
 1

Abstract— The aim of this paper is to present a holistic

approach to modeling and FPGA implementation of a permanent

magnet synchronous motor (PMSM) speed controller. The whole

system is modeled in the Matlab Simulink environment. The

controller is then translated to discrete time and remodeled using

System Generator blocks, directly synthesizable into FPGA

hardware. The algorithm is further refined and factorized to take

into account hardware constraints, so as to fit into a low cost

FPGA, without significantly increasing the execution time. The

resulting controller is then integrated together with sensor

interfaces and analysis tools and implemented into an FPGA

device. Experimental results validate the controller and verify the

design.

Index Terms—FPGA, PMSM, Simulink, System Generator.

I. INTRODUCTION

ODERN FPGA devices offer a multitude of resources,

thus moving forward from their original intended

utilization: implementing glue logic in complex digital

systems. Nowadays, the whole complex digital system can

reside into the FPGA, leading to the concept of system on a

programmable chip (SoPC). However, the main advantage

FPGAs offer is the possibility to implement algorithms directly

into hardware, maintaining the parallelism of the algorithm in

the implementation and thus minimizing the execution time.

Consequently, the FPGA utilization in industrial control

applications became the subject of intensive research [1], [2].

There are many approaches regarding both the controller

type (ranging from neural networks [3], [4], [5] and fuzzy

logic [6], [7] to classical PID (proportional-integral-derivative)

based control algorithms) and the implementation (ranging

from pure hardware implementations [3] to combined

hardware-software [6], [8] or pure software solutions using

soft processor intellectual property (IP) cores [1], [9], [10]).

Another key factor, which contributed to the successful

adoption of FPGA-based solutions, is the availability of a wide

range of design tools [1], [11]. For example, the possibility to

design the whole system in Matlab Simulink, at a high level of

abstraction, and simulate it with bit and cycle accuracy, offers

a high degree of confidence in the “correct first time”

operation of the circuit [12].

A short overview of the literature regarding FPGA-based

controllers for electric motors will be presented in the next

paragraphs, aiming to highlight the space this paper tries to fill

in. Although references [12], [11], [13], [14] partly review this

domain, newer literature will be considered. In [3], a “holistic”

approach is considered for modeling and FPGA

implementation of a sensorless controller for the induction

motor. Using a state-space observer and a controller based on

neural networks, the authors present the modeling of the whole

system (including the motor, thus the term “holistic”) using

VHDL. After validation through simulation, the controller was

experimentally verified. In [15], the algorithm for direct

hardware implementation of neural networks is presented in

detail.

In [6], the authors propose a speed control system for a

PMSM based on hardware/software partitioning: an adaptive

speed controller, based on fuzzy logic, was implemented by

software running on a NIOS II soft processor, while the

current controllers, with faster dynamics, were implemented in

hardware. In [7], the same authors propose a hardware

implementation of the adaptive fuzzy controller, this time

applied to a permanent magnet linear synchronous motor.

Another example of hardware/software partitioning is given in

[16], where a multi-axis motion controller is implemented on a

DSP (digital signal processor)/FPGA platform: the servo

control loop (current and position/velocity control) was

implemented in hardware on FPGA, while the trajectory

generation was done by software on the DSP.

In [17], a sensorless controller for the induction motor is

presented, using DTC (Direct Torque Control) and a state

observer. The controller was designed in LabView FPGA and

implemented on a National Instruments RIO PXI-7831R

board, into a Virtex-II family FPGA.

In [18], a two axes motion control system is presented,

partitioned between software and hardware: the PMSM current

control loops are implemented in hardware, while the speed

loops and the trajectory generation are based on software. A

similar system is presented in [8], where PID speed controllers

for DC motors were implemented as hardware modules, while

the multi-axes trajectory generation was performed by

software on a MicroBlaze soft processor. It is worth noticing

the speed controllers, designed in VHDL, were validated by

Simulink-ModelSim co-simulation.

Simulink Modeling and Design of an Efficient

Hardware-constrained FPGA-based PMSM

Speed Controller

Bogdan Alecsa, Marcian N. Cirstea, Senior Member, IEEE, Alexandru Onea

M

 2

In [19], a simple yet effective control method for BLDC

(brushless DC) motors is presented. The speed is controlled by

using only 2 values for the PWM duty cycle, leading to a very

economic implementation. In [20], the stability of the

proposed method is further analyzed.

In [21] and [22], a control system for a PMSM associated

with an analog position resolver is presented. Hysteresis

current controllers are implemented into the FPGA for the 3

phases of the motor, together with a module for resolver

signals processing, based on the CORDIC (coordinate rotation

digital computer) algorithm. It is worth noticing the target

FPGA (AFS600 Fusion produced by Actel) integrates analog

to digital conversion peripherals: ADC (analog to digital

converter), analog prescalers, analog multiplexer. The

emergence of such chips highlights a move of the FPGA

vendors toward the embedded market, dominated by

microcontrollers.

In [23], the authors present the design in Simulink, using the

DSP Builder software from Altera, of a PMSM control system.

