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Abstract—The empirical line (EL) calibration method is com-
monly used for atmospheric correction of remotely sensed spectral
images and recovery of surface reflectance. The current EL-based
methods are applicable to calibrate only single images. Therefore,
the use of the EL calibration is impractical for imaging campaigns,
where many (partially overlapped) images are acquired to cover a
large area. In addition, the EL results are unconstrained and an
undesired reflectance with negative values or larger than 100% can
be obtained. In this paper, we use the standard EL model to for-
mulate a new generalized empirical line (GEL) model. Based on the
GEL, we present a novel method for simultaneous and constrained
calibration of multiple images. This new method allows for cali-
bration through multiple image constrained empirical line (MIcEL)
and three additional calibration modes. Given a set of images, we
use the available ground targets and automatically extracted tie
points between overlapping images to calibrate all the images in
the set simultaneously. Quantitative and visual assessments of the
proposed method were carried out relatively to the off-the-shelf
method quick atmospheric correction (QUAC), using real hyper-
spectral images and field measurements. The results clearly show
the superiority of MIcEL with respect to the minimization of the
difference between the reflectance values of the same object in dif-
ferent overlapping images. An assessment of the absolute accuracy,
with respect to 11 field measurement points, shows that the accu-
racy of MIcEL, with an average mean absolute error (MAE) of
∼11%, is comparable with respect to the QUAC.

Index Terms—Airborne remote sensing, constrained empirical
line calibration, hyperspectral imaging, radiometric calibration,
surface reflectance.
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I. INTRODUCTION

R
ECOVERY of surface reflectance is essential for the reli-

able analysis of spectral data [1]. At-sensor raw spectral

measurements are usually recorded as unit-less digital number

(DN) or physical units of radiance, e.g., watt per meter per

steradian per nanometer (W·m−2·sr−1·nm−1) [2]. Both DN and

radiance values provide significant spectral information about

the measured objects. However, these units are highly affected

by a variety of acquisition conditions, which are related to at-

mospheric effects. In addition, the obtained measurements are

affected, to a certain extent, by the bidirectional reflectance dis-

tribution function (BRDF) effect [3], [4] due to the viewing

geometry and anisotropic reflection [5]–[7]. Because of these

effects, measurement of the same area under different condi-

tions leads to inconsistent radiometric information which bears

inaccuracy in a diversity of spectral applications, e.g., classifi-

cation [8], [9], unmixing [10], [11], and change detection [12],

[13]. To obtain near-invariant spectral measurements, a calibra-

tion preprocessing is required to convert the data into surface

reflectance units. A variety of methods for surface reflectance

retrieval and atmospheric correction have been developed (see

[14] for details). One group of methods includes approaches that

are based on a radiative-transfer model (RTM), e.g., moderate

resolution atmospheric transmission (MODTRAN) [15], fast

Line-of-sight atmospheric analysis of hypercubes (FLAASH)

[16], and the atmospheric and topographic correction (ATCOR)

[17]. RTM-based methods are assumed to provide accurate re-

sults; however, they are time consuming, complex, and require

additional information (and different inputs) to be applied. In

many cases, such information is not available and these type of

methods cannot be used. On the other hand, in-scene approaches

[18], [19] retrieve the surface reflectance using only the image

spectral information. In-scene methods are simple to implement

but usually provide poor accuracy. However, the quick atmo-

spheric correction (QUAC) [20], an improved method based

on the in-scene approach, provides accurate results with an ab-

solute accuracy of ∼15% with respect to FLAASH [21]. In

practice, QUAC is partially in-scene and its implementation re-

lies on the image spectral information and a spectral library of

typical materials that probably exist in natural scenes. QUAC

does not require any metadata, and the only requirement is an

approximate specification of sensor band locations (i.e., central
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wavelengths) and their radiometric calibration [20], [21]. In ad-

dition, since first principles radiative-transfer calculations are

not needed, QUAC performs significantly faster than physics-

based methods. However, a main drawback of the QUAC is that

the obtained results are unscaled. Particularly, the estimated

spectral signatures have true general shape but multiplied by a

certain factor. Thus, the reflectance profile of at least one pixel

is needed to estimate the scale factor for each calibrated image.

