
Simultaneous Approximation
of a Set of Bounded Real Functions

By J. B. Diaz and H. W. McLaughlin

Abstract. The problem of simultaneous Chebyshev approximation of a set F of uniformly

bounded, real-valued functions on a compact interval / by a set P of continuous func-

tions is equivalent to the problem of simultaneous approximation of two real-valued

functions F+ (x), F~ (x), with F~ (x) ¿ F+ (x), for all x in I, where F~ is lower semicon-

tinuous and F+ is upper semicontinuous.

1. Formulation of the Approximation Problem. In this introductory section,

which consists of nine "points," the "general problem of the simultaneous approxi-

mation of a family of functions" is formulated (see, in particular, point 4). Besides,

a "heuristic derivation" of the basic equation (equation (T2) of point 8) is given.

1. Let jbea (finite) real-valued function defined for all real numbers x on the

finite-closed real number interval [a, b] = [x\a ^ x ^ b}, where a < b. The "norm,"

\[g\\, is defined to be

||Sf|| =  sup  \gix)\ •
a¿x¿b

If g is not bounded in absolute value on [a, b], then ||^|| = + oo ; otherwise, \\g\\ is a

nonnegative number.

2. Let fbea nonempty set ("family") of real-valued functions /, defined on

[a, b]. The set of functions F is supposed to be uniformly bounded (in absolute

value) on [a, b]; i.e., there is a nonnegative number M such that [fix)\ ^ M for any

function/ G F and any number x (E [a, b]. Clearly,

11/11 = M
for any/ Ç F. (In the "general approximation problem" of point 4 below, the family

F is "the set of functions being approximated.")

3. Let P be a nonempty set ("class") of real-valued, continuous functions p,

defined on [a, b]. (In the "general approximation problem," the class P is "the set

of approximating functions"; usually, for n a nonnegative integer, the class P con-

sists of all real polynomials of degree á »•)

4. For the purposes of the present paper, the "general problem of the simultaneous

approximation of the family F by means of functions from the class P" consists in

the determination of the number

inf sup ||/- p\\ .
pGp /-Si-

(The formulation of this "general approximation problem," as given here, was sug-

gested by the "problem of simultaneous approximation of two bounded functions
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!?i is s72, with gi lower semicontinuous and g2 upper semicontinuous," of C. B.

Dunham [1, p. 472]; this problem of Dunham will be discussed more fully under

point 5 below.)

5. Consider, in particular, the very special case in which the family F consists

of a single function/, which is bounded in absolute value on [a, b]. In this case, the

"general problem of the (simultaneous) approximation of the bounded function/by

means of functions from the class P" consists in the determination of the number

inf ||/- p\\ .

(Suppose, for the moment, that the function / were allowed to be unbounded in

absolute value, that is to say, ||/|| = + ■». Then, for every continuous approximating

function p one would have that ||/ — p|| = + <x>, and hence infj,ep ||/ — p|| = + °°

also. Therefore, the restriction that the function / being approximated be bounded

in absolute value is a natural requirement to make.)

Dunham [1, specially p. 476] showed that this "approximation problem of a

single bounded function /" is equivalent to the "simultaneous approximation

problem of a certain pair of bounded functions /~ ^ /+, where /~ is lower semicon-

tinuous, and/+ is upper semicontinuous, on [a, b]" (the set of approximating func-

tions P used in [1] is "unisolvent of degree n on [a, b]," and includes, as an important

special case, the case when P is the class of real polynomials of degree ^ n). Specif-

ically, this "equivalence" result of [1] can be formulated as follows: Let the func-

tion /+ be defined by

f+ix) = inf     sup     fiy) ,
S>0   0£\x-yl<S

for a ^ x ^ b (the function /+, which is known to be upper semicontinuous, is

sometimes called the "upper envelope" of the function / on [a, b]). Similarly, let

the function f~ be defined by

Aix) = sup      inf     fiy) ,
S>0    0S\x-y\<S

for a ^ x :£ b (the function /_, which is known to be lower-semicontinuous, is

sometimes called the "lower envelope" of the function / on [a, b]; and, clearly,

f- = — (— /)+). Then the following equality holds:

inf II/-PII =infsup{[|/+-p|[,[¡/--p|¡},
pEp pEp

where, of course, one can replace "sup" by "max" on the right-hand side. It is to be

noticed that, if the function / being approximated is required, in addition, to be

continuous on [a, b] (as in the classical Chebyshev approximation problem), then

both /+ and f" coincide with /, and the two sides of the last equation are identical.