The system employs hysteresis current controllers and a PI

speed controller and uses 56 of the DSP blocks (9x9 bits wide)

of an Altera Stratix II EP2S60F1024C4 FPGA.

In [24], a sensorless controller for a synchronous motor is

presented, using PI current controllers and sinusoidal PWM.

The rotor speed and position are estimated by using the

extended Kalman filter, a very demanding algorithm due to the

several matrix multiplication and inversion operations it

requires. The algorithm has been optimized and factorized for

efficient FPGA implementation, finally occupying 36

hardware multipliers (18x18 bits).

In [25], the authors present a sensorless control system for

the PMSM, using high frequency signal injection to estimate

the momentary stator inductance. A digital PLL (phase locked

loop) is employed for signal processing. Both the PLL and the

space vector modulation (SVM) algorithm use CORDIC to

compute the needed trigonometric functions.

In [10], a comparison between a hardware implementation

and a pure software implementation running on an ARM

Cortex-M1 soft processor is presented, for the case of a

PMSM hysteresis current controller. Coordinate transforms

and a resolver signal processing unit were also implemented.

In [26], a reusable IP cores library for electrical vehicle

(EV) propulsion control is presented. The library is organized

hierarchically, having at the base an arithmetic unit for matrix-

vector multiplication. As a case study, the control of an EV

equipped with induction motors is presented.

In [27], a sensorless control system for a PMSM is

presented, partitioned between hardware and software: the PI

current controllers, the coordinate transforms, the SVM

algorithm and the position sliding mode observer were

implemented in hardware, while speed estimation and control

are performed by software running on a NIOS II processor.

In [28], a control system for an induction motor supplied by

an inverter bridge through a resonant circuit is presented. The

system is described in AHDL (Altera HDL) and uses 76

hardware multipliers (9x9 bits).

From this short literature review, some conclusions can be

drawn: (i) From [6], [8], [18], [27], where only parts of the

controllers are implemented in software, results that hardware

implementation of algorithms is the obvious choice for high

demanding applications; software implementations are

preferred for tasks with less stringent computation time

constraints, or when reuse of existing code is desirable [9].

Moreover, in [10] a direct comparison is made between

hardware and software implementations, highlighting the

hardware advantages. In [29], comparison is made between an

FPGA based hardware implementation and a DSP based

software solution: the hardware solution is 11 times faster than

the software, leading to a much higher controller bandwidth. In

[1], the comparison is extended to a MicroBlaze soft processor

implementation, which is even slower than the DSP

implementation. (ii) The vast majority of the reviewed papers

(except [3], [23]) lack a holistic modeling of the control

system: there is a fracture between the design and simulation

of the controller and drive, on one hand, and the design of the

FPGA implementation, on the other hand. In [1], a hardware in

the loop (HIL) validation step is proposed to fill in this gap.

(iii) Most of the reviewed controllers employ a large quantity

of the FPGA resources and need a serious revision for

implementation in low cost devices, with a limited number of

hardware multipliers. Only in [21], [22], [24], [26] are taken

steps to apply the AAA (algorithm architecture adequation)

optimization strategy, so as to minimize the usage of critical

resources. (iv) It can be considered that the state of the art in

FPGA hardware design is based on HDL (hardware

description languages), as they are employed in most of the

reviewed papers. As this design methodology resembles to

software development, it has been proven to lead to a similar

degree of faults in the implementation [30]. However, modern

design tools, like LabView FPGA [17], [31], DSP Builder [23]

or System Generator [32], [33] are gaining momentum. It has

been proven [32] that System Generator can lead to

comparable results in terms of obtained speed as HDL

description for complex designs. In [33], both the VHDL and

the System Generator designs of an adaptive filter show

similar performance in terms of speed and area.

This paper will thus try to fill in the gap found in the

existing literature: it proposes a holistic modeling of a

permanent magnet synchronous machine (PMSM) speed

control system in the Matlab Simulink environment, which

allows validation by simulation of the controller model, as well

as of the FPGA hardware; it also takes into account severe

hardware constraints, leading to a very low cost FPGA

implementation. The steps to be followed to get from a

continuous time controller model to a discrete, FPGA

synthesizable model, based on System Generator blocks, are

outlined. The algorithm is refined to fit into a low cost FPGA,

keeping its inherent parallelism. The short execution time is of

paramount importance in order to use a low cost current

measurement scheme. The system is experimentally tested and

 3

is proved to work correctly.

II. FPGA CONTROLLER DESIGN

A. Motor and Controller Modeling

The PMSM is usually modeled in the rotor synchronous

rotating frame (q/d frame), as this approach eliminates the

time-varying inductances from the voltage equations in the

stator frame. The motor model, as well as the controller

derivation, has been presented in [34]. Suffice it to say here

that the speed control system consists of two PI current

controllers, a combined PI-P speed controller (double speed

feedback loop) [35], an axes decoupling and back

electromotive force (BEMF) compensation module, direct and

inverse coordinate transforms.