While in-scene and RTM-based methods do not involve any field

measurements in the process, ground targets have proven prac-

tical for reflectance retrieval, especially for Airborne imagery,

in both terms of running time and accuracy [22]–[24]. In this

regard, vicarious calibration methods [25] make use of invariant

targets for postlaunch calibration of sensors and retrieval of sur-

face reflectance. Both natural [26], [27] and artificial [28], [29]

targets were used in previous works. Usually, the ground targets

are selected or designed according to the special requirements

of the imaging campaign [30]. A simplified and one of the most

useful ground target-based methods is the empirical line (EL)

[22]. EL calibration relies on the rational assumption that the

relationship between raw measurements and surface reflectance

can be empirically modeled [31], [32]. Assuming a uniform

atmospheric acquisition effects across the image, EL methods

estimate the parameters of a specific model using the reflectance

values of ground targets in the image [27], [33], [34]. The re-

flectance of ground targets can be obtained by laboratory or field

measurement. However, field measurements at the same time of

the image acquisition are preferred. The estimated parameters

of the selected model are then used to convert the recorded DN

values into reflectance for all the pixels in the image. A linear

model [22], which combines two parameters of slope and in-

tercept, is commonly used for this purpose. The ordinary EL

method is very useful, especially for its simple implementation.

However, the basic formulation of the EL is limited and suit-

able only for calibration of a single image. To minimize these

limitations and improve the obtained results, several significant

drawbacks of the EL model need to be considered.

1) There are no constraints on the obtained reflectance and

pixels with negative or higher than 100% values are prob-

able.

2) For imaging campaigns of large areas, the spatial con-

sistency of the information is necessary for a mosaic of

several scenes into one large image. In practice, it can be

impossible to distribute ground targets within each im-

age and the separate calibration of individual images is

impractical.

3) Different images are likely to have been acquired under

different conditions and thereby the same objects can ob-

tain different reflectance values in different images. There-

fore, the estimated calibration coefficients of one image

are not suitable for the calibration of other images.

To provide reliable data for spatiotemporal analysis, we need

to overcome the above three main gaps while considering the

calibration process. To the best of our knowledge, the option

of applying constraints on the retrieved reflectance values of

the EL has never been addressed in previous works. Moreover,

very few works have addressed the simultaneous EL calibration

of overlapping images [24], [35]. Furthermore, these methods

consider cases for multispectral data but not hyperspectral data.

The calibration model in [35] combines relative coefficients

(between overlapping images) and absolute coefficients (that

convert DN into reflectance). This combination, between two

types of coefficients, increases the number of unnecessary un-

knowns (relative coefficients) and the complexity of the problem

due to the nonlinearity of the equation system. In [24], the rel-

ative offset between overlapping images is minimized using a

model that estimates also a single BRDF factor for each image.

The model is complex and seven of its parameters are adjusted

manually, which reduces the efficiency of the algorithm sig-

nificantly. Combining the BRDF in the model is theoretically

important. However, the results (see [24, Fig. 7]) suggest that

the most significant reduction of the difference, between values

of the same objects in neighbor images, is achieved only when

overlap constraints are applied. Both the works in [24] and [35]

contribute to the solution of simultaneous calibration of multiple

overlapping images. However, they are applied to a large num-

ber of images, but with only four bands. Moreover, the applied

models are nonlinear, complex, and do not include any con-

straints on the obtained reflectance values. Instead, we suggest

a simple model that combines only linear equations and con-

straints to estimate the absolute calibration coefficients of each

image directly. Our method involves only first-order derivatives

and requires a minimal number of the needed equations and con-

straints. This simplicity allows the calibration of hyperspectral

images with a large number of bands in a reasonable runtime.

As in the previous works, we currently calibrate each band sep-

arately; however, the model can be easily modified to calibrate

all the bands simultaneously including constraints between dif-

ferent bands. The current version of our method considers cases

with a small effect of the BRDF that can be ignored in the

model and minimized due to the applied constraints. Adapta-

tion to cases with high influence of the BRDF will be considered

in our future works. Finally, using an automatic method for tie

point extraction, specifically the scale-invariant feature trans-

form (SIFT) method [36], our method can be applied to sets

with different data types from different sensors.

We provide a new generalized empirical line (GEL) model

that allows calibration of multiple images simultaneously with

an option to introduce constraints on the obtained fractions. The

proposed GEL is hybrid and allows easy selection from four

modes. Each mode is suitable for different cases considering

the number of images, single or multiple, and the option of

constrained or unconstrained calibration:

1) EL for traditional EL calibration of single image;

2) multiple image empirical line (MIEL) for simultaneous

unconstrained calibration of bundle of images;

3) constrained empirical line (CEL) for constrained EL cal-

ibration of a single image;

4) multiple image constrained empirical line (MIcEL) for

simultaneous constrained calibration of bundle of images.

The rest of this paper is organized as follows. Section II

presents the methodology of the proposed work and the con-

cepts of the GEL model, including detailed description of the

calibration framework components and the needed analytical
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formulations. Section III presents an experimental performance

evaluation of the proposed EL, CEL, MIEL, and MIcEL, with

comparison to QUAC. Finally, Section IV presents the discus-

sion and conclusions.

