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This paper describes a recently developed architecture for a Hardware-in-the-Loop sim-
ulator for Unmanned Aerial Vehicles. The principal idea is to use the advanced modeling
capabilities of Simulink rather than hard-coded software as the flight dynamics simulating
engine. By harnessing Simulink’s ability to precisely model virtually any dynamical sys-
tem or phenomena this newly developed simulator facilitates the development, validation
and verification steps of flight control algorithms. Although the presented architecture
is used in conjunction with a particular commercial autopilot, the same approach can be
easily implemented on a flight platform with a different autopilot. The paper shows the
implementation of the flight modeling simulation component in Simulink supported with
an interfacing software to a commercial autopilot. This offers the academic community
numerous advantages for hardware-in-the-loop simulation of flight dynamics and control
tasks. The developed setup has been rigorously tested under a wide variety of conditions.
Results from hardware-in-the-loop and real flight tests are presented and compared to
validate its adequacy and assess its usefulness as a rapid prototyping tool.

I. Introduction

Hardware-in-the-loop (HIL) simulators are essential tools for flight control systems development. In
essence, a HIL simulator generates synthetic data as if it was from the onboard sensors. This data is sent to
the actual flight avionics which in turn, produces control commands. These control commands are relayed
back to the simulator thus closing the control loop.1 Specifically, UAV HIL simulators are generally comprised
of: (i) the avionics, (ii) software to simulate the aircraft dynamics, engine, weather, actuator dynamics, etc.
which, in further discussions will be referred as the plant model ; and (iii) the hardware and software that
allows the plant model simulator to send synthetic data to the avionics and receive control commands back.

These simulators have long been used for rapid prototyping of flight control systems in missiles,2,3

helicopters4 and fixed-wing aircraft.5 Their wide adoption is mainly due to the fact that adequate simulation
allows to save time and money when compared to real flight tests.6 For instance, in missile development,
it is estimated that the cost of a single firing test covers the cost of somewhere between 3,000 and 10,000
HIL simulated firings.2 Another advantage of HIL simulators is that it allows preliminary experimentation
of high-risk scenarios such as fault-tolerance6,7 without actually exposing the hardware. This is extremely
important, especially at the initial phases of the control design process. Another advantage, provided that the
software simulating the plant model is accurate, is that the amount of parameter tuning when transitioning
from the HIL to real flight implementation is greatly reduced.

There have been recent reports in the literature by several research laboratories employing HIL simulators
for rapid prototyping of UAV flight control algorithms. Johnson and Schrage reported on Georgia Tech’s
rotary wing UAV research platform, the GTMax, which included a HIL simulator developed in-house written
in C++.8,9 Tisdale et al. reported on UC Bekeley’s UAV platform which made use of the commercially
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available Piccolo autopilot10 and its HIL simulator to develop and flight test autonomous collaborative pa-
trolling11 . More recently Ref.12 reported on the Naval Postgraduate School’s Rapid Flight Test Prototyping
System which made extensive use of the HIL simulator available with the Piccolo autopilot for development
of vision-based target tracking, 3D path following, SUAV control over the network and high-resolution im-
agery on the fly.12 Nevertheless, all of these HIL simulators share the same limitation, namely a lack of a
simple and intuitive way to modify the plant model.

It is a fact that many – if not all – of the current Commercial Off-The-Shelf (COTS)10,13,14 and open
source15 autopilots offer software simulators to perform HIL testing, and training. This software allows an
end-user to conduct overall system check, training, and, in the Research and Development case, some limited
algorithm verification and validation without the need to fly. Although the simulators shipped with currently
available autopilots work well in a generic flight scenario, they are quite limited once a researcher tries to
simulate complicated phenomena or use a different aircraft model. For example, simulating a component
failure (control surface, sensor), a combination of them, or employing a different plant model from the one
pre-programmed is difficult and often impossible.