A motor model from the SimPowerSystems Simulink library

was used for simulation. The controller was designed in

Simulink and the control parameters were validated by

simulation. It is worth mentioning that the resulting current

closed loop systems are described by first order transfer

functions, while the speed closed loop system is described by a

second order transfer function.

In reality the motor is fed by a three phase voltage source

inverter (VSI). The VSI is controlled using space vector

modulation (SVM) and the SVM algorithm is applied directly

to the α/β voltage components. For the purpose of simulation,

in a first phase, the SVM algorithm was replaced with an α/β

to a/b/c coordinate transform and the resulting three phase

voltages were fed to the motor model.

For the algorithm discretization, the SVM has a significant

impact: it sets the maximum sampling rate, which is fixed by

the SVM pulse width modulation (PWM) carrier frequency.

This, in turn, is limited by the switching characteristics of the

VSI power transistors. The carrier frequency was chosen in

this case as 20kHz, meaning a sampling period sTs 50 .

B. Controller Discretization

After the simulation in “continuous time” has validated the

controller, this must be discretized to enable digital

implementation. The discrete operations to be performed are

shortly described in the following.

The a/b/c to q/d transform consists of two consecutive

transforms, a/b/c to α/β and α/β to q/d:

]),[][(
3

3
][

]);[][][2(
3

1
][

kikiki

kikikiki

cb

cba

 (1)

].[])[cos(][])[sin(][

];[])[sin(][])[cos(][

kikkikki

kikkikki

eed

eeq

 (2)

The axes decoupling block performs the following

operations:

.][][][][

;][][][][][

_

_

qqerefdd

medderefqq

Lkikkvkv

kLkikkvkv

 (3)

The q/d to α/β transformation is exactly the same as the α/β

to q/d transformation, but is applied to voltages:

].[])[cos(][])[sin(][

];[])[sin(][])[cos(][

kvkkvkkv

kvkkvkkv

deqe

deqe

 (4)

The PI controllers were discretized using the Tustin

approximation. Two implementation choices were considered

for the PI controllers. One is based on the PI transfer function

seen as an infinite impulse response (IIR) filter, described by

the equation:

]1[]1[)
2

(][)
2

(][kukK
TK

kK
TK

ku P
sI

P
sI (5)

where IK is the integral gain, PK is the proportional gain, ε

is the controller input and u is the controller output.

The other implementation considers the P and I components

of the controller in parallel. This is expressed as:

]1[])1[][(
2

][][kikk
TK

kKku sI
P (6)

where i is the output of the integral part and the same notations

as in (5) are kept for the rest of the symbols. Equation (6) has

the advantage that it offers the possibility to implement an

anti-windup strategy for the integral part. The first term on the

right hand side of (6) corresponds to the P part, while the rest

corresponds to the I part.

Considering the controller gain factors and sampling period

fixed, the coefficients for multiplications in (5) and (6) can be

pre-computed. Comparing (5) and (6), it is clear that (5) is

easier to implement, as it needs only 2 multiplications and 2

additions. Equation (6) needs 2 multiplications, but 3

additions. If the result of each operation is registered, this also

means an additional step in computation. However, integral

wind-up can be very inconvenient.

There are two commonly used anti-windup strategies:

conditional integration and tracking back calculation. In [36],

[37] specific strategies for PI (PID) speed controllers are

proposed. However, for the double loop PI-P controller [35]

used here, conditional integration with the condition for

integration obtained from the second (P) loop shows very good

behavior.

The discrete equations were implemented using System

Generator blocks and fixed point arithmetic. The 18 bit

precision was used for all multiplications (to make use of the

18x18 embedded multipliers of the low cost FPGA), whereas

additions were limited to 24 bits. All limitations were applied

using additional hardware for saturation on overflow, thus

 4

ensuring stable system behavior even when the representation

limits are reached. The fixed point position is different in each

block, depending on the magnitude of the signals the block

works with. This is another great advantage of the FPGA

implementation over a DSP (or any other processor)

implementation: the computing architecture is not fixed, it can

be tailored in any point to accommodate the task at hand.

The design was verified by simulation at this point. The

simulation was performed with a sample time of 50μs for the

System Generator blocks. The discrete controller was

simulated together with the continuous one. The differences

between signals of the continuous model and the ones of the

discrete model were computed and analyzed in Simulink, thus

validating the algorithm. The errors introduced by the

discretization process (quantization errors, errors due to

integrators Tustin approximation, errors due to zero order hold

outputs) were evaluated and proved acceptable. For example,

for a 200rad/s step increase of the speed and a simulation

length of 0.05s, which is enough to reach steady state, the

speed root mean square deviation (RMSD) between the

continuous and the discrete model is around 0.25rad/s and the

q axis current RMSD is around 0.008A. Simulations with

different word lengths were performed. No significant

improvement of the RMSD was observed for higher word

lengths, so the 18 bits precision was kept. The decrease of the

sampling period has a much higher impact on RMDS

improvement, but it is not an option for the system discussed:

the sampling frequency is limited by the VSI power transistors

switching characteristics.

