The induction equation is naturally not integrated here. The

source of gravitation is that of a point mass M = 105 at r = 0

and z = 0. Self-gravity in the disk is not considered. The total

mass of the disk is about 10−3M or less. The Toomre criterion

for gravitational stability is readily fulfilled with a Toomre pa-

rameter of ∼102 in our cases.

The original ZEUS code provides artificial viscosi-

ties for improved shock evolution; we have put the

von-Neumann-Richtmyer viscosity to zero here since only sub-

sonic flows are expected. The advection interpolation is the sec-

ond order van-Leer scheme. The additional linear smoothing

by the ZEUS variable qlin is set to 0.2 for improved stability
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of the unperturbed equilibrium configuration. The perturbed

model runs apply the same value of course.

The conditions for the vertical boundaries are stress-free;

no matter can exit the computational domain in vertical direc-

tion and the vertical derivatives of ur and uϕ vanish.

The radial boundaries of the two models discussed in de-

tail (S and L) are also closed for the flow, and the radial deriva-

tive of uz vanishes. This condition differs from the setup in Arlt

& Rüdiger (2001) where boundaries allowed for accretion. Our

last model labelled with “O” uses a simple version of open ra-

dial boundaries, where the values of the last grid cell before

the boundary are just copied to the ghost zones. This attempt is

rather crude, and we will thus concentrate on the closed mod-

els S and L in the following.

For radial boundary conditions on the azimuthal flow, we

have to consider the intrinsic rotation due to the central mass.

A Keplerian radial dependence of rotation is maintained into

the r-boundary zones, based on the innermost (outermost) zone

of the integration domain. If the azimuthal velocity at the in-

nermost point of the computational domain is denoted by u
(1)
ϕ ,

we use

u(0)
ϕ = u(1)

ϕ

√

r(1)/r(0) (20)

u(−1)
ϕ = u(1)

ϕ

√

r(1)/r(−1) (21)

to find azimuthal-velocity values for the boundary zones in-

side the annulus of the computational domain. The outer radial

boundary is treated accordingly for u
(n+1)
ϕ and u

(n+2)
ϕ . We did

not fix the absolute value of Keplerian rotation, since radial

pressure gradients may alter the effective gravitational poten-

tial (usually decrease the revolution speed slightly in accretion

disks). The azimuthal boundary conditions are fully periodic.

A rough representation of a stratified disk with a linear ra-

dius dependence for the density scale-height was used for the

initial conditions. The initial velocity field is a mere Keplerian

rotation with ∂Ω/∂z = 0. We leave this configuration for free

development under the influence of the gravitational potential.

The meridional relaxation motions are enough to generate a

slight vertical shear on which our simulations rely.

The constant sound speed is set to cs = 10 in the arbitrary

units of the code, corresponding to 7% of the Keplerian veloc-

ity in the middle of the computational domain, at r = 5. When

the equilibrium state is reached, the ratio of the half-thickness

to the radius is ≈0.1. We will show an unperturbed model in the

following Section. The damping of the small initial deviations

in the starting configuration from the exact equilibrium solution

is an indication for the stability of the numerics, but also shows

the numerical diffusion resulting from the integration scheme.

The time step is nearly constant at 3 × 10−4 which is

about 0.0014 Porb, the rotation period of the disk at r = 5. It is

limited by the velocity of sound waves, but the large Keplerian

velocity also defines a time-step nearly as small as the above.

The initial conditions for the smaller of the two long runs

involve an axisymmetric velocity perturbation of the form

uz = A sin(2πr/0.04) (22)

ur = A cos(2πr/0.04). (23)

The amplitude A is 0.01cs. Additionally, relaxation motions of

the initial density stratification, whose scale-height changes lin-

early with r, lead to dependences on z with a wavelength of 2,

i.e. the vertical extent of the computational domain. This is why

Table 1 lists kz = π for model S.