II. METHODOLOGY AND CONCEPTS OF THE GEL MODEL

A. Basic EL Calibration Model

Assuming a simplified linear relationship between the DN of

a given pixel and the corresponding reflectance value, the basic

EL model is given by

ρλ = aλ · DNλ + bλ (1)

where ρλ is the reflectance value at wavelength λ, DNλ is the

DN in the corresponding spectral band, and aλ and bλ are the

calibration coefficients representing the slope and intercept of

a straight line, respectively. Accordingly, to calibrate the entire

image, a pair of calibration coefficients aλ and bλis estimated

for each band in the image using the reflectance values of refer-

ence/ground targets that can be easily recognized in the image.

Usually, a dark target (low reflectance value) and bright target

(high reflectance value) are assumed to span the range of the

obtained reflectance values, therefore, they are preferred to be

used as ground targets in the calibration.

B. GEL Model for Simultaneous Calibration of Multiple

Images

Let us consider a set of s spectral images I =
{I1 , I

2 , . . . , I
s} acquired on an area of interest, where each

image has a partial spatial overlapping with at least one other

image (see Fig. 1). Let us assume that ground targets exist,

which can be recognized, in one or more images and their re-

flectance values are available by laboratory or spectroradiometer

field measurements. We can calibrate the entire set of images I

using the ground targets and tie points (pixels) that appear in

the overlapping area between two or more images (see Fig. 1).

For this purpose, we use the basic EL model and define two

different types of equations that map DN values to reflectance

values.

Let Ik (xi , yi , λ) denote the DN value of the ith ground target

point (a point within ground target), located on (xi , yi), as mea-

sured in the spectral band corresponding to the wavelength λ in

the image I
k . Let ak

λ
and bk

λ
denote the calibration coefficients

for this band. We define the first type of equation based on map-

ping the DN to reflectance based on using ground target points.

Each point provides one equation, according to (1), as follows:

ρi
λ

= ak
λ
· Ik (xi , yi , λ) + bk

λ
(2)

where ρi
λ

is the reflectance value of the ith ground target point

at wavelength λ.

Accordingly, let I
l and I

r be a pair of partially overlapped

images, and let I
l(xj , yj , λ) and I

r (xj , yj , λ) denote the DN

values of the jth tie point, located on (xj , yj ), as measured in

the spectral band corresponding to the wavelength λ in I
l and

I
r , respectively. We define a second type of equation based on

mapping the DN of one image to reflectance through the DN

Fig. 1. Conceptual scheme of a set of partially overlapping images with the
presence of ground targets.

of neighbor image using tie points. Each tie point provides one

equation

ρj
λ

= ar
λ
· Ir (xj , yj , λ) + br

λ
. (3)

In practice, the reflectance value of the jth tie point ρj
λ

is

not available in this stage. However, recall that this tie point is

recognized also in the image I
l , and according to (1), we can

assign ρj
λ

= al
λ
· Il(xj , yj , λ) + bl

λ
in (3) to obtain the following:

al
λ
· Il (xj , yj , λ) + bl

λ
= ar

λ
· Ir (xj , yj , λ) + br

λ
. (4)

Finally, we can formulate the second-type equation as

ar
λ
· Ir (xj , yj , λ) + br

λ
− al

λ
· Il (xj , yj , λ) − bl

λ
= 0. (5)

Then, given n ground target points located on {(x1 , y1), (x2 ,
y2), . . . , (xn , yn )} and m tie points located on {(xn+1 ,
yn+1), (xn+2 , yn+2), . . . , (xn+m , yn+m )}, we can construct

a system of (n + m) linear equations. Let I
k i denote an image

where the ith ground target point can be recognized, and I
rj and

I
lj denote a pair of images where the jth tie point can be recog-

nized. Then, the system of linear equations, L, can be written as

the first equation at the bottom of the next page, and in matrix

form as

Dx = d (6)

where x is the vector of unknowns, i.e., the calibration coeffi-

cients of all the images, which is given by

x =
[

a1
λ
, b1

λ
, a2

λ
, b2

λ
, . . . , as

λ
, bs

λ

]T
(7)
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and D is the matrix of partial derivatives with respect to the

unknowns. Let Li denotes the ith linear equation in L, D is

given by (8) as shown bottom of the page.

Let f1 denotes a first-type equation as in (2), the derivatives

of f1 with respect to the calibration coefficients of the image

I
k are ∂f1

ak
λ

= I
k (xi , yi , λ) and ∂f1

∂bk
λ

= 1. For example, let us

assume that the first and the second ground target points can be

recognized in the first and the third images, respectively. Then,

the corresponding rows in D (row 1 and 2 in this case) will be

defined as
[

I
1 (x1 , y1 , λ) 1 0 0 . . . 0 0

0 0 0 0 I
3 (x2 , y2 , λ) 1 . . . 0 0

]

.