This is why research labs involved in advancement of control algorithms require a more flexible and
versatile HIL simulator. Ideally the HIL simulator should be an enabling tool that can easily be modified to
adequately simulate the conditions under which a real flight will be conducted. The setup should be capable
of being gradually extended from a simple linear plant model during the initial design phases, all the way
to a rigorous and detailed non-linear one once/if the project so requires. Another desired feature is that
the end-users should be able to add plotting and logging capabilities with ease. To the authors’ knowledge
there is currently no HIL simulator readily available that enables all of these features for the development
of UAV control. Currently available HIL simulators do offer a limited capability to modify a few parameters
of a fixed plant model ; while the Open Source ones offer freedom to modify anything, there is an inherently
steep learning curve requiring significant proficiency not only in control systems design but in a high level
programming language. These are the key factors that contributed in deciding to develop a flexible and easily
modifiable HIL simulator. The newly-developed HIL architecture has the ability to simulate any dynamic
model using the inherently powerful capabilities of Simulink16 modeling environment. Simulink-based design
is then used to generate synthetic sensor data for a given UAV autopilot and has the capability to receive
the control commands back. This offers a great flexibility not previously available.

From the previous discussion it is easy to infer that central to the HIL simulator is the mathematical
description of the plant model. Undoubtedly the most crucial part of the plant model is that of the aircraft
dynamics. Numerous works have been published solely addressing the issue of adequate modeling of aero-
dynamics and flight characteristics; ranging from a simple approximation using panel methods,17 to a full
regression model,18 or a hybrid between the two.19 The system identification process briefly presented in
this paper is similar to that of Ref.19 in the sense that it first also employs a panel method. However, for
the final identification step that includes coupled interaction between the longitudinal and lateral channels
it uses the less-known Parameter Space Investigation (PSI) method.20 The PSI method is a rigorous tool
that first proves an existence of a feasible solution in the multidimensional design variables space therefore
explicitly delivering the corresponding feasibility bounds and then allows for a Pareto optimal result to be
found.

The main contribution of this paper is the development of a new versatile HIL simulator architecture
that greatly simplifies new UAV control system design. This new Simulink-based architecture allows for
simulation of complex dynamic models and phenomena in one of the most versatile and convenient design
environments supported by a wide variety of Control Design toolboxes. This reduces the need for high-
level language programming and manual coding to simulate the environment where the control design will
be tested. In turn, this will allow many other UAV research labs to test their algorithms for different
classes of airplanes of any configuration under any flight conditions without risking their flight hardware.
This capability extends the scope of their research by significantly reducing many man-hours of tedious
implementation in a high-level programming language.

The outline of the paper is as follows: Section II presents in detail the HIL development, specifically
the Simulink-to-autopilot communication and the architecture of the simulator, then it briefly presents the
system identification method employed to obtain the plant model. Section III presents comparative results
of the HIL simulation and the real-flight test; specifically the open-loop doubletand frequency responses are
presented. Section IV presents a discussion on the computational performance of the architecture and ways
of improving it. Finally concluding remarks provide a summary and a direction of future research.

2 of 10

American Institute of Aeronautics and Astronautics



II. HIL Simulator Development

The Piccolo Plus autopilot10 is the core element of the current Rapid Flight Test Prototyping System
(RFTPS)12,21 developed at the Naval Postgraduate School (NPS). The principal idea of this system consists
in integrating the flight control and prototyping computational platform onboard the airplane with the
autopilot. This placement allows for efficient control development using xPC Target22 tool as a development
platform and eliminates most of the communication issues inherent to RF transmission. Although the
following discussions pertain to the Piccolo communication interface version 1.3.2 and was developed with
openly available documentation from the Cloud Cap Technology,10,23 the core idea of this development
can be easily applied to the latest versions of the Piccolo communication software as well as to any other
autopilots currently on the market.

The Piccolo autopilot interacts with its own HIL simulator via a Controller Area Network (CAN) bus24

using a well defined protocol. This communication protocol is noticeable simpler than the standard Piccolo
Communications Protocol used in the normal autopilot-to-ground station communication. The autopilot
supports CAN bus messaging to send control surface commands and receive simulated sensor readings from
a PC via a CAN to USB converter unit.

In order to replace the standard Piccolo Simulator with a new Simulink-based one, three major tasks were
undertaken: (a) develop an interface to the CAN/USB data bus and make that data available in Simulink;
(b) develop and identify a six-degree-of-freedom (6-DOF) dynamic model of the plant including aircraft
aerodynamics and engine model; and (c) establish the communication architecture under which the new
HIL simulator would interact with the autopilot. The following Sections describe each of this components
in detail.