For the larger resolution in (z, r, ϕ) of 81 × 500 × 161, the

initial perturbations were

uz = A1 sin 2πz (24)

ur = A1 sin(2πr/0.064) (25)

uϕ = A2 sin 2ϕ. (26)

We thus combined the wavenumbers kz = 2π and kr = 98 giv-

ing a ratio of kr/kz = 15.6. The amplitude A1 is again cho-

sen to provide perturbations of 1% of the thermal sound speed,

A1 = 0.01cs. The azimuthal perturbation is added to allow for

a quicker non-axisymmetric evolution of the disk; it does not

significantly contribute to the instability. We set A2 = 10−4cs.

4. Results

4.1. Unperturbed models and diagnostics

Before actually describing the results for the instability, we

would like to add some remarks on the unperturbed model. In

Fig. 1, the time dependence of the average of the square of

velocity fluctuations is plotted for the equilibrium model. For

the sake of simplicity, we will often call this quantity “kinetic

energy” of the fluctuations, but we have to note that the den-

sity stratification is not involved in the measure. The values are

scaled to the square of the constant sound speed, c2
s , in these

plots. The average “energy density” in the fluctuations is com-

puted for the individual components. It is the average square

of the velocity component minus the azimuthal average at the

specific point in the (z, r)-plane:

〈u′2z 〉 =
〈

[

uz(z, r, ϕ) − uz(z, r)
]2
〉

z,r,ϕ
(27)

where uz(z, r) = 〈uz(z, r, ϕ)〉ϕ. The subscripts to “〉” denote the

directions of averaging. The other energies 〈u′2r 〉 and 〈u′2ϕ 〉 are

computed likewise. This procedure excludes all axisymmetric

parts of the flow from the average, mainly the differential rota-

tion, but also in uz and ur.

The simulation shown in Fig. 1 does not involve any initial

disturbances to the model S except slight deviations from the

exact equilibrium solution. The typical kinetic energy in the

fluctuations is extremely small and is decreasing all the time.

The values reduce from ∼10−15c2
s to ∼10−17c2

s , i.e. in units of

thermal energy, during the time of 85 orbital revolutions of the

inner edge of the computed annulus.

We may also check for the transport of angular momentum

through the rϕ-component of the stress tensor

Wrϕ =

〈

ρur[uϕ − uϕ(z, r)]
〉

z,r,ϕ

〈ρ〉z,r,ϕ
, (28)

which is typically normalized to the Shakura-Sunyaev parame-

ter αSS by

Wrϕ = αSSc2
s . (29)
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Fig. 1. Energies of the velocity fluctuations for the unperturbed

model S in units of the thermal energy. The lower axis measures or-

bital periods of the inner edge at r = 4, the upper axis at the outer edge

at r = 6.

Fig. 2. The αSS-parameter for the unperturbed model S. The average

αSS is −4 × 10−11. The horizontal axes are as in Fig. 1.

Figure 2 shows the temporal development of αSS. According

to that, the angular momentum transport is vanishing with an

average of αSS ∼ −10−11. The simulations illustrate the fact

that the chosen equilibrium model is sufficiently stable during

the computational time of >80 revolutions.

The unperturbed run for model L is convincing as well. The

plot of the fluctuation energies in Fig. 3 shows an increase in

the radial and vertical components initially. The deviations of

the true density distribution from the initial one linear in r are

larger than for model S and imply more rearrangement flows.

After 30 orbital revolutions, the fluctuations settle and decrease

by 8 orders of magnitudes in energy within 220 orbits of the

inner edge. Again we look at αSS which is plotted in Fig. 4. The

transient maximum in the strength of velocity fluctuations does

not feature in the αSS-plot, and the average is again αSS ∼ 10−11.

Fig. 3. Energies of the velocity fluctuations for the unperturbed run of

model L. The lower axis measures orbital periods of the inner edge

at r = 3, the upper axis at the outer edge at r = 7.

Fig. 4. The αSS-parameter for the unperturbed model L. The average

αSS is −2 × 10−11. The horizontal axes are as in Fig. 3.

The zero models do build up gradients ∂Ω/∂z as well, but

the absence of perturbations with proper wave lengths does not

lead to a vertical shear instability.

