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Simultaneous Approximation

in Scales of Banach Spaces*

By James H. Bramble and Ridgway Scott

Abstract.   The problem of verifying optimal approximation simultaneously in different

norms in a Banach scale is reduced to verification of optimal approximation in the highest

order norm.   The basic tool used is the Banach space interpolation method developed by

Lions and Peetre.   Applications are given to several problems arising in the theory of finite

element methods.

1.  Introduction.  In many papers concerning the mathematical analysis of finite

element methods, certain approximation properties are assumed.   In particular, it is

often supposed that a given function may be approximated by a function in another

space and that this approximation is "optimal" simultaneously in different norms.

More precisely, let Í2 be a bounded domain in R^ and Hs = ws2(£l) the Sobolev

space of order s with norm ||-||s (cf. Lions and Magenes [9]).  Let k and r be positive

integers with k < r, and let {Sh' 0<h<l}hea family of subspaces of Hk.  The

following hypothesis is often made (cf. Babuska [1], Baker [3], Bramble and Thome'e

[6], Douglas and Dupont [8], Natterer [10], Nitsche and Schatz [11], Raviart [12],

and Schultz [13]):

A. There exists a constant CA such that, for u&Hr and h G]0, 1 [,

inf   ]¿AÍ«-xll/[<Ci4ArH«lll..

Hexe, s is some integer (positive or negative) less than k.   We show as a particular case

of our main result that, under mild restrictions on the boundary of £2, the above

statement is equivalent to the following:

B. There exists a constant CB such that, for u &Hr and h £ ] 0, 1 [,

inf /ik||M-xllk<CBAr|l«llr.
xes„

More precisely, we show that assumption B implies A with s allowed to be arbitrary

(s < k) and CA depending only on CB, r, and s; the implication A => B is obvious.

Another consequence of our theorem in the next section is a simultaneous

approximation version of the results of Babuska and Kellogg [2] : If B holds and if

u G Hm for some m satisfying k <m <r, then

«n inf   £Ä/Htt-xll/ = o(Ä'")
UU xes„ ps
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948 JAMES H. BRAMBLE AND RIDGWAY SCOTT

rather than just 0(hm ).  These results have obvious generalizations to noninteger

Sobolev spaces as well, and the more general case is treated in Section 4.   The integer

case was discussed here only for the purpose of exposition.

The following example indicates the nontriviality of the implication B => A. Let

uh denote the projection of m onto Sh with respect to the Hk inner product:

(1.2) ||u-«Ä||fc=   inf ||u — xlljt-
xes„

Then u - uh is orthogonal to Sh, and we have

II" ~ "/iHk = ("-"/,."- uh\ = («-«»,. ")k>

where ( , )k denotes the inner product in Hk. Now suppose that the support of« is

contained in a compact subset of Í2. Integrating by parts and using the generalized

Schwarz inequality, we obtain

(1.3) tt«-«*n*<c*iiM-M*M«Ha*-f

where s is any real number not greater than k and ck depends on k.   Thus

(14) \\u-uh\\s>\\u-uh\\l/ck\\u\\2k_s,

and we conclude that the approximation rate for u - uh in any Sobolev norm cannot

exceed double the original rate in Hk for arbitrary u.   Therefore, we see that the

element of Sh for which the infimum is attained in B is in general not the same as

that in A.  Note that this phenomena is not restricted to convergence in negative norms;

the above example shows in particular that the H2 projection onto quadratic splines

does not have the optimal rate of approximation in L2 = H°.

Using a duality argument, one can show that B => A provided that an inverse

assumption holds for the family Sn •   However, our proof below requires no inverse

assumption.   Finally, we remark that Bramble and Schatz in [4] and [5] assume only

B in their treatment of the least squares approximation.   Their proofs involve an in-

finite interation technique that is avoided here.   Thus, the results of Baker [3] con-

cerning least squares, combined with the result here that B => A, lead to simplified

proofs for this method under the original assumption B.

2. Preliminaries: Banach Space Interpolation. Recall the real method of inter-

polation by Lions and Peetre (cf. Butzer and Berens [7]). Let B0 and Bx be Banach

spaces such that Bx C B0 with the inclusion map continuous, and let I* I,- denote the

norm in B¡, i = 0, 1.  Let u e B0 and t > 0, and define

(2.1) K(u, t) = inf{ I« - v l„ + t\v \x : v G Bx }.