A. Simulink-Autopilot Communications

The Piccolo autopilot communicates with its HIL simulator via a CAN 2.0 B bus using the extended (29
bits) frame identifier and an 8 byte data field which contains the actual payload (see Figure 1). The identifier
itself is divided into three sections: the Group which classifies which type of message it is, the Message ID
which uniquely identifies what data is being sent and the Autopilot Address to/from which the payload is
sent. Overall, there are twelve different types of incoming messages (sensor data) and seven outgoing (control
commands).

Group Message ID Autopilot Address Payload

0 29

4

5 12Bit

Identifier Data Field
Byte 12

Figure 1: CAN message structure to communicate with the Piccolo autopilot

At the hardware level, Cloud Cap Technology provides a Systec USB-CAN Modul1 CAN to USB converter
unit to enable communication of the autopilot with its own HIL simulator. Systec, as a part of the Windows
operating system driver, also provides a thoroughly documented25 Dynamically Linked Library (DLL) which
can be accessed from any high-level programming language to read and send CAN messages.

Using this DLL, a C++ application was developed to act as a proxy that would receive commands from the
autopilot and re-route them to Simulink. At the same time it receives sensor data form the Simulink model
and re-routes it to the Autopilot. During the early design phases it was decided to use the User Datagram
Protocol (UDP)26 as the communications protocol between the newly developed application and Simulink.
By using UDP to communicate with Simulink model, the application gained the additional advantage of
being able to run on a different PC connected to the same computer network. During the later phases of
the development, this proved to be a big advantage since the computer running the plant model required a
significant amount of computing resources. Therefore, it was decided to share the modeling task between
two different PCs.
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B. Developing the 6-DOF Plant Model

As previously discussed, availability of an adequate the plant model is key to the success of any HIL Simulator.
Although very important and time consuming by itself, the system identification part of the project will be
briefly presented, providing enough details to understand the concept. Although the aerodynamics of a small
UAV with standard high-wing configuration employed for this project is traditional and in general it is not
difficult to identify, there are multiple steps involved in deriving a reliable model. The following strategy of
system identification (see Figure 2) was employed:

Aircraft's 
Mass & 

Geometry
Linair Pro Regresion 

Models
6-DOF
Model

PSI 
Method-

Sensor 
Measurements

Control Inputs

Flight Test Data

Corrections

Figure 2: System identification architecture

Starting with initial measurements of the mass and geometry characteristics of the aircraft, the LinAir
panel method software27 was employed to produce initial estimates of basic aerodynamic terms. These terms
were represented by the traditional regression model18 for the aircraft configuration. Next a series of flight
experiments were designed to measure airplane responses to a single-input (one channel at a time) doublet
commands. Instrumentation of the airplane to measure data followed the general instrumentation recom-
mendations found in Refs.18,28 and references therein. To acquire the response data the built-in capability
of Piccolo autopilot was used; it allowed for 100 Hz data sampling during the interval of the preprogrammed
doublet. A series of doublets for open-loop system were performed separately in aileron, rudder and elevator
channels in order to excite the UAV so that the data contained sufficiently rich information for accurate
flight dynamics identification. The classical regression-based off-line identification techniques18 were used to
improve initial estimates of basic aerodynamics and control derivatives of the nominal airplane. At this step
a moderate-fidelity UAV model was identified.

At the next step of the identification process, wrapping of the traditional technique with the less known
Parameter Space Investigation (PSI) method20 was used to assist in identifying the structure of the regression
model for the typical flight regimes. Since the PSI method has been developed to address a correct statement
and solution of the multi criteria optimization (identification) problem it provided an ideal tool for the system
identification task. The principal advantage of this method consists in the fact that the formulation and
solution of the task comprise a single process. At every step of the process, an intellectual input of the designer
can be seamlessly integrated to the process therefore modifying its formulation (statement, parameter space,
model structure) but preserving and integrating previously acquired data into the final result. The PSI
method implementation used for this project is that of the software package MOVI 1.3.20

To link MOVI to the Simulink model of the aircraft we employed a previously developed shared-memory
interface.29 This implementation easily allows one to incorporate nonlinear multi-criteria vector optimiza-
tion/identification into any design task that is implemented in any of the MathWorks’ products such as
Matlab and Simulink.