6. As was described in point 5, Dunham [1] was led to introduce the notion of

simultaneous approximation in the particular case in which the family F consists

of a pair of functions, /i and f2, with /i ^ f2, where /i is lower-semicontinuous while

f2 is upper-semicontinuous. Further, Dunham, see [1, p. 477], also considered briefly

the particular case when the family F consists of a finite number of continuous func-

tions, in which case it is stated that the problem of the simultaneous approximation

of a finite number of continuous functions is equivalent to the problem of the
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simultaneous approximation of two continuous functions, namely, the minimum and

the maximum of the finite set of continuous functions. It is natural to ask what, if

anything, can be said when F is an infinite set, say, countably infinite, to start out

with. In [1], no mention is made of the simultaneous approximation problem when

the set of functions F is not finite.

7. It is the purpose of the present paper to show that a formula, analogous to

that of point 5, holds for any nonempty family F; this formula means, in words,

that "the general problem of the simultaneous approximation of the family F by

means of functions from the class P" is equivalent to the problem of the simulta-

neous approximation of a certain pair of functions F~ and F+, with F~ ^ F+, where

F~ is lower semicontinuous, and F+ is upper semicontinuous, on [a, b] (that is, the

simultaneous approximation problem for "any" family F can be, at least theoret-

ically, "reduced" to a simpler "Dunham type" approximation problem for a family

consisting of only "two" functions F~ and F+)- Analytically, this result can be

formulated as follows : Let the function F+ be defined by

F+0x) = inf     sup     sup fiy) ,
í>0   0¿\x-y\<¡   /fcF

for a Sx S b; and let the function F~ be defined by

F~ix) = sup      inf       inf fiy) ,
S>0    Og\x-yl<S   fEF

for a S x S b. Then the following equality holds :

inf sup ||/ - p\\ = inf sup (H** - p||, \\F~ - p\\\ ,
p£p  /Gf jjEP

where, of course, one can replace "sup" by "max" on the right-hand side. Clearly,

one has that F~ g F+, from the definition of the functions involved. Also, the

functions sup/e^ / and inf/GF / are bounded in absolute value on [a, b] (recall the

constant M of point 2). Moreover, since

= fe f)\/Gf

(that is to say, see point 5 above, the function F+ is the "upper envelope" of the

function sup/ep/), it follows that F+ is an upper semicontinuous function on [a, b].

Similarly, since

-(g')"'F~
Ve

it follows that F~ is a lower semicontinuous function on [a, b],

8. A heuristic "derivation" of the basic equation to be proved will now be given,

in order to clarify the logical structure of the formal proof, which is given in detail

in Section 2.

The equation to be proved (see point 7 above), written without "superfluous

letters," is just

(T2)     inf sup ||/ - p\\ = inf sup \  (sup /)   - p\\,   ( inf f)   - p
p£p /s=F pEp Ul \/s=>   / II \/Gf   /
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Viewing equation (T2) purely formally, as an equality between two products, and

then applying the "cancellation law" (by simply "cancelling infpGp on both sides

of the equation"), leads one to suspect that it may be true that, for any p£P,

(C) sup
/Gp

|/- p|| = sup \^Ff)-p'\\i£f) ~p

(After one has recovered from the initial shock of this "deduction" of (C) from

(T2), it is readily realized that all that is being said is that, if (C) holds for any p in

P, then, upon taking the inf over P, equation (T2) will follow.)