Accordingly, let f2 denotes a second-type equation as in (5),

the derivatives of f2 with respect to the calibration coefficients

of the first image I
l are ∂f2

a l
λ

= −I
l(xj , yj , λ) and ∂f2

b l
λ

= −1,

and with respect to the calibration coefficients of the second

image I
r are ∂f2

ar
λ

= I
r (xj , yj , λ) and ∂f2

br
λ

= 1.

For example, let us assume that the first tie point can be recog-

nized in both the second and fourth images, the corresponding

row in D (row (n + 1) in this case) will be as follows:
[

0 0 −I
2 (xn+1 , yn+1 , λ) −1 0 0 I

4 (xn+1 , yn+1 , λ) 1 . . . 0 0
]

.

Finally, d is vector of the right-hand side values of the set of

linear equations in L, which for the described case is given by

d
(n+m )×1

=
[

ρ1
λ
, . . . ρn

λ
, 0 . . . 0

]T
. (9)

Unconstrained estimation of the vector of unknowns can be

obtained by solving the following optimization problem:

x̂ = min
x

1

2
‖Dx − d‖2

2 . (10)

The described methodology is general and technically appli-

cable to any number of images. However, as in the traditional

EL calibration, negative and larger-than-one values are still

probable.

To achieve a valid reflectance, with bounded values between

zero and one, (i.e., 0 ≤ ρ ≤ 1), we should define the optimiza-

tion problem in (10) to be constrained as follows:

x̂ = min
x

1

2
‖Dx − d‖2

2

s.t.

Ax ≤ c. (11)

The term Ax ≤ c represents the constraints (as function of

the estimated coefficients) for all the pixels in all the images in

the set. Each pixel must fulfill two constraints as follows.

Let I
k (xi , yi , λ) be the DN of the ith pixels out of pk pixels

in the kth image at the spectral band corresponding to the wave-

length λ. We require that 0 ≤ ak
λ
I
k (xi , yi , λ) + bk

λ
≤ 1, which

can be written in a split form as

{

ak
λ
I
k (xi , yi , λ) + bk

λ
≤ 1

−ak
λ
I
k (xi , yi , λ) − bk

λ
≤ 0.

(12)

Applying two constraints for each pixel in the image, as in

(12), the number of overall constraints can be very large. On

the other hand, using automatic extraction methods, the number

of available tie points can be also very large. In practice, this

large number of constraints and tie points can be redundant and

increases the optimization process complexity without any con-

tribution to the accuracy of the results. To increase the efficiency

of our proposed method, we optimize the number of inequality

constraint and tie point equations while still using the entire

amount of available information.

L =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ak1
λ

· Ik1 (x1 , y1 , λ) + bk1
λ

= ρ1
λ

...
...

akn
λ

· Ikn (xn , yn , λ) + bkn
λ

= ρn
λ

a
rn + 1

λ
· Irn + 1 (xn+1 , yn+1 , λ) + b

rn + 1

λ
− a

ln + 1

λ
· Iln + 1 (xn+1 , yn+1 , λ) − b

ln + 1

λ
= 0

...
...

a
rn + m

λ
· Irn + m (xn+m , yn+m , λ) + b

rn + m

λ
− a

ln + m

λ
· Iln + m (xn+m , yn+m , λ) − b

ln + m

λ
= 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂L1

∂a1
λ

,
∂L1

∂b1
λ

,
∂L1

∂a2
λ

,
∂L1

∂b2
λ

, . . .
∂L1

∂as
λ

,
∂L1

∂bs
λ

∂L2

∂a1
λ

,
∂L2

∂b1
λ

,
∂L2

∂a2
λ

,
∂L2

∂b2
λ

,
∂L2

∂as
λ

,
∂L2

∂bs
λ

...
. . .

...

∂L(n+m )

∂a1
λ

,
∂L(n+m )

∂b1
λ

,
∂L(n+m )

∂a2
λ

,
∂L(n+m )

∂b2
λ

, . . .
∂L(n+m )

∂as
λ

,
∂L(n+m )

∂bs
λ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)
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C. Optimizing the Number of Inequality Constraints

Considering real hyperspectral scenes, we can reduce the

number of constraints to only two for each image. We assume

that 0 ≤ DN for each pixel in the image, and that DN and ρ
are positively correlated, i.e., 0 < a. Under these assumptions,

and considering the linear calibration, pixels with the minimal

and maximal values of DN will gain the minimal and maximal

values of reflectance in the calibrated band, respectively.

