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Abstract

We study simultaneous ascending auctions of identical objects when

bidders are financially constrained and their valuations exhibit com-

plementarities. We assume the budget constraints are known but the

values for individual objects are private information, and characterize

noncollusive equilibria.

The equilibria exhibit the exposure problem. The bidder with the

highest budget is more reluctant to bid, because the bidder with the

lowest budget may end up pursuing only one object, thus preventing

the realization of complementarities. In some states of the world both

objects are assigned to the ‘poorer’ bidder although that bidder has a

lower valuation.
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1 Introduction

Since their introduction by the Federal Communication Commission in 1994

simultaneous ascending auctions have become a commonly used auction for-

mat for the sale of multiple objects. One reason for their popularity is

that they allow bidders to adjust their bids between different objects as the
auction progresses in light of the new information about the likelihood of

obtaining different subsets of objects. This is particularly useful when sig-
nificant subsets of the objects on sale tend to exhibit complementaries (see

e.g. Szentes and Rosenthal [15]) and the bidders have a limited amount of

money for the auction, so that increasing the bid on one object decreases

the amount of money available for bidding on other objects. The practical

importance of budget constraints in the FCC auctions of spectrum licenses

has been pointed out, among others, by Salant [14].

The joint presence of complementarities and budget constraints makes

the theoretical analysis of the equilibria of simultaneous ascending auctions

particularly complex. The main issue appears to be the so-called ‘exposure

problem’. The expression is used to indicate that while bidding on an object

above its stand-alone value may be justified by the hope of buying it as a

component of a bundle whose total value is still above the total payment

implied by the current prices, doing so exposes a bidder to the risk of ending

up with having to buy that object alone, and thus earn a negative surplus.

At least in some cases the exposure problem induces bidders to bid less

aggressively than they would do by taking fully into account the value of

complementarities that can be realized. Although the exposure problem has

been identified in settings without budget constraints, in our setup it only

appears when both complementarities and budget constraints are present.

In this paper we focus on the interplay between complementarities and

budget constraints in simultaneous ascending auctions, and in order to make

the analysis tractable we limit attention to the case of known budget con-

straints. This is a good approximation of reality in some instances, and it is

a useful first step for the analysis of the case with privately known budgets.

To our knowledge, there is no paper that deals simultaneously with com-

plementarities and budget constraints in ascending auctions. Instead, the

literature has separately introduced complementarities or budget constraints

in standard auction models.
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The effect of complementarities in simultaneous auctions has been stud-
ied, among others, by Rosenthal and Wang [13], Krishna and Rosenthal [9],

Szentes and Rosenthal [15], [16], Englmaier et al. [7], Fang and Parreiras [8]

and Chakraborty [5]. In all these papers the auction formats that have been

considered are not of the ascending type; rather, these papers have focused

on variants of first-price or second-price auctions. Our work is more re-

lated to Albano et al. [1] and Zheng [17]. These papers consider ascending

auctions in which some ‘global’ bidders have complementarities and want

to pursue both objects while other ‘local’ bidders pursue a single object.

The identity of global and local bidders is common knowledge, although

the stand-alone values and the complementarities are private information.

Neither Albano et al. [1] nor Zheng [17] consider the presence of budget

constraints, as we do. Another important difference is that we consider ex
ante identical bidders. By this we mean that the stand alone values and the

complementarities are drawn from the same distributions.

The impact of budget constraints for various auction formats has been

analyzed in a seminal paper by Che and Gale [6]. Benoît and Krishna [2]

have studied the impact of budget constraints on sequential auctions with

complete information. Finally, in Brusco and Lopomo [3] we have studied

simultaneous ascending auction without budget constraints with heteroge-

nous objects and either zero or large complementarities, and in Brusco and

Lopomo [4] we have analyzed simultaneous ascending auctions with privately

known budget constraints and homogeneous objects, but without comple-

mentarities.

We focus on ‘noncollusive’ equilibria, i.e. equilibria in which the bidders

do not try to split the objects when budget constraints are not binding.

Collusive equilibria may exist (depending on the distribution of values) but

the presence of budget constraints adds little to their analysis, and we refer

to the previous literature.

We always assume that stand—alone values are private knowledge, and

analyze both the case in which complementarities are common and known

and the case in which complementarities are private knowledge. In both

cases the noncollusive equilibrium is essentially unique and has the same

qualitative features. The most interesting effect is the presence of the ex-
posure problem. It turns out that it is the bidder with the highest budget

who is affected by the problem, since the ‘poor’ bidder may start demand-
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ing only one object when the budget becomes binding. Fearing exposure,

the ‘rich’ bidder leaves the auction earlier than a ‘poor’ bidder of the same

type. As a consequence, there are states of the world in which both objects

are assigned to the ‘poor’ bidder despite the fact that her valuation for the

objects is lower. We conclude that the presence of budget constraints cause

inefficiencies both because of an obvious direct effect (i.e. the ‘poor’ bidder
may be unable to get both objects when her values are higher because the

budget is binding) and a more subtle strategic effect, the so-called exposure
problem. Contrary to the direct effect, the strategic effects distorts efficiency
against the ‘rich’ bidder.

The rest of the paper is organized as follows. In Section 2 we specify

the rules of the auction and the assumptions on the bidders’ preferences.

In Section 3 we analyze the case in which the complementarity terms are

common knowledge, strictly positive and identical for the two bidders, while

the stand-alone values are private information, and describe the equilibrium.

In Section 4 we study the case of privately known complementarities (as well

as stand—alone values), characterizing an equilibrium which is qualitatively

similar to the one found for the case of common complementarities. Section

6 contains concluding remarks, and an appendix collects the proofs.