C. HIL Architecture

Having solved the autopilot-Simulink communication and developed an accurate plant model, the next natural
step was to integrate them into the normal operation with the autopilot. In order to achieve this we employed
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two different PCs (see Figure 3) named after their main tasks: one in charge of running the Simulink plant
model simulation and the Piccolo Operator Interface (OI) software; and another to run the CAN-UDP
converter discussed in Section II.A and to display the aircraft status in the Open Source flight simulator
FlightGear.30 It is assumed that both of these PCs are connected to the same network and thus UDP
communications is readily available. These components and their interactions are described in the following
sections.

Piccolo 
Autopilot

CAN -
UDP

Converter

Simulink 6-DOF Aerodynamics,
Actuators, Engine and Weather

Models

Control Commands

Sensor Data

Converter PC

CAN

Simulation PC

FlightGear
Flight Simulator

Piccolo Operator
Interface

Piccolo
Ground
Station

Control
Commands

Sensor 
Data

Display 
Data

UDP

Wireless

Serial (RS232)

Figure 3: HIL setup; new Simulink-based 6DOF model is a centerpiece of the Simulator

1. The Converter PC

The converter PC has a Pentium 4 microprocessor with 2 GB of RAM running Windows XP operating
system. It acts as a proxy between the autopilot and the Simulink plant model state. It runs the CAN-UDP
converter previously discussed, its front-end GUI is presented in Figure 4. This PC also runs the open source
flight simulator FlightGear30 for display purposes. By harnessing FlightGear’s capability to receive plant
model data via UDP, the HIL simulator has a high quality graphical display of the UAV status with no
programming effort by the end user.

2. The Simulation PC

The simulation PC has a Pentium 4 microprocessor with 2 GB of RAM running Windows XP operating
system. It runs the 6DOF aircraft, engine, actuators and atmospheric environment Simulink models at a
constant sample period of 0.005 seconds. To facilitate the HIL simulator integration into our current efforts,
a Simulink blockset was developed consisting of two components: (i) a source which listens on a predefined
UDP port and parses messages in order to translate them into the control surface commands (up to 10
different control surfaces); and (ii) a sink, with inputs for the traditional sensors (accelerometers, gyros,
magnetometers, GPS, dynamic and static pressure, temperature, engine RPM). This sink parses the data
and writes it back to a predefined UDP port in the correct format for the CAN-UDP converter.

One of the key capabilities of the autopilot, to echo back a particular received CAN data frame (the
Timing CAN frame), was used in the HIL simulation. This frame allowed the HIL simulator to send a
packet to the autopilot and effectively measure the time it took to travel back. This in turn provided
an effective way to monitor the delay between sending sensor data and receiving back a control command
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Figure 4: CAN-UDP converter application

associated with that data. During rigorous testing it was observed that this delay was never higher than
0.02 seconds (4 sample periods in the Simulink model).

The same computer also runs the Piccolo OI which is a standard software component of the Piccolo-based
setup. The OI provides functionality to configure the autopilot gains, set navigation waypoints, monitor the
sensor data and display the UAV in a geo-referenced map. It is connected to the Piccolo Ground Station
via serial (RS232 port). More details on the advanced capabilities and versatility of the Piccolo setup can
be found in Ref.10

It is important to note that this new HIL architecture does not interfere with the standard way of
operating Piccolo system. From the Piccolo autopilot’s point-of-view, the HIL simulator described in this
paper is identical to its original HIL simulator. This allows, for instance, to still run a flight computer
onboard as reported in Refs.7,12,21 offering an added value of higher fidelity flight dynamics modeling to the
previously reported flight architectures.

III. Results

This section presents comparative results of two separate experiments using an identified model and
the real flight data of Sig Rascal-110 UAV operated by the NPS. The first compared the response of the
identified model with that of the real aircraft. The second experiment the compares the frequency response
(using Lissajus curves) of the model and the real aircraft. The UAV in flight tests is driven by a sinusoidal
reference command of variable frequency by the autopilot; a similar experiment is configured in the new HIL
environment and the results are then compared.

A. Doublet Response

The results presented in this Section were obtained as follows: first the Rascal UAV was flown open-loop
with doublet commands on the elevator, aileron and rudder channels using the Piccolo autopilot’s standard
built-in capability. The telemetry data was collected at 100Hz rate and used to refine the 6-DOF model as
described in Section II.B. After completing the system identification phase, the 6-DOF model was run in
a software simulation with the exact same doublet commands collected from the flight experiment. Finally,
the new HIL simulator was configured and once again ran with the same doublet command data.