4.2. Perturbed models

Now we go ahead with imposing the initial perturbations given

in (22) and (23) to model S of Figs. 1 and 2. The time depen-

dence of the fluctuation energies and αSS is shown in Figs. 5

and 6 for the case when initial perturbations are imposed to the

S model. Although the initial amplitude of the velocity pertur-

bations is relatively small (0.01cs), the vertical shear instabil-

ity leads to the generation of significant velocity fluctuations.

During a long time of growth, the velocity and density patterns

do not actually show turbulent features. We rather observe

a growing large-scale flow. Remember that the unperturbed

model showed a decay of velocity fluctuations by the intrinsic

“numerical viscosity”.
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Fig. 5. Energies in velocity fluctuations for model S.

Fig. 6. The evolution of the αSS-parameter for model S.

The αSS-parameter in Fig. 6 was again calculated by av-

eraging over the computational box. This parameter is deter-

mined by the correlation between radial and azimuthal velocity

fluctuations and is very small initially because the fluctuations

are nearly axisymmetric in the beginning and cannot transfer

the angular momentum. However, αSS exceeds a value of 10−8

after t ∼ 30 outer orbits. It is first positive, but still very small

implying slight outward angular-momentum transport. After

150 orbital periods at the inner boundary or 80 revolutions at

the outer boundary, the sign of αSS is negative in model S and

saturates at αSS ∼ −0.0005.

In the standard disk model with positive αSS, the gas moves

to the central object in the surface layers of the disk and in the

opposite direction near the midplane (Urpin 1984; Kley & Lin

1992; Lee & Ramirez-Ruiz 2002). Because of the closed radial

boundaries, we cannot see the details of accretion in our sim-

ulations. An improved model will likely show matter flowing

inward near the central plane and outward in the surface layers.

The energy of the fluctuations reaches values of the order

of 1% of the thermal energy. Initially, the energy of fluctuations

grows fairly fast with a growth rate of ∼0.03Ω(rmax) measured

Fig. 7. The growth rate for the square of the velocity fluctuations for

model S. The graph is smoothed and does not show the short-term

oscillations indicated by Fig. 5. The growth rate is given in units

of Ω(rmax).

in units of the angular velocity at the outer edge of the com-

putational domain. This corresponds to nearly 0.2 per orbital

period. After ∼100 outer-disk revolutions, however, the growth

decreases by an order of magnitude and indicates saturation of

the fluctuation strength. The growth rate evolution is shown in

Fig. 7 in terms of Ω at the outer edge of the computational do-

main. Note that the growth rate of velocity fluctuations, γ, in-

troduced in Sect. 2 is smaller by a factor of 1/2 since the energy

of turbulence ∝u2; hence, γ ∼ 0.015Ω(rmax).

Initially, the energy of azimuthal fluctuations grows most

rapidly, followed by the radial ones. The vertical fluctuations

show slowest growth up to about 50 outer orbits and exhibit

strong variations in their growth rate. The evolution is quasi-

steady with average growth rates returning to nearly zero after

105 outer orbits. In the quasi-steady state, the kinetic energy

contained in radial fluctuations is maximal, azimuthal fluctua-

tions are slightly smaller, and vertical fluctuations are by a fac-

tor of ∼5 less efficient.

The dynamics of the model L shown in Figs. 8–10 is quali-

tatively the same. The model applies the initial conditions (24)

to (26). Note that the instability requires the longest time to

reach saturation in the region near the outer boundary where Ω

is minimal. As a result, all turbulent characteristics integrated

(or averaged) over the computational domain such as kinetic

energy, αSS, etc., can become quasi-steady only when turbu-

lence reaches saturation in the outermost region. Therefore,

the dimensionless timescale of saturation is approximately the

same for both the S and L models if measured in units of the

outer rotational period (upper abscissa in the plots). In these

units, the saturation timescale is about 100 Keplerian periods.

However, measured in units of the inner period, the values of

this timescale is by the factors (6/4)3/2 ≈ 1.8 and (7/3)3/2 ≈ 3.5

longer for the models S and L, respectively.
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Fig. 8. Energies in velocity fluctuations for model L.