Now, let I
k
(λ)max = max{Ik (x, y, λ)} and I

k
(λ)min =

min{Ik (x, y, λ)} be the maximal and minimal DN values in

the spectral band λ of the image I
k , respectively. And let ak

λ
and

bk
λ

be the calibration coefficients for this band. The reflectance

values for this image can be bounded between zero and one, i.e.,

0 ≤ ρ ≤ 1, by applying the following two constraints:

ak
λ
I
k
(λ)max + bk

λ
≤ 1 (13)

−ak
λ
I
k
(λ) min − bk

λ
≤ 0. (14)

Thus, the partial derivative of the constraints, in (13) and

(14), with respect to the calibration coefficients of the image I
k ,

are [ Ik
(λ)max 1 ] and [−I

k
(λ) min −1 ], respectively. The general

matrix of the derivatives of the constraints with respect to the

unknowns will then be given by

A
2s×2s

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I
1
(λ) max 1 0 0 . . . 0 0

0 0 I
2
(λ) max 1 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . I
s
(λ) max 1

−I
1
(λ) min −1 0 0 . . . 0 0

0 0 −I
2
(λ) min −1 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . −I
s
(λ) min −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Finally, vector c composites the corresponding right-hand

side values of the constraints, i.e.,

c =

⎡

⎣

1
s×1

0
s×1

⎤

⎦ (15)

where 1
s×1

and 0
s×1

are the column vectors with s elements

of ones and zeros, respectively. Constraining the obtained re-

flectance values between zero and one (i.e., at 100%) represent

the general calibration case, in practice, the proposed model

allows bounding the results between any other values. More-

over, different bound values can be easily applied for different

images. Let ck
(λ) max and ck

(λ) min be the desired maximal and

minimal reflectance values for the spectral band λ in the kth

image, respectively, the general form of the vector c is given by

c =
[

c1
(λ) max , c2

(λ) max , . . . , cs
(λ) max , c1

(λ) min ,

c2
(λ) min , . . . , cs

(λ) min

]T

.

In some cases, outlier values can be registered in the image

due to saturated or damaged pixels. Removing outliers is es-

sential to obtain reliable constrained results, i.e., calculation of

minimal and maximal DN values should be applied after the

elimination of outliers.

Let Īk
(λ) = mean{Ik (x, y, λ)} and σIk

(λ)
= stdv{Ik (x, y, λ)}

be the mean and standard deviation (STD) of the DN values in

the spectral band λ of the image I
k respectively, the DN value

I
k (xi , yi , λ) is considered as an outlier if

∣

∣

∣
I
k (xi , yi , λ) − Ī

k
(λ)

∣

∣

∣
> t · σIk

(λ)
.

The parameter t is used to define the distance of outliers from

the mean value in units of STD, different values of t will pro-

vide different results. An optimal value of t can automatically be

extracted by an optimization process that minimizes the differ-

ence between the measured and estimated reflectance values of

selected reference pixels (representing reference targets or field

measurements). The optimization problem for this purpose can

be defined as

t̂ = arg min
t

{

r
∑

i=1

(

ρi
λ
− ρ̂i

λ

(

t̂
))2

}

(16)

where r is the number of reference pixels, and ρi
λ

and ρ̂i
λ
(t̂) are

the measured and estimated reflectance values (as function of

t̂), respectively. In practice, we need to solve the problem in

(11) at each iteration of the optimization problem in (16). In this

work, we set the value of t empirically, however, an automatic

extraction will be considered in future works.

D. Automatic Detection of Tie Points and Optimizing the

Number of Tie Point Equations

A minimal number of two tie points (one with high DN value

and the other with low value) is required to connect each pair

of overlapping images. Additional points can be relevant for a

better representation of the linear relationship between the DN

values of two overlapping images. The selection of tie points can

be manual, but automatic tie point extraction is preferred since

it will improve the calibration process significantly in terms of

accuracy by adding a large number of reliable tie points. For this

purpose, we specifically use the SIFT method. The method is

applied together with the Random sample consensus (RANSAC)

algorithm [37] to each pair of overlapping images to extract and

match inlier key points as follows.

1) Local feature extraction: We use the SIFT method to ex-

tract local features at each image and compute their de-

scriptors.

2) Feature matching for key point pairing: The second step

of SIFT is to match each feature in the first image with

the nearest feature in the other image. Matching metrics

between two features can be computed as the Euclidian

distance or the spectral angle between corresponding de-

scriptors. Point pair with a match distance lower than a

predefined threshold is selected as a successful match.
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Fig. 2. Illustration of the concepts used to reduce the number of tie point
equations and inequality constraints. (a) 2-D scatter plot of measured DN values
on matching tie points between pair of overlapping images (blue circles). The
black line represents the robust fitted regression line, and the two big red squares
on it represent the picked points to be used to construct two tie point equations.
Thin straight line represents the 1:1 line. (b) Histogram of DN values in given
spectral band, red dashed bars are located on the minimal and maximal DN
values after the elimination of outliers. These two values will be used to construct
two inequality constrains correspond to this specific image.

3) Filtering outlier: A mismatch in the previous step bears

wrong pairs of key points, we use RANSAC to detect and

filter these outliers out of the match pairs.