Although the System Generator blocks are directly

synthesizable in FPGA hardware, the algorithm can not be

implemented in this form for two main reasons: (i) The

algorithm would need a 20kHz clock, derived from the 50MHz

system clock, and the results are ensured to be valid

synchronously to this clock. Of course, the results are available

much earlier, but the rest of the system should take care of

valid results reading. Additionally, it is not good design

practice to have multiple clock signals, especially if derived by

combinational means. (ii) The algorithm in this form would

use independent hardware resources for all operations. While

this is not an issue for logic or add/subtract operations, it is

certainly a problem when limited hardware resources come

into account, like multipliers or RAM (Random Access

Memory) blocks. Additionally, many operations depend on the

result of other operations, so they could use the same hardware

sequentially.

For these reasons, the algorithm was factorized and

transformed into a sequential automaton driven by the system

clock, keeping a high degree of parallelism to ensure a very

short execution time.

C. Control Algorithm Implementation

Through the factorization process, the algorithm was re-

organized to employ only 4 multipliers. The other operations

will be performed by dedicated hardware, but multipliers are a

scarce resource on low cost FPGAs. Analyzing the algorithm,

it was observed that it only needs 4 multipliers, while keeping

its inherent parallelism [34].

The problem with sharing the multipliers between several

functional blocks resides in the increased complexity of the

datapath and the datapath controller. Each input of the four

multipliers is fed by a 6 inputs multiplexer. The inputs

correspond to the utilizations of the multiplier. The datapath

controller performs the multiplexer selection and saves the

selected values into the multiplier input registers. The output

of each multiplier is distributed to all the functional blocks that

use it. The datapath controller ensures the multiplication result

is saved into the correct functional block by enabling the

corresponding register. The Simulink implementation of the

control algorithm is presented in Fig. 1. All the functional

blocks were implemented using System Generator

components. Only the datapath signals are explicitly shown on

the figure, signals flowing from one functional block to the

other. There are links between each functional block that needs

multiplication operations and the multiplication engine. Also,

there are links from the datapath controller to each functional

block. These links were implemented using “Goto” and

“From” Simulink signal routing blocks.

Fig. 1. Simulink implementation of the control algorithm.

 5

For the datapath signals, the number format can also be

observed in Fig. 1. The signals between functional blocks are

18 bits wide, represented in signed fixed point format. For

example, “Fix_18_15” for signal x_ia means the current in the

a axis (flowing in the a stator coil) is represented as a signed

value on 18 bits, using 15 bits for the fractional part and 3 bits

for the integer part (including the sign bit). Although, as it will

be discussed later on, the currents are measured using 12 bit

ADCs, the ADC value must be processed to obtain the current

value, and the processing is performed on 18 bits. The

multiplier engine multiplexer selection signal, x_mux_sel, is

unsigned integer, 3 bits wide: “Ufix_3_0”. The datapath

controller trigger signal is a logic signal, 1 bit wide: “Bool”.

As already stated, the representation format varies along the

datapath according to the value range of the results of various

operations. For example, the motor speed may vary from

around -750rad/s to +750rad/s, requiring 11 bits for the

integer part, while the motor currents are limited to ±2A,

needing only 3 bits for the integer part.

The datapath controller is a Moore type finite state machine

(FSM). The FSM remains in zero state until the algorithm is

triggered. Afterwards, the FSM passes unconditionally from

one state to the next, in each state activating one state variable

(“one hot” encoding). The FSM sequences in fact the

operations in the functional blocks shown in Fig. 1. The FSM

has 26 states, so the algorithm needs 26 clock cycles to

complete. Fig. 2 presents the FSM state diagram. The

functional blocks to which the variables refer in each state are

codified in the figure by circles with different fill patterns and

listed below. Some overlapping of operations in different

functional blocks can be observed, accounting for parallel

execution by independent hardware (for example, in state 11,

multiplier cells 1 and 2 have been used by the speed PI block

and multiplier cells 3 and 4 have been used by the decoupling

block, and the multiplication results are saved in different

registers in these blocks by the state variable signal). Although

“one hot” encoding was used, in each of the overlapping states

the state variable was given two names, for clarity, each one

corresponding to the usage of the variable (for example, the

state variable of state 11 is named PI_P_w_step4 and

axes_dec_step2). Besides the state variables, the FSM has an

additional 3 bit output, msel, used to select the appropriate

input to the multiplier cells. This is the x_mul_sel signal from

Fig. 1. The msel value is changed in the next state after it was

used, specifically after the save_mul_sel signal was asserted.

The save_mul_sel signal is employed to save the input values

to the multiplier input registers. All state variable names

(except save_mul_sel, which is recurring) reflect their

connection to a functional block (trans1 – the abc to αβ

transform, trans2 – the αβ to qd transform, PI_P_w – the PI-P

speed controller, axes_dec – the axes decoupling block, PI_qd

– the q and d axes current controllers, trans3 – the qd to αβ

transform). In the last state, a ready signal is asserted, to signal

the algorithm execution has finished.