Figure 5 shows a comparison between the flight data, the 6-DOF software simulation and the HIL
simulation response to the elevator doublet command. The relevant variables for the longitudinal channel
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are shown: acceleration in Z-axis (Figure 5.a) , q rate (Figure 5.b) and pitch angle θ (Figure 5.c). Although
flight test data is always subject to measurement and environmental noise, it is worth noting how close the
HIL dynamics responses (shown in green) resemble those of real flight (shown in blue).
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Figure 5: Elevator doublet response. (a) Z-axis Acceleration. (b) Rotation rate along Y -axis. (c) Pitch.

Figure 6 shows the results for the aileron doublet experiment. The relevant variables for the lateral
channel are shown: acceleration in Y -axis (Figure 6.a), p rotation rate (Figure 6.b), r rotation rate (Figure
6.c), and yaw angle ψ (Figure 6.d). Worthy of notice is how the HIL results exhibit a non-minimum phase
response in acceleration in Y -axis, and the p and r rotation rates, similar to that exhibited by the aircraft.

For the lateral channel, system identification was significantly more complicated. The collected data sets
showed higher noise than those in the longitudinal channel. Also, as it is well known, the significant coupling
between p and r channels make identifying this channel more challenging than the longitudinal one. More
flight tests are scheduled to collect better data sets to improve the adequacy of the model.

B. Frequency Response

To explore the frequency response of the aircraft with autopilot when compared with that of the HIL
simulator an experiment was set up where the aircraft was controlled from the onboard xPC target PC by a
sinusoidal turn rate command consisting of a constant bias turn rate of 6 deg/s (to keep the UAV inside of
the closed airspace) and a sine wave with 6 deg/s amplitude and 28 deg/s frequency. The autopilot control
loop gains were those of the real airplane for the given flight configuration. The chosen amplitude and bias
of the reference sinusoid provide representative and valid comparison avoiding plant saturation; preceding
flight tests show the saturation limit of the nominal plant at about 15 deg/s.

The Lissajous ”Input versus Output XY plot” was used during the course of the experimental studies.
The Figure 7 represents the dynamics of a nominal plant explicitly showing the phase shift between the input
reference and the output response to be around 92± 5 deg for the flight data and 95± 7 deg for the HIL results.
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Figure 6: Rudder doublet response. (a) Y -axis acceleration. (b) Rotation rate along the X-axis. (c)
Rotation rate along the Z-axis. (d) Yaw.

Since the experimental data acquisition is always subject to instrumentation and measurement errors, the
black and red ellipses show corresponding averaging fits (in the least square sense) of the frequency response
data used to calculate the frequency response. An extended sequence of similar experiments were performed
varying the frequency of the reference sinusoid that finally allowed the computation of the frequency response
of the Rascal UAV, revealing a close match of the primary stability characteristics.

IV. Conclusions and Further Work

This paper presents a new HIL simulator architecture for the Piccolo autopilot. The primary advantage is
achieved by making use of the autopilot’s built-in capability to receive simulated sensor data and send control
commands via a CAN Bus interface. The new HIL simulator uses Simulink as its main simulation engine
offering modeling advances, flexibility, and modification capabilities not available in the provided UAV HIL
simulator. By using Simulink, this HIL setup leverages all of the MathWork’s tools to make the simulation
more rigorous and improve fidelity while dramatically reducing the man hours required for development and
modification. Results presented demonstrate that, when properly identified dynamics are employed, the new
HIL simulator closely resembles the aircraft flight dynamics thus validating it as an important tool during
the control algorithm design phase. On the technology side, the results show that investing in relatively
simple software modification (converter) allows for harnessing a power of advanced tools and enables a new
quality of HIL simulation to be achieved. Although very powerful in its current configuration, some work is
currently underway to allow for seamless integration of the newly developed HIL concept to other available
autopilots.

Although the presented architecture could be implemented in a single PC, experimental results showed
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Figure 7: Lissajaus Curves. (a) Flight Test . (b) HIL Results

that this is not convenient; mainly due to the significant amount of computing resources required by the
non-linear 6-DOF model and the FlightGear Simulator. By separating the required tasks into two PCs the
HIL simulator is able to perform well without any delays in the data transmission to/from the autopilot.
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