Fig. 9. The evolution of the αSS-parameter for model L.

Unlike in model S, the saturation kinetic energy in the

model L reaches less than ∼0.1% of the thermal energy. The

reason is probably the longer physical time over which we in-

tegrated here. Numerical viscosity had thus more time to damp

the fluctuations before they reach their maximum amplitude.

Another issue may be the different sizes of computational do-

mains; since the energy of fluctuations is certainly not dis-

tributed homogeneously, runs S and L are likely to exhibit dif-

ferent saturation energies on average.

Since model L is more extended in the radial direction than

model S, the ratio of kinetic energy of turbulence in the quasi-

steady state and the thermal energy depends weakly on r. The

energy is distributed non-equally between the velocity compo-

nents (see Fig. 8) with radial and azimuthal fluctuations con-

taining the main fraction of kinetic energy and vertical fluctu-

ations being less energetic, again by a factor of ∼5. The value

of αSS grows to small positive numbers with their maximum

at 6 × 10−6, and decays but remains positive throughout the

rest of the simulation.

Fig. 10. The growth rate for the square of the velocity fluctuations for

model L in units of Ω(rmax).

Contrasting with model S, a transient energy peak is

observed in both the unperturbed simulation (Fig. 3) and the

perturbed run (Fig. 8) of model L. The peak is attributed to

reorganization motions caused by the deviations of the initial

conditions from the correct hydrostatic solution. The deviations

are naturally larger in model L with its larger radial extent, but

they do not come along with signatures in the αSS plots.

In Figs. 11, 13 and 15, we plot the spectral characteristics

of the flow generated by the vertical shear instability for the

model S. For a comparison, the Kolmogorov spectrum with

a power of −5/3 is shown by a dotted line in all figures. The

Fourier amplitude for any given coordinate is shown as an aver-

age over the two other coordinates. Let the direction of decom-

position be r, then we obtain Nz × Nϕ individual radial spectra.

The absolute values of these spectra are averaged; the square

of these average amplitudes is shown in the graphs. The spec-

tra shown in Figs. 11, 13 and 15 are taken from a phase of the

simulation which is about 20 inner orbits before the saturation

phase. Spectra of model L taken from a similar phase of evolu-

tion are plotted in Figs. 12, 14 and 16.

The spectra decomposed in the radial and vertical direc-

tions reach a quasi-steady regime on a shorter timescale than

other turbulent characteristics like the kinetic energy or αSS.

These spectra do not change their shape substantially after

t ∼ 60 orbital periods at the inner radius. They do change their

absolute values though.

The spectra of the vertical and azimuthal velocities decom-

posed in the radial direction (Figs. 11 and 12) are particularly

simple: they are monotonous with a slope close to 5/3 and do

not exhibit any noticeable maximum. This implies that hydro-

dynamic non-linearity rather than other factors governs the ra-

dial dependence of the z- and ϕ-components of velocity fluctua-

tions. This also holds for the spectra in the quasi-steady regime

of the saturated phase of the simulation. Only the spectra of

the radial velocity have steeper slopes than the Kolmogorov

spectrum. The large gradient is likely caused by the strong
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Fig. 11. Spectra of the velocity components of model S with initial

perturbations, decomposed in radial direction after 164 inner periods.

Fig. 12. Spectra of the velocity components of model L with initial

perturbations, decomposed in radial direction after 223 inner periods.

Fig. 13. Spectra of the velocity components of model S with initial per-

turbations, decomposed in vertical direction after 164 inner periods.

differential rotation in the radial direction that is an additional

powerful mechanism of distortion of the radial motions in ac-

cretion discs.

Spectra decomposed in the vertical direction show a qual-

itatively similar behavior (Figs. 13 and 14). In this case,

Fig. 14. Spectra of the velocity components of model L with ini-

tial perturbations, decomposed in vertical direction after 223 inner

periods.