The datapath controller was implemented using a Moore

State Machine from the Xilinx Reference Blockset of System

Generator. The state machine is described by the transition and

output matrixes, which are translated to read-only memories

(ROM). For implementation, distributed RAM is employed.

The approach presented here is different from others by the

fact that the whole datapath of the algorithm is controlled by

the same FSM. While a modular approach with each functional

block controlled by its own FSM (as in [14], [22], [24]) may

offer more chances for reuse, it eliminates the possibility of

execution overlapping. As it can be seen in Fig. 2, this

overlapping can be significant (more than 20% of the FSM

states).

Fig. 3 presents the internal structure of the PI-P speed

controller block, as an example. The links to multiplier cells 1

and 2 can be observed, as well as the sequencing registers and

the datapath controller signals. The upper part of Fig. 3

presents the PI controller, implementing (6). The error input

signal is calculated from the reference speed and the measured

speed. It is then multiplied by PK . At the same time, it is

added to the previous sample time error and multiplied by

2/sITK . This result is then conditionally added to the

Fig. 2. State diagram of the FSM.

 6

previous value of the integral part of the controller. At the end,

the resulted integral part and the proportional part are added

together, giving an intermediate speed value to be used by the

second P controller. For multiplication, the multiplier cells 1

and 2 are used. Reinterpret blocks are used to make the

number representation transparent for the multiplier cells,

because different utilizations employ different formats. At the

input in the multiplier cell, the fixed point is forced to 0, and at

the output is replaced in the right position.

The lower data flow in Fig. 3 is the P controller. It computes

the intermediate speed error, using the measured speed and the

output of the PI controller, then multiplies it by the gain factor

and saves it to the Reg8 register. The registered value is

limited (with saturation) to 18 bits. In case saturation is

reached at this point (the unsaturated and the saturated values

do not match), the integration in the PI controller is

deactivated, to avoid windup. Because the feedback for the

conditional integration comes from the second loop, the

behavior of the whole speed controller is much improved (as

will be shown in the experimental results). The P controller

uses also the multiplier cell number 1. All the operations are

sequenced by the datapath controller signals, shown on the left

side of Fig. 3. The same principle is used for all the functional

blocks in Fig. 1.

The current PI controllers were implemented using (5),

because it is easier to implement. As the output values of these

controllers are saturated on overflow, the saturation acts also

as an anti-windup mechanism: the command is limited to the

maximum value allowed by the format. This strategy is not

usable for the speed controller, because the number format

allows values much larger than the maximum obtainable

speed.

D. Space Vector Modulation

As already stated, the voltage is applied to the motor using

SVM. A geometric version of the SVM algorithm was used,

which needs only simple comparisons and 3 sets of formulae

to compute the PWM threshold values (it does not need

trigonometric functions). The algorithm, presented in [38], was

redesigned to use only 2 multipliers. It is a “5 step” version of

the SVM, making use of only one of the null vectors, the 000

vector. Although this puts more stress on the low side

transistors of the VSI, it has the great advantage it prolongs the

period in which the stator currents can be measured. This is

due to the fact that a low cost current measurement scheme

was employed, measuring in fact the voltage drop over shunt

resistors connected in series to the low side VSI transistors. In

order to get correct current measurement, at the instant of

measurement, the current flowing in the low side transistors

must be the current flowing in the stator coils. That is, the

Fig. 3. The PI-P speed controller with anti-windup mechanism.

Fig. 4. VSI filtered signals obtained by SVM.

 7

current measurement must be synchronized with the 000 null

vector application by the SVM.

The SVM algorithm was designed as an independent

module, also by the datapath-controller paradigm. It needs 10

clock cycles to complete. The modulator was tested stand-

alone, fed with sinusoidal voltages. The VSI outputs were

filtered by passive low pass filters and observed using an

oscilloscope. Fig. 4 presents an oscilloscope capture with the

VSI filtered signals: the 3 phases and the neutral point. The

obtained characteristic signals are equivalent to sinusoidal

signals with minimum magnitude signal injected to the neutral

point [39].

The PWM circuit used by SVM was designed to provide 15

bits resolution (1.3ns time resolution) using the phase shift

possibility of the digital clock managers (DCM) present on the

FPGA [40]. This way, the controller is not in danger of limit

cycling, as the resolution of the command signals is higher

than the resolution of the feedback signals (the ADCs have 12

bits resolution).

III. EXPERIMENTAL RESULTS

The presented design was synthesized and implemented in a

low cost XC3S500E Spartan-3E FPGA, produced by Xilinx.

Besides the control algorithm and sensors interfacing

hardware, a ChipScope virtual logic analyzer core was inserted

in the FPGA and used to capture internal signals. The

ChipScope core is driven by a 20kHz clock signal. This way,

the sensor interface was debugged and the controllers were

verified. The controller was tested with a 19.1V 3441 Pittman

PMSM, fed by a PM50 Technosoft three phase inverter. The

motor characteristics are given in Table I. It is a low power

motor, but has the advantage of a very low inertia. Thus, it

makes a good case study for a high bandwidth controller.