Returning to (C), since it presumably holds for any continuous function p

(because P is just any set of continuous functions on [a, b]), it perhaps is valid when

p is just the identically zero function, which is a very special continuous function on

[a, b]. That is, one is led to consider the equality

(TO sup 11/11 = sup
/Gf

(   /Yllllf-f^

and to conjecture that (Ti) implies (C).

However, instead of (Ti), it is rather easy to show directly that

(Li) sup
/Gf

sup sup/
/Gf

inf/
/Gf

and hence, upon comparing the right-hand sides of equations (Li) and (Ti), it is

clear that the "missing link," in order to complete the chain of reasoning in a proof,

"by retracing the steps," of the desired equation (T2), is simply

sup(L2) sup sup/
/Gf

inf/
/Gf

(   ,VII \\(-, ,Y
The structure of the formal proof of (T2), given in Section 2, obtained by retrac-

ing the preceding heuristic steps, is then clear, and can be expressed as follows:

(Li) is the conclusion of Lemma 1; (L2) is the conclusion of Lemma 2; (Ti) is the

conclusion of Theorem 1; (C) is the conclusion of the Corollary; and, finally, (T2)

is the conclusion of Theorem 2.

9. It is evident that, in this paper, the finite interval [a, b] may be replaced

throughout by a closed and bounded (i.e., compact) subset of the real numbers; and,

in fact, even by a nonempty compact metric space, with only minor changes in the

text.

2. Equivalence of the General Approximation Problem to a Simpler Approxi-

mation Problem. This section contains the formal proof of the basic equation

(T2), as outlined in point 8 of Section 1.

Lemma 1.

sup
/Gf

sup sup /||,
/Gf

inf /
I/Gf

Proof. To save writing, denote

(1) uF = sup / ,
/Gf

If = inf / ;
/Gf
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then the equality to be proved is

sup 11/11 = max {||mf||, ||Zf||} .
/Gf

It will be shown first that

(2) sup 11/11 Ú max \\\uF\\,\\lF\\\ .
/Gp

This inequality follows from the fact that, for all / £ F,

Ipix) ^ fix) S uF0x) ,       a ¿ x S b .

Therefore

\fOx)\ g max {|wf(:t)|, \IfÍx)\\ ,

g max {||mp||, ||Zp||} ,

which yields

11/11 Z max {\\uf\\, Ml,
and hence (2) follows.

It remains to show that

(3) sup||/|| è max flKII, llallí ;
/Gf

and, in the first part of this argument, it will be proved that

(4) sup D/11 g IMI .
/Gf

Let {xk}^, be a sequence of numbers, with a ^ xk ^ b for k = 1, 2, • ■ -, such that

lim |«f(:Cí:)| = ||iíf|| .
k—*oo

In the sequence of numbers {uFÍxk)\™=1, there are either infinitely many numbers

^ 0, or else infinitely many < 0; in the first case, it follows that there is an infinite

subsequence {uFix„k)\^v such that

lim uFixnk) = ||wp|| ,
&-+00

while, in the second case, there is a subsequence {uFixnk)}™=v such that

— lim UpOXnk) = \\uF\\ .
k—*ao

In either case, letting {xk}™=i denote the chosen subsequence, if necessary, one has
that

lim IwfOcOI = lim Mf(^a)  = ||mp|| •
k—»oo I k—»00

Now, let {fk)1c be a sequence of functions from F such that

upOxk) — 1/k S fkixk) S upOxk) ,

for k = 1, 2, • • • (the existence of such a sequence of functions follows from the
definition of uf). Then, one has
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Ihn fkixk) = Hm uFOxk) ,
k—»oo k~»x

and

Hence, since

hm fAxkj
fc—»00

lim uF(xk)
fe-+oo

=   uF l

sup 11/11 è
/Gp

lim fkixk)

it follows that (4) holds.
Next, it will be proved that

(5) sup 11/11 ^ HZfII
/Gp

Letting {a;,t-}j=, be a sequence of numbers, with a S xk Ú b, ior k = 1, 2, • ■ -, such

that

lim \lFixk)\ = lim Zf(£*) = IMI,

and {/*}"_! be a sequence from F such that

IpiXk)  =g fkiXk) Ú hixk) + 1/fc ,

for k =  1, 2,   • • -, one obtains (5). Alternatively, one may use, instead of the

reasoning just given, the identity

If = inf /= -sup (-/) ,
/Gf /Gp

plus the already proved inequality (4), in order to get (5).