Fig. 15. Spectra of the velocity components of model S with initial per-

turbations, decomposed in azimuthal direction after 164 inner periods.

spectra of the radial and azimuthal velocity are steeper than

a Kolmogorov one and have exponents of ∼−3 in model S

and ∼−4 in model L.

Obviously, the dependence of the velocity on ϕ experi-

ences the most dramatic changes from initial disturbances be-

ing nearly independent of ϕ to a rather complicated dependence

with a number of peaks shown in Figs. 15 and 16. These peaks

coincide with even mode numbers m. The ϕ-amplitudes of all

three velocity components are qualitatively similar and exhibit

a maximum at the azimuthal mode number m ∼ 6–8 that cor-

responds to a wavelength comparable to the disk radius. The

spectra decomposed in the ϕ-direction are qualitatively differ-

ent from the Kolmogorov spectrum: the decrease of power to-

wards larger wave numbers is the steepest among the spectra

obtained. For example, fluctuations with the azimuthal wave-

length ∼r are approximately 104–105 times stronger than fluc-

tuations with the wavelength ∼H. The corresponding exponent

is ∼−5.

This rapid decrease of the spectra towards high k might

be explained by a stabilizing influence of the differential ro-

tation on the fluctuations with large azimuthal wavenumbers.
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Fig. 16. Spectra of the velocity components of model L with ini-

tial perturbations, decomposed in azimuthal direction after 223 inner

periods.

Fig. 17. Dependence of radial spectra on height above and below the

equatorial plane, taken from model L after 349τorb. The top graph is

based on ur , the bottom graph on uz.

The stabilization prevents a non-linear generation of such

modes. Therefore, turbulence in the ϕ-direction is mainly rep-

resented by relatively large structures with the length-scale

comparable to r or longer. The vertical shear instability appar-

ently generates anisotropic turbulence in accretion discs.

Figure 17 shows the vertical distribution of radial spectra.

The contour lines represent the power of spectra taken at each

Fig. 18. Energies in velocity fluctuations for model O.

vertical distance from the equator z. The upper panel is based

on the radial velocity component ur, the lower, on the verti-

cal component uz. Both graphs show that high-kr modes have

more power at large equator distances. In other words, small

scales develop best in the disk halo. In the equatorial plane,

low-kr modes dominate in ur; because of the nearly symmetric

flow, the spectrum of the equatorial uz is close to zero there.

4.3. Comparison with sound waves

Note that in non-magnetic discs, there can generally exist one

more instability apart from that considered in the present paper

(see Papaloizou & Pringle 1984; Drury 1985). The instability

arises by over-reflection of sound waves at a corotation radius,

combined with a reflection at (at least) one boundary.

A number of points discriminate between the two instabil-

ities. For instance, the growth rate is approximately an order

of magnitude larger for the vertical shear instability (≈0.02Ω)

than for the reflection one. The growth rate in our simulations

agrees very well with the value predicted by the analytic the-

ory of the vertical shear instability; cf. Eq. (19). The reflection

instability is adiabatic whereas the instability considered in our

paper is substantially non-adiabatic. A numerical evaluation of

the same model in the adiabatic limit done by Rüdiger et al.

(2002) failed to indicate any sign of instability.

Since the reflection instability is caused by reflection of

sound waves at the boundaries, the growth rate of the reflec-

tion instability depends critically on the separation between the

boundaries which is crucial for the formation of an interference

pattern of maxima and minima. By contrast, the vertical shear

instability is not sensitive to the positions of the boundaries as

shown by the comparison of models S and L.

Outflow boundaries in radial direction shed further light on

the nature of the instability, since the sound wave instability

should be substantially suppressed in the disk with these. The

energies of fluctuations of Model O are shown in Fig. 18. The

onset of the instability is still visible, but the model loses too
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Fig. 19. Energies in velocity fluctuations for a perturbed model with

the same parameters as L, but without vertical gravity (cylindrical

potential).

much energy through the radial boundaries before saturation

can be observed.

We also made a reverse test of whether or not the vertical-

shear instability is actually excited in models S, L, and O.