The control system is synchronous, with a system clock of

50MHz. As previously stated, the control algorithm execution

needs 26 clock cycles. The SVM algorithm takes 10 clock

cycles to complete, while the current acquisition using the

ADCS7476 device (ADC with serial interface) needs 74 clock

cycles for data transfer. So the whole execution takes 110

clock cycles, meaning 2.2μs at 50MHz clock rate. The high

computation speed is essential for the system to be able to

acquire the currents in the same sample period in which it

derives the command signal. For the current loop experimental

verification, refer to [34].

Fig. 5 and Fig. 6 present speed signal captures from the

experiments using the Chipscope core. This way, a comparison

can be made between the controller without anti-windup

mechanism and the one with anti-windup mechanism, for a

step reference change on speed from 0rad/s to 400rad/s. In

both cases, the rise time is set by the motor dynamics (the

torque to inertia ratio) to about 10ms. In Fig. 5, the overshoot

due to integral windup is significant. However, the response in

Fig. 6 exhibits no overshoot whatsoever.

The presented controller occupies only 10 of the 20 FPGA

embedded multipliers, 36% of the logic resources and 1 RAM

block. So a much cheaper FPGA device could be used, or a

higher resolution in computation can be achieved.

IV. CONCLUSION

A new holistic modeling of an FPGA speed controller for

PMSM was presented, using Matlab Simulink and System

Generator. The approach presented allows the modeling of the

controller and the controlled system in the same environment,

leading to a real time FPGA implementation. A clear

methodology for controller design in System Generator was

proposed, and the steps followed in order to obtain a

synchronous factorized design from a first iteration are

presented.

The key achievements are related to the effective use of the

on-chip hardware multipliers, by the original design of the

control algorithm to match the hardware resources, keeping its

inherent parallelism. Thus, high speed of control signal

TABLE I

PITTMAN 3441 PMSM PARAMETERS

Symbol Meaning Value and units

sr Stator resistance Ω625.2

qL q axis equivalent stator inductance 0.00046H

dL d axis equivalent stator inductance 0.00046H

m Voltage constant krpmV /62.2

J Moment of inertia 27109.9 mkg

F Friction factor smN 610175.0

P Number of pole pairs 2

Fig. 5. Speed controller step response (without anti-windup mechanism).

Fig. 6. Speed controller step response (with anti-windup mechanism).

 8

processing is possible. Further contributions are related to the

integration of the sensor interfaces and logic analyzer tools

together with the controller, those enabling the holistic

hardware verification of the system.

The controller was implemented in a low cost FPGA and

was able to execute in only a fraction of the sample period (the

whole execution takes 110 clock cycles, meaning 2.2μs at

50MHz clock rate), thus enabling a cost effective current

measurement scheme. An efficient anti-windup strategy was

also defined, allowing effective motor control limited only by

the mechanical part dynamics.

Experimental results have proven the correct operation of

the controller, thus validating the viability of the design

method. One drawback of the design method is given by the

simulation requirements: after algorithm factorization and

redesign using the datapath/controller paradigm, it must be

simulated in Simulink with a fixed step, given by the clock

period. Specifically, the simulation must be performed with a

step of 20ns. This leads to a very costly simulation in terms of

processing time and required memory on the host computer.

However, the advantage of validation by simulation is

significant. Other validation techniques suffer from the same

drawback: in HIL, even though the simulation is performed on

the FPGA, the input and output data must be generated by and

analyzed on a host computer, the time to transfer the huge

amount of data being comparable to the simulation time for the

proposed method.

It is expected that this methodology can be adapted for

future use to a range of drive systems. A Simulink library

based on System Generator will be created, containing ready

to use configurable modules for drives control, as

current/speed/position controllers, SVM modules (different

zero vector allocation schemes), sinusoidal PWM modules

(different zero sequence signal injection schemes). Also, future

work will target computationally more intensive control

algorithms, like predictive controllers [41], [42], that will take

full advantage of the execution speed-up by parallelization that

FPGAs can offer.

REFERENCES

[1] E. Monmasson, L. Idkhajine, M.N. Cirstea, I. Bahri, A. Tisan, M.W.

Naouar, “FPGAs in industrial control applications”, IEEE Transactions

on Industrial Informatics, vol. 7, no. 2, May 2011, pp. 224-243.

[2] E. Monmasson, L. Idkhajine, M.W. Naouar, “FPGA-based controllers”,

IEEE Industrial Electronics Magazine, vol. 5, no. 1, Mar. 2011.

[3] M.N. Cirstea, A. Dinu, “A VHDL holistic modeling approach and

FPGA implementation of a digital sensorless induction motor control

scheme”, IEEE Transactions on Industrial Electronics, vol. 54, no. 4,

Aug. 2007.

[4] D. Zhang, H. Li, “A stochastic-based FPGA controller for an induction

motor drive with integrated neural network algorithms”, IEEE

Transactions on Industrial Electronics, vol. 55, no. 2, Feb. 2008.