The final corresponding points between each two overlapping

images are used to create tie point equations as in (5). The

number of extracted tie points by the presented process can be

very large. Accordingly, the number of tie point equations will be

significantly higher than the number of ground target equations.

It is clear that such optimization problem is not efficient. The

large number of equations increases the complexity of solving

the problem in (11). Moreover, the combination of many tie

point equations and only few ground target equations, bears a

bias on the obtained solution. The results will probably provide

good fitting of the linear relation between the DN of overlapping

images but not accurate reflectance values.

One way to overcome this bias is to solve the problem in

(11) as a weighted problem, with high weights for ground target

equations. However, much more efficient solution can be ob-

tained by reducing the number of needed tie point equations to

only two representative equations as follows.

Step 1: We fit a regression line based on the DN values of

all the tie pointes between pair of images.

Step 2: We pick two points (one very low and one very high)

on the fitted line. These points will be used to construct

two tie point equations between this specific pair of images

[see Fig. 2(a)]. In addition to the significant reduction of

number of equations to be used, this approach allows the

use of robust line fitting to reduce the effect of inaccurate

tie points.

The concepts of reducing the number of tie points equations

and inequality constraints are illustrated in Fig. 2.

An overview of the workflow for simultaneous calibration

of a set of multiple overlapping images is presented in Fig. 3.

In general, we use ground targets to convert the DN values to

reflectance. However, available reflectance images that overlap

with at least one of the images to be calibrated can also be used.

For this purpose, tie points between the reflectance image and

other images will be used to create reflectance equations, i.e.,

the equation in (3). Moreover, a list of the overlapping image

pairs is very useful, if available. Otherwise, such a list can be

automatically derived by applying SIFT to all the optional pairs

and select those with a feasible number of tie point matches. The

main purpose of this part is only to detect the overlapping pairs,

thus, for practical reasons, the SIFT algorithm can be applied to

low-resolution version of the images.

The problem in (11) represents the general form of the GEL

model. In addition to the simultaneous calibration of multiple

images under constraints, this model is hybrid and can be easily

modified for different modes of calibration (see Fig. 4). The

flexibility in the components of the model, in (6)–(15), allows

easy selection of different modes to be applied according to the

number of images to be calibrated and the need of constrained

or unconstrained results.

III. EXPERIMENTAL EVALUATION

A comparative testing of the proposed method was carried out

with relativity to the QUAC and the standard EL. We use four

hyperspectral images with 385 spectral bands (out of 448 after

removing noisy and water absorption bands), collected by the

AisaFENIX VNIR-SWIR hyperspectral sensor, with spectral

range of 350–2500 nm and spatial resolution of ∼2.5 m/pixel.

The selected images are subsets of a large dataset that was col-

lected in the project “Environmental mapping and monitoring

of Iceland by remote sensing (EMMIRS)” in 2015–2016 [38].

The aerial hyperspectral data were obtained by the Natural En-

vironmental Research Council (http://www.nerc.ac.uk). Image

number 1 has an overlapping area with both images number 2

and 4, while image number 2 has an overlapping area with both

images number 1 and 3 (see Fig. 5). Three ground targets (with

high, medium, and low reflectance properties), each with size of

4 × 4 m, appear in image number 1 and can be also recognized

in image number 2 (see Fig. 5). These targets will be used for

calibration and validation. The spectral signatures (reflectance

and DN) of the ground targets are presented in Fig. 6. An eval-

uation of the overall accuracy is carried out with respect to 11

field measurements representing different areas, each with size

of 4 × 4 m. These areas were selected to represent diverse land-

cover types, including grassland (point 1), a mixture of grassland

and lava rock (points 2 and 3), a mixture of mosses and dwarf

shrubs (point 4), a mixture of birch shrubs (Betula pubescens)

and dwarf shrubs (point 5), gravelly surface with a mixture of

lava rock and tephra (point 6), willow shrubs (Salix phylicifo-

lia) (point 7), mixture of sedges and mosses (point 8), restored

grassland (point 9), cotton grass (Eriophorum angustifolium)

wetland (point 10), and mixture of grasses and sedges wetland

margin (point 11). The reflectance was measured, close in time

to the acquisition of the images, using an ASD (www.asdi.com)

field spectroradiometer with 2151 spectral bands. Finally, the

field spectra were convolved to the spectral response of the 448

bands of the AISA sensor.

Considering this specific case, we need to solve a constrained

least squares problem with eight unknowns (two coefficients
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Fig. 3. Workflow for applying the proposed GEL calibration.

Fig. 4. Four calibration modes available within the proposed generalized EL calibration model. All the modes require ground targets, but vary by the use of tie
points, constraints, and applicability for multiple images.

for each image) for each band. The coefficients of each band

will be calibrated separately. Using the form of reduced num-

ber of equations and constraints, each time we need to solve

a constrained least squares problem with nine equations (three

correspond to ground targets and six correspond to tie points),

and eight inequality constraints (two for each image).