Then K(u, t) is a continuous, increasing function of t for fixed u.   (Here and below,

the words increasing and decreasing are used in the nonstrict sense, i.e., one means not

the other.)  For real numbers 0 and p in the ranges 0 < 6 < 1 and 1 < p < °°, define

(2.2) yfltP = (fpK(u, tyr"-1 dt)1/p.
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With 0 as before (and p = °°), define

(2.3) \u\e^=snp{K(u,t)re:t>0}.

Then I • lfl is a norm, and the associated Banach space is denoted by either Be ox

[B0, Bx ] e . If X and q axe other indices such that 0 < X < 1 and 1 < q < °°, then

we say

<X     or

(2.4) (9,p)<(k,q)<

X     and     p~> q.

If (0, p) < (X, q), the inclusions

(2-5) BxCBXqCBepCB0

axe valid together with the corresponding norm inequalities (continuous inclusions).

In particular,

(2-6) ye>i,<2MM,       «£%

for all 0 G ]0, 1 [ and all p, q G [1, °°] (this is not the optimal constant, but it will

suffice). Further, interpolation inequalities hold: If (9, p) < (X, q), there is a con-

stant c depending only on 9 and X such that

(2.7) H>p<clUl0-e/M«l^

for all u G Bx   .  Finally, we make the convention that Be    = Be for all p when 9 -

0 or 1, and we extend the relation (2.4) by defining (0, p) < (9, q) < (1, r) for any

p, q, r G [1, °°] and any 9 G ]0, 1 [.  The above standard results can be found, e.g.,

in Butzer and Berens [7].  We now prove a result to be used to derive our main

theorem.

Lemma .   Let u G B0 and t>0, and suppose vGBx is such that

\u-v\0 + t\v\x <2K(u, t).

Then, for any (9, p) such that u G Be   , we have

(2.8) l«-ülfl>p<3l«l0>p.

If 9 G ]0, 1 [ and 1 < p < « (X, q) < (0, p), and u G Be p, then

(2.9) \u - v \Kq < c [t6~k{¡IK(u, sYs-^-'ds) 1/P + rxK(u, t)] ,

where c depends only on 8 and X.

Proof.   Our first claim is that, for all s > 0,

(2.10) K(u -v,s)< 3K(u, min{s, r }).

We have

K(u - v, s) < Im - wl0 < 2K(u, t)

by the definition of A' and our choice of v, so (2.10) is proved for s > t.   For s < r,

we argue as follows:   For all w G Bx,
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K(u -v,s)< \u - v - (w - v)\0 + s\w - v\x

< \u - w\0 + s\w\x + slulj.

Taking the infimum over w G Bx and recalling the assumption on v, we have

K(u -v,s)< K(u, s) + 2sK(u, t)/t.

Because r_1 K(u, t) is a decreasing function of r and s < t, we find

K(u -v, s)< 3K(u, s),

completing the proof of (2.10).  We now prove the lemma.

First, since K(u, t) is an increasing function of t, (2.10) implies that K(u - v, s) <

3K(u, s) for all s > 0, and hence (2.8) is immediate for 0 G ] 0, 1 [.  For the remaining

cases, simply observe that, for 0 = 0 or 1, K(u, t) < t6 \u\e for all t > 0 and use the

assumption on v.

To prove (2.9), first assume that X < 0.  Then

61" - vlKd <3lu~ vlKi = 3  io^(u - v, s)s~x~l ds

< J0 K(u, s)s~x~l ds + K(u, t)  /f°V*-1 ds

< (/JK(u, s)PS'8?-1 ds)      (/0f sC-Mp-1 ds)       + iK(u, t)t~x

where we used (2.6), (2.10), and Holder's inequality.   This proves (2.9) in this case.

When X = 0, the argument is similar:

- (/„' K(u, sfs-op-1 ds)' \(8 - X)p')-l/p'í"-* + J K(u, t)t~x,

61" ~v]e,q < 3 I" - ule,p

(f*K(u, sys^P-1 ds + K(u, t)P f's'OP-1 ds )
i/p

i/p
< (f*K(u, s)Ps~eP'1 ds)       + (9p)-^P t~6 K(u, t).