The vertical structure of the disk is switched off by can-

celling the vertical component of the gravitational force of

the central mass. The equilibrium model then shows no den-

sity stratification and no vertical shear. If the same initial

perturbations as for Model L (and the same numerical pa-

rameters) are employed, no instability emerges as shown

in Fig. 19. The level of kinetic energy in the radial and

azimuthal fluctuations is 10−8–10−7c2
s . The energy in vertical

fluctuations is damped exponentially to zero. Since the weak

initial radial fluctuations show little change over the time of

simulation. This is regarded as the contribution of sound waves

to our simulations, which is small compared to the growth

of fluctuations in the models of Sect. 4.2 which have vertical

shear.

The resulting hydrodynamic pictures associated to the

two instabilities are very much different as well. The re-

flection instability leads to global, large-scale 2D patterns

in the r − ϕ plane with small scales developing only at the

boundaries, and only in the non-linear regime. The simula-

tions by Kaisig (1989) show no evidence for the development

of turbulence. The characteristic length-scales in the radial and

azimuthal direction are comparable and ∼H. This differs com-

pletely from the picture produced by the vertical shear insta-

bility generating predominantly anisotropic fluctuations with

the largest length-scale (∼r) in the azimuthal direction and the

shortest length-scale (≪H) in the radial one, in agreement with

the predictions of Sect. 2.

All this allows us to conclude that the turbulence simulated

in this paper is caused by the vertical shear instability.

5. Summary

We have presented the results of simulations of the vertical

shear instability in accretion disks. The instability can arise

for any dependence of the angular velocity on the vertical

coordinate and, hence, accretion disks are subject to this in-

stability since Ω depends on z. As it was first shown by

Goldreich & Schubert (1967), this instability is associated with

the heat transport and occurs only for non-adiabatic distur-

bances. Therefore, we concentrated on the behavior of short

wavelength disturbances which are certainly non-adiabatic be-

cause of the high thermal conductivity of disks. The important

point of our numerical simulations is a high radial resolution

because only disturbances with the wavelength much shorter

in the radial direction than vertically can be unstable (Urpin

2003). Our simulations follow both the linear and non-linear

evolution of short wavelength disturbances and indicate the

presence of instability. The main findings of the present study

are summarized as follows:

1) The vertical shear instability grows on a relatively short

time scale. The growth rate γ reaches ∼0.015Ω(rmax). This

value is in a good agreement with the growth rate predicted

by the linear theory, γ ∼ Ω(qH/r) ∼ 0.01Ω, and is indepen-

dent of the separation of the radial boundaries. After about

100 revolutions of the outer boundary of the computational

domain, the instability operates in a quasi-steady regime,

and the growth rate decreases to nearly zero or – in the very

long run of model L – to a tiny negative value which is due

to the final viscous decay of the fluctuations.

2) The energy contained in turbulent fluctuations can reach

values of the order of 1% of the thermal energy. The energy

is distributed non-equally among the velocity components,

and turbulence is substantially anisotropic. The radial fluc-

tuations are most energetic and contain about 3–4 times

more energy than the vertical fluctuations. The azimuthal

velocity component contains similar or slightly less energy

than the radial one.

3) The Fourier spectra of velocity fluctuations decomposed in

the azimuthal direction tend to exhibit non-monotonous be-

havior which can be interpreted as the presence of prefer-

able length-scales in the flow. Highest power is found

at wavelengths of ∼r for all three velocity components.

Spectra decomposed in the radial and vertical directions

are monotonous and do not exhibit such maximum. The

turbulence generated by the vertical shear instability is

anisotropic with the largest length-scale in the azimuthal

direction and the shortest length-scale in the radial one.

4) The flow caused by the vertical shear instability can en-

hance angular momentum transport to a limited degree. The

turbulent αSS-parameter reaches the value of ∼−0.0005 at

the end of simulation S and peaks at 6 × 10−6 in model L.

The relation between αSS and the direction of the flow may

not be realistic in a model with closed radial boundaries,

and we are not drawing conclusions about radial flows.

Further simulations with accreting boundaries may provide

more information on the accretion structure of disks being

subject to the vertical shear instability.
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