Inequalities (4) and (5) give the desired equality, and the proof of Lemma 1 is

complete.

Lemma 2. If I and u are bounded, real-valued functions defined on [a, b], with

l g u, then

max {||w||, ||i||} = max {||w+||, ||Z~||} .

Proof. It will be shown first that

(6) max{||«||,||i||} ^max{||M+||,||r||}.

This inequality follows from the fact that if g is any real-valued function on [a, b]

such that

then

POx) .S gOx) s= u+ix) ,       a S x fib ,

\gix)\ S max {\u+ix)\, \l 0x)\] ,

s= max   \\u

and, consequently
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llgll gmax{||W+||,||r||}.

Since

rix) S lix) S u+0x) ,       a Sx g 6 ,

and

l~0x) S uOx) S u+0x) ,       a S x S b ,

it follows that (taking g = I and g = u in succession),

||Z||gmax{||M+||,||r||},

and

HI ámax{||M+||,||r||},

completing the proof of (6).

It remains to show that

(7) max {||«||, ||i||} ^max{||M+||,||Z-||}.

This follows from the fact that, for any bounded real-valued function g on [a, b], it

always happens that

(8) Hffll = ll<7+ll ,
and

(9) \\g\\ è \\g-\\ ■

(The definitions of g+ and g~ are given under point 5 of Section 1.) Since — ( — g)+ =

g~, and || —g\\ = \\g\\, the second inequality will follow, once the first is established.

To prove the first inequality, one needs the following formula :

(*) IMI =  sup  \gix)\ =maxS sup gOx), - inf  gix)\ ,
a¿x¿b \.a¿x¿b a^x^b J

which may be established thus :

For x G [a, b],

\gOx)[ = max {gix), -gix)} ;

therefore

\gOx)\ S max < sup g(y), - inf  giy) f ,

and hence

(10) H0II =   sup   \gix)\ ámax    sup giy), - inf   giy)}.

On the other hand, for x G [a, b],

\gix)\ ^ gix) ;

therefore

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



590 J.   B.   DIAZ  AND   H.   W.   MCLAUGHLIN

sup  \giy)\ ^ si (a;) ,
a^y^b

and hence

(11) sup  \giy)\ è  sup gix) .

Similarly,

therefore

and hence

\gix)\ à -gix) ;

sup \giy)\ ^ -gOx),
aSySb

(12) sup  \giy)\ è - inf  gix) .

Putting (11) and (12) together, one obtains

(13) H0II =  sup  |fli(a;)| à max > sup giy), - inf  giy)} ;

and putting (10) and (13) together gives the formula (*).

Now to return to the proof of the inequality

(8) II0II = h+\\ •
Since, in view of formula (*),

||si+|| =  sup |si+(a;)| = max \ sup g+ix), - inf g+0x)},
aSxáfc \a<¡xS,b aäxäb )

the desired inequality will follow once it is proved that

(14) sup gix) è   sup g+0x) ,

and

(15) inf  gix) S   inf  g+0x) .

The proof of (14) is as follows: Since g+ is upper semicontinuous, there exists

¡S G [a, b] such that

sup g+0x) = g+0x) .
a¿x¿b

Now, by the definition of si+, there exists a sequence \xk\1=v with a S xk S b for

k = 1, 2, ■ ■ ■, such that

lim xk = x ,
k—»00

and also such that, for each positive integer k, one has

gixk) ^g+0x) - 1/k,
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from which (14) follows readily (actually, the equality sign holds in (14), since

Si0*0 = Q+0x) for x G [a, b], and hence sup^-si, gix) S sup„g*-s& g+ix)).