This completes the proof of the lemma.

3.   Main Results.

Theorem . Let 9 and p be fixed, 0 < 0 < 1 and 1 < p < °°.  Let e > 0 and let

Se be a subspace of Be p such that

(3.1) inf{l«-xl9>p: xG5e} <e1_e lulj      for all u G Bx.

Then for any (X, q) > (9, p) (with X = 1 being allowed),

(3.2) E(u) s inf{l« - Xl0 +ee|"-xl9>p: X G Se} <ce*l«lM

for all u GBX q, where c depends only on 9 and X   Furthermore, ifX < 1 and q <
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SIMULTANEOUS APPROXIMATION IN BANACH SPACES 951

<*>, and (3.1) holds for a family of subspaces {Se: 0 < e < e0 }, then

(3.3) hxxi(E(u)/ex) = 0.

Proof.   Define a parameter 6 = supi^u): \u\x = 1}.  We will show that 5 <

ce, and this then proves (3.2) in the case X = 1.  To begin with, note that 5 < °° in

view of the containment relations (2.5).  For any vGBx,

(3.4) E(u) < E(u - v) + E(v)

because of the triangle inequality.  Thus

(3.5) E(u) <(\u-v\0 + ee\u ~v\dp) + 8 lui,,

where we have used the fact that 0 = x G Se and the definition of 5.  Choose v EBX

such that

(3.6) \u-v\0 +8\v\x <2K(u, 8).

Then the lemma from the previous section implies that

(3.7) E(u) < 2K(u, 6) + 3ee \u\dp.

Recalling the definition of the interpolation norm for p = °° and the norm inequality

(2.6), we have

(3.8) E(u)<2ôe\u\e„ + 3ee\u\0¡p<4(8e +ee)\u\6ip.

This holds for any u G Bg   , and hence

E(u) =   inf E(u - x)
xese

<4(5e +ee)   inf   l«-Xlflp.
xese ,p

Finally, invoking the assumption (3.1), we have

E(u)< 4(oe + ee)el-e \u\x.

This impHes that 5 < 4(Se + ee)e1_ö; and thus, the arithmetic-geometric mean in-

equality implies that 6 < ce as claimed (here c depends only on 0).

As stated above, the fact that S < ce proves (3.2) in the case X = 1, and using

this estimate for S in (3.8) yields the case (X, q) = (0, p) as well.  The general case

when X = 0 then follows from the norm inequality (2.6).   For the case 0 < X < 1,

we use (3.4) and the cases already derived:   For any v G Bx,

(3.9) E(u) < E(u - v) +E(v) < c(ed \u - v\6p + e \v\x).

Using the norm interpolation inequality (2.7) and the arithmetic-geometric mean in-

equality, we have

Bife) < cV I« - viy^u - v\{'x + e\v\x)

<c'(Im-uI0 + ex\u-v\Kq +e\v\x),

where c is a constant depending only on 0 and X.  Now choose v G Bx such that
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Im - ul0 + e lui j < 2K(u, e).  As above, we have

E(u) < c'(2K(u, e) + 3ex\u\Xq)

<c'(2ex\u\Xi„+3ex\u\Xq)<7c'ex\u\Kq.

This completes the proof of (3.2).

We now prove (3.3).  Note that (3.10) holds also in the case X = 0, since in this

case it follows directly from (3.9).  Then with v chosen in (3.10) as in the lemma,

(2.9) implies that

E(u) < c" [(f¡ K(u, tyr*«-1 dt ) l7V + K(u, e)] ,

where c" depends only on 0 and X.  Since CxK(u, t) is a decreasing function of t, it

follows that

r*«* » = .-'«* «(^~ /„' '<,-x)'-' *)"'

Therefore, for some constant c depending only on 0 and X,

E(u) < cex (joe K(u, tyr*"-1 dt) l/q.

Thus (3.3) follows from the fact that this integral tends to zero as e -I- 0.

Corollary. Suppose 9¡ G [0, 1 [ and p¡ G [1, °°] are such that (9;, p() <

(0, p) for i = I, . . . , I - I.  Define (07, p¡) = (9, p).   Then, under the conditions of

the theorem, the conclusions remain valid for E(u) defined by

£*«) = inf ]¿e0il«-xl9/>p<:   X^£

except that the constant c depends on all the 9¡'s as well.