[5] N.Q. Le, J.-W. Jeon, “Neural-network-based low-speed-damping

controller for stepper motor with an FPGA”, IEEE Transactions on

Industrial Electronics, vol. 57, no. 9, Sep. 2010.

[6] Y.-S. Kung, M.-H. Tsai, “FPGA-based speed control IC for PMSM

drive with adaptive fuzzy control”, IEEE Transactions on Power

Electronics, vol. 22, no. 6, Nov. 2007.

[7] Y.-S. Kung, C.-C. Huang, M.-H. Tsai, “FPGA realization of an adaptive

fuzzy controller for PMLSM drive”, IEEE Transactions on Industrial

Electronics, vol. 56, no. 8, Aug. 2009.

[8] A. Astarloa, J. Lazaro, U. Bidarte, J. Jimenez, A. Zuloaga, “FPGA

technology for multi-axis control systems”, Mechatronics, vol. 19, no.

2, Mar. 2009.

[9] A. Das, K. Banerjee, “Fast prototyping of a digital PID controller on a

FPGA based soft-core microcontroller for precision control of a brushed

DC servo motor”, Proceedings of the 35th Annual Conference of the

IEEE Industrial Electronics Society, IECON 2009, Porto, Portugal,

Nov. 2009.

[10] I. Bahri, E. Monmasson, F. Verdier, M.E.-A. Ben Khelifa, “SoPC-based

current controller for permanent magnet synchronous machines drive”,

Proceedings of the 2010 IEEE International Symposium on Industrial

Electronics, ISIE 2010, Bari, Italy, July 2010.

[11] J.J. Rodriguez-Andina, M.J. Moure, M.D. Valdes, “Features, design

tools and application domains of FPGAs”, IEEE Transactions on

Industrial Electronics, vol. 54, no. 4, Aug. 2007.

[12] E. Monmasson, M.N. Cirstea, “FPGA design methodology for industrial

control systems – a review”, IEEE Transactions on Industrial

Electronics, vol. 54, no. 4, Aug. 2007.

[13] R. Dubey, P. Agarwal, M.K. Vasantha, “Programmable logic devices for

motion control – a review”, IEEE Transactions on Industrial

Electronics, vol. 54, no. 1, Feb. 2007.

[14] M.-W. Naouar, E. Monmasson, A.A. Naassani, I. Slama-Belkhodja, N.

Patin, “FPGA-based current controllers for AC machine drives – a

review”, IEEE Transactions on Industrial Electronics, vol. 54, no. 4,

Aug. 2007.

[15] A. Dinu, M.N. Cirstea, S.E. Cirstea, “Direct neural-network hardware-

implementation algorithm”, IEEE Transactions on Industrial

Electronics, vol. 57, no. 5, May 2010.

[16] X. Shao, D. Sun, “Development of a new robot controller architecture

with FPGA-based IC design for improved high-speed performance”,

IEEE Transactions on Industrial Informatics, vol. 3, no. 4, Nov. 2007.

[17] J. Lis, C.T. Kowalski, T. Orlowska-Kovalska, “Sensorless DTC control

of the induction motor using FPGA”, Proceedings of the 2008 IEEE

International Symposium on Industrial Electronics, ISIE2008,

Cambridge, UK, June-July 2008.

[18] Y.-S. Kung, R.-F. Fung, T.-Y. Tai, “Realization of a motion control IC

for x-y table based on novel FPGA technology”, IEEE Transactions on

Industrial Electronics, vol. 56, no. 1, Jan. 2009.

[19] A. Sathyan, N. Milivojevic, Y.-J. Lee, M. Krishnamurthy, A. Emadi,

“An FPGA-based novel digital PWM control scheme for BLDC motor

drives”, IEEE Transactions on Industrial Electronics, vol. 56, no. 8,

Aug. 2009.

[20] N. Milivojevic, M. Krishnamurthy, Y. Gurkaynak, A. Sathyan, Y.-J.

Lee, A. Emadi, “Stability analysis of FPGA-based control of brushless

DC motors and generators using digital PWM technique”, IEEE

Transactions on Industrial Electronics, vol. 59, no. 1, Jan. 2012.

[21] L. Idkhajine, A. Prata, E. Monmasson, M.-W. Naouar, “System on chip

controller for electrical actuator”, Proceedings of the 2008 IEEE

International Symposium on Industrial Electronics, ISIE2008,

Cambridge, UK, June-July 2008.

[22] L. Idkhajine, E. Monmasson, M.W. Naouar, A. Prata, K. Bouallaga,

“Fully integrated FPGA-based controller for synchronous motor drive”,

IEEE Transactions on Industrial Electronics, vol. 56, no. 10, Oct. 2009.

[23] S. Carbone, V. Delli Colli, R. Di Stefano, G. Figalli, F. Marignetti,

“Design and implementation of high performance FPGA control for

permanent magnet synchronous motor”, Proceedings of the 35th

Annual Conference of the IEEE Industrial Electronics Society,

IECON2009, Porto, Portugal, Nov. 2009.