The proof of (15) is as follows: By the definition of g+ one has

gix) S g+ix) ,       a S x Sb ,

and consequently (15) follows (that the equality sign does not always hold in (15)

may be seen by choosing gix) to be unity for a S x < b, and zero for a: = b; the

"theoretical reason" for this apparent discrepancy between (14) and (15) seems to

be that, in the proof of (14), the fact that g+ attains the supremum of si on [a, b] is

used, together with the inequality g S g+, while in the proof of (15), only the in-

equality g S g+ can be used, since si+ need not attain the infimum of si on [a, b]).

It is clear that, putting g = u in inequality (8), and g = I in inequality (9), one

obtains (7). Inequalities (6) and (7) give the desired equality, and the proof of

Lemma 2 is complete.

Theorem 1.

sup
/Gp

sup (^fY\\\tw)
Proof. From Lemma 1 one has that

sup 11/11 = max
/Gp

sup/
/Gp

inf /i
/Gf

hence the desired conclusion follows from Lemma 2, upon choosing

u = sup /,        I = inf /.
/Gp /Gf

Corollary. Let p be a real-valued, continuous function on [a, b]. Then

sup ||/- p|| = sup
/Gf

(sup /)   - p ,   ( inf /)   - p
\/Gf    / \/Gf    /

Proof. As an auxiliary proposition, it will first be shown that, for any bounded

real-valued function h on [a, b], one has

(16) [h - p]+ = A - p ,

and

(17) [h - p]~ = hr - v .

(Since, for any bounded real-valued function / on [a, b], one has

-(-/)+ = r,
equation (17) is implied by equation (16), as is evidenced by the following simple

computation :

(h - p)- = -[- (h - p)]+ -_(_* + p)+ = - [(_*)+ + p]

= -i-h)+-p

= hr - p.)

Now to prove (16). It will first be shown that
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(18) [h- p]+ Sh+ -p.

To see this, let x G [a, b], and [xk}^=1 be a sequence of numbers from [a, b] such that

lim xk = x ,
k—4-oo

and

lim [hixk) — p(xk)] = [h — p]+ix) .
k—*oo

Then, since p is continuous at x, one has

[h - p]+ix) = lim [ft(a;*) - p(xk)]
k—>oo

= lim A (a:*) — lim pixk)
k—*oo k—*<x3

= lim hixk) — p(x)
k—*ao

S   hm sup Aiy)    - p(.r)
La->0    OS1!—i/l<5;  tigïgt J

= A+(aO - p(a;),

which gives (18).

It remains to show that

(19) [A - p]+ ^ A+ - p .

To see this, let x G [a, b], and {xk}^=1 be a sequence of numbers from [a, b] such that

lim xk = x ,
k—*oo

and

lim Afe) = A+(a;) .
k—♦»

Then, since p is continuous at x,

h+Ox) — pix) = lim A (a;*) — lim pfe)
k—>oo A:—>4»

= lim [A(a;*) — pOxk)]
k—><x>

S lim sup [Aiy) - p(y)}
ä>0    0-¿\x-y\<i; a&y&b

= [A - p]+(x) ,

which gives (19).

Putting together inequalities (18) and (19) gives equation (16).

For convenience in writing, let G = [g\g = f — p, where/ £F). The result of

the corollary then follows from the previous theorem, applied to the family G,

since, on the one hand

sup HsH = sup ||/- p|| ;
sG(j /Gf

while, from (16), with A = sup/Gp/,
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and, from (17)

fev   =[fe/)"PJ+=(/e?/)+-?>;

C*ä")""[fe/)-,']"-fe/)"-p-
Now, let P be a nonempty set of real-valued continuous functions on [a, b]. Taking

the infimum over P, on both sides of the equality in the conclusion of the corollary,

gives the following approximation theorem :

Theorem 2.

inf  sup ||/
pGp /Gp

V. = inf sup
pGp

(sup/)   - p\,   (inf /)
\/Gp    / I      \/Gp   /

V

Remark. In words, this theorem states that the problem of simultaneous approxi-

mation of the family F, in the supremum norm, by functions of the class P, is

equivalent to the simpler problem of approximating, simultaneously, two functions,

a certain upper semicontinuous function and a certain lower semicontinuous

function.
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