Proof.   From the norm interpolation inequality (2.7) and the arithmetic-geometric

mean inequality, it follows that

¿e9ilU-Xle.p.<c(lW-xl0+eel«-xl9,p),

where c depends only on 0j, . . . , 9l.  Hence the result is a direct consequence of

our estimate for the original E(u).

4.  Applications.  We now give the proof of the equivalence of A and B in the

introduction.  To do so, we simply observe the well-known interpolation properties of

the Sobolev spaces (cf. lions and Magenes [9, pp. 98-99]):

(4.1) [Hk,Hk + m]e2^Hk+em.

Of course, (4.1) is not known for general Í2, so we make (possibly) a restriction on
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Í2 by assuming (4.1) to hold.  It is valid for Í2 = RN and any Í2 for which there

exists an extension map £2 ■+ R^ preserving Sobolev classes, e.g., if Í2 satisfies a cone

property.  Given a family {Sh- 0 < h < 1 } satisfying condition B with constant CB,

let Se = Sh with e = (CB)(r'!!)l(r-k)hr~s. Define B0 = Hs and Bx = Hr, X = 1,

and 91 = i/(r - s) and p¡ = 2 fox i = 0, I, . . . , k - s.   Applying the corollary in the

last section, condition A follows (note that CA depends on the constants coming

from the isomorphisms (4.1) as well as CB and the constant in the corollary).   In

fact, we are not restricted to integer Sobolev spaces.  The same arguments yield

(4.2)

for any real numbers s0, . . . , s¡ G [- °°, r[ provided B holds for r and k real num-

bers with r > k = max{s¡: i = 0,... ,1} and m is any real number such that k <

m<,r.   Further, if u G Hm for some such m that is less than r, then (cf. Babuska-

Kellogg [2])

(4.3) hm/r'"   inf    ¿^'"IIm-xII,.   =0.
hio        xeS„ (i=0 '\

In applying the corollary so far, we have always chosen the second interpolation

index equal to 2.  It is frequently useful to have p = °° in the corollary, with p¡ = 2

for i = 0, . . . , / as before.  In this case, the approximation result (4.3) is lost, but

an analog of (4.2) remains valid:

(4.4) inf ¿hSi\\u-x\\s.<Cher+^-^k\u\.HkHr,      .
xeS/I,to ' [H,H\dao

For example, if u solves a second order elliptic boundary value problem with a right-

hand side that is discontinuous but piecewise smooth, then u G [H2, H3] x i2 „, but

no better [14].   For such a function u, (4.4) implies

inf ZhSi\\u-x\\s. = 0(h5/2);
x^Sh i=0 '

and this is the best possible approximation rate.

Since (4.2)-(4.4) hold for s¡ negative, we have a rather surprising result (cf.

Bramble and Schatz [4] and [5]), namely that an arbitrary order of approximation is

possible from Sh in an appropriate negative norm.  To see how this can be, consider

approximation by piecewise constant functions Sh on a uniform mesh on (0, 1) of

size h = l/(2M).  Define x(") G Sh by the requirement, for all a, b G R,

ffh       (x(") - u)(a + bx)dx = 0,       j = 2i,i = 0,...,M-l.

Note that x(«) has (possibly) different values in (jh, (j + l)h) and (0' + 1)Ä, (/ + 2)h).

The existence and uniqueness of this projection follows from the invertibility of the

2x2 matrix whose (m, «)th entry is /(i+m-^n/i^"1 ^x-   ^e now snow that x(«)

is simultaneously an optimal approximation in H° and H~2.  For any ip G H2, we

have
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J0(« - X(u))*dx = j0(u- x("))(<¿> - $)dx

< II« - X(«)H0IIV - $Ho < ^2II" - x(«)llollvll2.

where ip is a piecewise linear function approximating if to second order on the coarser

mesh {0, 2/M, 4/M, .... 1} of size 2h.   Thus \\u - x(«)IL2 < ch2\\u - x(«)ll0, and

the simultaneous optimality of x(«) follows from its optimality in H°, which can be

proved by standard techniques.  An optimal approximation in the - m norm can be

constructed by choosing

rU+m)h "L51      ,
L (Xm(«)-«) Z a,xtdx = 0
' ¿=o

for all a¡.
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