[24] L. Idkhajine, E. Monmasson, A. Maalouf, “Fully FPGA-based

sensorless control for AC drive using an Extended Kalman Filter”,

Proceedings of the 35th Annual Conference of the IEEE Industrial

Electronics Society, IECON 2009, Porto, Portugal, Nov. 2009.

[25] G. Maragliano, M. Marchesoni, L. Vaccaro, “FPGA Implementation of

a Sensorless PMSM Drive Control Algorithm Based on Algebraic

Method”, Proceedings of the 2010 IEEE International Symposium on

Industrial Electronics, ISIE 2010, Bari, Italy, July 2010.

[26] R. de Castro, R.E. Araujo, D. Feitas, “Reusable IP cores library for EV

propulsion systems”, Proceedings of the 2010 IEEE International

Symposium on Industrial Electronics, ISIE 2010, Bari, Italy, July 2010.

 9

[27] Y.-S. Kung, C.-C. Huang, L.-C. Huang, “FPGA-realization of a

sensorless speed control IC for IPMSM drive”, Proceedings of the 36th

Annual Conference of the IEEE Industrial Electronics Society, IECON

2010, Phoenix, AZ, USA, Nov. 2010.

[28] J. Kedarisetti, P. Mutschler, “FPGA based control of quasi resonant DC-

link inverter and induction motor drive”, Proceedings of the 2011 IEEE

International Symposium on Industrial Electronics, ISIE 2011, Gdansk,

Poland, June 2011.

[29] L. Idkhajine, E. Monmasson, A. Maalouf, “Extended Kalman filter for

AC drive sensorless speed controller - FPGA-based solution or DSP-

based solution”, Proceedings of the 2010 IEEE International

Symposium on Industrial Electronics, ISIE 2010, Bari, Italy, July 2010.

[30] F. Salewski, S. Kowalewski, “Hardware/software design considerations

for automotive embedded systems”, IEEE Transactions on Industrial

Informatics, vol. 4, no. 3, Aug. 2008.

[31] T. Orlowska-Kovalska, M. Kaminski, “FPGA implementation of the

multilayer neural network for the speed estimation of the two-mass drive

system”, IEEE Transactions on Industrial Informatics, vol. 7, no. 3,

Aug. 2011.

[32] L. Costas, P. Colodron, J.J. Rodriguez-Andina, J. Farina, M.-Y. Chow,

“Analysis of two FPGA design methodologies applied to an image

processing system”, Proceedings of the 2010 IEEE International

Symposium on Industrial Electronics, ISIE 2010, Bari, Italy, July 2010.

[33] A. Rosado-Munoz, M. Bataller-Mompean, E. Soria-Olivas, C. Scarante,

J.F. Guerrero-Martinez, “FPGA implementation of an adaptive filter

robust to impulsive noise: two approaches”, IEEE Transactions on

Industrial Electronics, vol. 58, no. 3, Mar. 2011.

[34] Blind, “Holistic modeling and FPGA implementation of a PMSM speed

controller”, Proceedings of the 37th Annual Conference of the IEEE

Industrial Electronics Society, IECON 2011, Melbourne, Australia,

Nov. 2011.

[35] W. Naouar, A. Naasani, E. Monmasson, I. Slama Belkhodja, “FPGA-

based speed control of synchronous machine using a P-PI controller”,

Proceedings of 2006 IEEE International Symposium on Industrial

Electronics, ISIE’06, Montreal, Canada, July 2006.

[36] J.-W. Choi, S.-C. Lee, “Antiwindup strategy for PI-type speed

controller”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6,

June 2009.

[37] H.-B. Shin, J.-G. Park, “Anti-widup PID controller with integral state

predictor for variable-speed motor drives”, IEEE Transactions on

Industrial Electronics, vol. 59, no. 3, Mar. 2012.

[38] Blind, “An optimized FPGA implementation of the modified space

vector modulation algorithm for AC drives control”, Proceedings of

21st International Conference on Field Programmable Logic and

Applications, FPL2011, Chania, Greece, Sep. 2011.

[39] K. Zhou, D. Wang, “Relationship between space-vector modulation and

three-phase carrier-based PWM: a comprehensive analysis”, IEEE

Tansactions on Industrial Electronics, vol. 49, no. 1, Feb 2002.

[40] Blind, “High resolution 6 channels pulse width modulator for FPGA-

based AC motor control”, Proceedings of 2011 International

Conference on Applied Electronics, AE2011, Pilsen, Czech Republic,

Sep. 2011.

[41] H. Liu, S. Li, “Speed control for PMSM servo system using predictive

functional control and extended state observer”, IEEE Transactions on

Industrial Electronics, vol. 59, no. 2, Feb. 2012.

[42] J. Rodriguez, R.M. Kennel, J.R. Espinoza, M. Trincado, C.A. Silva,

C.A. Rojas, “High-performance control strategies for electrical drives:

an experimental assessment”, IEEE Transactions on Industrial

Electronics, vol. 59, no. 2, Feb. 2012.