A. Tie Point Extraction

SIFT algorithm detects 374 matching points between images

1 and 2, 64 matching points between images 2 and 3, and 404

matching points between images 1 and 4. Fig. 7 shows the

pair of overlapping images 1 and 2 (with plot of connecting
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Fig. 5. Four spectral images (strips) used for evaluation of the proposed methodology. Orange, blue, and cyan lines represent the boundaries of the overlapping
area between images 2 and 3, images 1 and 2, and images 1 and 4, respectively. The black rectangle area (A) in image number 1 indicates (approximately) the
position of three ground targets used for the calibration. A zoom on this area is represented in the lower right corner, where the three targets are surrounded by a
black circle. The orange dots represent 11 field measurement points that used for evaluation.

Fig. 6. (a) Mean reflectance values of reference targets measured by field spec-
troradiometer. (b) Mean DN values of the same reference targets as registered
in image number 1.

Fig. 7. (a) Pair of images 1 (left) and 2 (right), blue lines connect between
matching tie points, (b) and (c) present 2-D scatterplot of left image DN values
versus right image DN values in the spectral bands ∼703 and ∼1365 nm,
respectively. Dark straight line represents the 1:1 line.

lines between the matching points) and two-dimensional (2-D)

scatter plots of DN values on the tie points as registered on the

pair of images in two selected spectral bands. Fig. 7 emphasizes

the efficiency of the SIFT algorithm for automatic detection

of tie points. The 2-D scatterplots show the linear relationship

between the DN values of two overlapping images.

B. Accuracy Assessment

For a quantitative assessment of the methods’ accuracy, we

define the pixel mean absolute error (pMAE) between two spec-

tral signatures ρ1 and ρ2 as

pMAE
(

ρ1 , ρ2
)

= 1/q

l
∑

i=1

∣

∣ρ1
λi
− ρ2

λi

∣

∣ (17)

where ρ1
λi

and ρ2
λi

are the reflectance values at wavelength λi ,

as registered in ρ1 and ρ2 , respectively, and q is the number of

spectral bands.

1) Image-to-Image Accuracy: We evaluate the relative

image-to-image accuracy by computing the mean absolute er-

ror (MAE) between overlapping images. The MAE between two

images (#k1 and #k2), and its STD, based on tie points, are

given by

MAEk1 ,k2
= 1/p

p
∑

i=1

pMAE
(

ρ̂i,k1 , ρ̂i,k2
)

and

STD (MAEk1 ,k2
) =

√

√

√

√1/p

p
∑

i=1

(pMAE (ρ̂i,k1 , ρ̂i,k2 ) − MAEk1 ,k2
)
2

(18)

where p is the number of tie points, and ρ̂i,k1 and ρ̂i,k2 are the

retrieved (estimated) reflectance spectral signatures of the ith tie

point as registered in image #k1 and image #k2 , respectively.
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TABLE I
RELATIVE IMAGE-TO-IMAGE MAE (%) AND STD (%) VALUES FOR EL, CEL,

MIEL, MICEL, AND QUAC

method Images 1 and 2 Images 2 and 3 Images 1 and 4

MAE STD MAE STD MAE STD

EL 15 9
CEL 4 2
MIEL 10 7 8 6 14 12
MIcEL 3 2 3 2 4 3
QUAC 6 2 6 4 7 4

Fig. 8. 2-D scatterplots of data values, in the spectral band ∼703 nm, as
registered on tie points between overlapping image pairs, left columns (blue
dots) image 1 versus image 2, center columns (red squares) image 2 versus
image 3, and right columns (black stars) image 4 versus image 1. Tiles (a), (b),
and (c) represent the raw data; (d), (e), and (f) calibrated data by QUAC; (g), (h),
and (i) calibrated data by MIEL; and (j), (k), and (l) calibrated data by MIcEL.

Since ground targets are available for both images 1 and 2,

we could compute the image-to-image MAE for these images

also for the single image calibration methods, EL and CEL. A

lower value of the MAE indicates a higher similarity between

the reflectance values of same objects that appear in the two

images. The results are presented in Table I.

The MAE values clearly show that the obtained results by

MIcEL are more accurate than the results obtained by QUAC

and by the other calibration modes.

For more insight into the performance of the methods, Fig. 8

shows 2-D scatterplots of the raw and calibrated data, as regis-

tered on the tie points between the overlapping image pairs, in

the spectral band ∼703 nm. The results of the EL and CEL are

available only for the pair of images 1 and 2. In accordance with

TABLE II
PMAE (%) VALUES (PER EACH VALIDATION POINTS) FOR QUAC,

MIEL, AND MICEL

Point No’ 1 2 3 4 5 6 7 8 9 10 11 mean STD

QUAC 17 8 12 10 14 7 8 12 8 6 5 10 4
MIEL 35 37 27 40 35 7 40 36 35 25 23 31 10
MIcEL 17 10 9 13 14 11 8 13 10 4 10 11 3

Table I, the results of EL are similar to those of MIEL, whereas

CEL is highly correlated with MIcEL. Therefore, and for con-

venient presentation, these results are not included in Fig. 8.

While the obtained results by MIEL are unconstrained (with

negative reflectance values in the presented band), both QUAC

and MIcEL obtain constrained results with values between 0

and 100%. However, the best-fit line through the MIcEL data

cluster is closer to the 1:1 line, i.e., the reflectance values of

same objects as appearing in different images are more similar.

2) Overall Accuracy: An assessment of the overall accuracy

of QUAC, MIEL, and MIcEL was carried out by computing

the pMAE for each of the 11-available validation points by

pMAEi = pMAE
(

ρi , ρ̂i
)

(19)

where ρi and ρ̂i are the measured (by a field spectroradiometer)

and retrieved (estimated) reflectance signatures of the ith vali-

dation point, respectively. The results are presented in Table II.

The overall accuracy of the obtained results by MIcEL, with

average pMAE of ∼11%, is comparable with respect to the

results obtained by QUAC. The noticeable higher accuracy of

MIcEL, with respect to MIEL, emphasizes the advantage of

applying the constraints in the solution.

3) Image Mosaicking: For a further assessment of the ob-

tained results, by visual analysis, we created a large mosaicked

image for each of the methods, QUAC and MIcEL, using the

calibrated images. To show the real differences, the mosaic was

applied without any color adjustment in the borders between

images. The value of pixels in overlapping areas was set as the

value of the corresponding pixels in one of the two overlapping

images. A mosaicked image of the (normalized) raw data was

also created for comparison. Fig. 9 shows an RGB composite of

the mosaicked images.

The results in Fig. 9 clearly show the superiority of MIcEL

with respect to relative accuracy between overlapping images.

The borders of the overlapping areas appear in the mosaic image

of the uncalibrated images. These borders are result of different

values of the same objects in different images because of the

different acquisition conditions and BRDF effect. In accordance

with the quantitative results, MIcEL minimizes the differences

between values of the same objects in different images. The

borders are not noticeable in the MIcEL mosaic image, whereas,

some of the borders still clearly noticeable in the QUAC result.

IV. CONCLUSION AND DISCUSSION

In this paper, we present a novel method for the calibration

of hyperspectral images. The newly proposed scheme, MIcEL,

was developed for constrained and simultaneous calibration of
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Fig. 9. RGB composition of mosaicked images: (a) original (raw uncalibrated
images), (b) calibrated images by QUAC, and (c) calibrated images by MIcEL.

multiple images with partial spatial overlap. However, its hy-

brid form makes it suitable also for the calibration of single

images and allows an easy selection between constrained and

unconstrained solutions. We modify the basic EL model to for-

mulate a new GEL model, which can be represented as a simple

linear equation system that combines reflectance and tie point

equations. Reflectance equations convert DN values to absolute

reflectance through ground targets, whereas tie point equations

are used to optimize the similarity between values of the same

objects that appear in different images. Given a set of hyperspec-

tral images with partial overlaps, the newly proposed scheme

is used to solve a constrained least squares problem to estimate

the absolute calibration coefficients of each image directly. We

reduce the data redundancy to optimize the number of tie point

equations to only two for each pair of overlapping images, and

the number of constraints to two for each image. For example,

given a set of s images, to be calibrated using n ground tar-

get points, we solve a problem with n + 2 × (s − 1) equations

under 2 × s constraints. Due to its low complexity, the pro-

posed method can be very useful for big imaging campaigns.

In addition, using SIFT method for automatic extraction of tie

points, the proposed methodology can be applied to datasets

that include diverse types of images, from different sensors and

with different resolutions. In the current version of the proposed

GEL, the BRDF effect is not addressed explicitly. Nevertheless,

the results showed that the constraints incorporation helps us to

reduce this effect. The empirical results demonstrated the supe-

riority of the MIcEL with respect to image-to-image accuracy,

which measures the consistency of the calibrated information of

the same objects, in different images. Moreover, the overall ab-

solute accuracy of MIcEL, with respect to field measurements,

is comparable with the QUAC method.

As a part of future work, it would be of interest to address the

incorporation of the BRDF effect in the GEL. Furthermore, it is

worthy to examine the proposed method using big datasets, with

many images, and test the error propagation of the calibration,

with relativity to the distance from images that contain ground

targets. In addition, comparison with RTM-based method (e.g.,

MODTRAN) will be considered in our future work.
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