2 The Model

There are two identical units of a good and two risk neutral bidders. Each

bidder i ∈ {1, 2} is willing to pay vi for a single unit, and 2 (vi + ki) , ki ≥ 0,
for both units. We will refer to the variables vi and ki as bidder i’s ‘stand-

alone value’ and ‘complementarity premium’ respectively. (Note that ki is

the per-unit premium.) Bidder i’s surplus when she obtains n ∈ {1, 2}

objects and pays a total amount of m is

Ui (n,m| vi, ki) =





vi −m, if n = 1,

2 (vi + ki)−m, if n = 2.

The four variables (v1, v2, k1, k2) are distributed independently, with support

[0, 1]2 ×
£
k, k

¤2
, where k ≥ 0. The stand-alone values v1, v2 are identically

distributed, with c.d.f. F and differentiable density f , and the complemen-

tarity premia k1, k2 are identically distributed, with c.d.f. G and differen-

4



tiable density g. The realization of the pair (vi, ki) is privately observed by

bidder i before the beginning of the auction.

We assume that each bidder i has a fixed amount of money (budget) wi

for bidding, so that the total payment m cannot exceed the budget wi. The

budget levels w1 and w2 are common knowledge. To simplify the analysis

without altering the substance of our results we assume than 1 < w1, w2, so

that any bidder can always bid up her stand-alone value (i.e. vi < wi, for

all vi ∈ [0, 1]). However, bidder i is unable to bid up to her valuation for the
two-unit bundle whenever wi < 2 (vi + ki) . It is convenient to introduce the

notation hi ≡ wi
2 , since this is the highest unit price that bidder i can pay

when buying both objects. We assume that the two budgets are different,
and without additional loss of generality we set w1 < w2.

The objects are sold using a ‘simultaneous ascending clock auction’

(SACA) working as follows. Each bidder is given two buttons. There is

a single price which starts at zero and increases at constant speed, until at

least one bidder lifts at least one button. The general idea is that lifting l

buttons at price p means demanding l fewer units at any price higher than

p, until additional buttons are lifted. Thus by lifting one button at price p,

and the second button at p0 > p, bidder i communicates that she is willing

to pay up to 2p for two units, and up to p0 for one unit.

Demand reduction is irreversible: once released a button cannot be pushed

again. This is the simplest version of the activity rules that are often used

in simultaneous ascending auctions1.

The continuous time format of the auction requires care in the specifi-

cation of some details, in order to make sure that the resulting game form

is well defined. As usual, the technical problem is that sometimes a player

wants to react to an action by her opponent as soon as possible, and this

may create an ‘open set problem’. In our case this happens, for example,

when the price is increasing and bidder 2 wants to end the auction as soon

as possible after bidder 1 lifts one button; that is, if bidder 1 lifts one button

at time τ , then bidder 2 wants to lift one of her buttons at the lowest time

t such that t > τ . This problem has no solution because the constraint set

1 In most of the FCC auctions used for the sale of spectrum licenses variations of the

following basic rule were put in effect: ‘a bidder that places eligible bids for n units at
round t cannot place bids for more than n units at any subsequent round t0 > t.’ (Milgrom

[12]).
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is open. To get around this issue, we specify that when one2 button is lifted

for the first time, say by bidder 1, the price stops for an interval of time δ

during which bidder 2 is given a chance to reduce her demand at the same

price.3 We also want to allow bidder 1 to react to bidder 2’s reaction, and

so on until both bidders choose to do nothing, before the price can resume

its upward movement.

The formal specification of the rules is as follows. Suppose that bidder i

is the first to lift exactly one button at time t, when the price is pt. Then the

price stops raising, and bidder j 6= i is asked whether she wants to react by

lifting one or two buttons. If j lifts any button the auction ends; otherwise

bidder i is asked whether she wants to lift her second button. If she does, the

auction ends; and if she does not, the price resumes its upward movement

starting from pt, with bidder i pushing one button and bidder j pushing

two buttons. Thus the price may start moving again only after both bidders

have had a chance to react to the status quo and have chosen to do nothing.

The allocation of the objects and the price are determined as follows.

Let t denote the first time at which bidder i reduces demand, i.e. releases

one or two buttons. If bidder i lifts two buttons, then her opponent j 6= i

buys both objects at unit price pt, unless j also releases two buttons at t, in

which case the tie is broken by assigning the two-item bundle to each bidder

with probability 1
2 . If both bidders release exactly one button at time t,

then each bidder buys one object at price pt. Finally, if bidder i releases

one button and j does nothing at t, the price stops for an interval of time

δ, during which j is given the opportunity to react: if j releases one button,

the auction ends with each bidder buying one unit at pt; if j releases two

buttons, then i buys both objects at pt each;
4 and if j does nothing, then i is

given a chance to release her second button in which case j gets both objects

at pt each, otherwise the price resumes its upward movement, starting from

pt+δ = pt.

In this last case, the auction ends as soon as any bidder releases another

button: if bidder j releases one or two buttons then each bidder buys one

object at the current price; if instead bidder i releases her second button,

2 If more than one button is released, the auction ends.
3Zheng [17] has similar auction rules.
4This is because, as mentioned at the beginning of the section, lifting one button at

pt indicates willingness to buy both units for pt each, and at most one unit for any price

above pt.
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bidder j wins both objects.

A few remarks on the auction rules are in order. First, note that the

buttons are not object-specific. Therefore this auction format is equivalent

to one in which any bidder can resume bidding on any object, even if she has

not done so continuously since the beginning of the auction, as long as her

bidding activity (the number of objects on which she is bidding) does not

increase. This format, with the activity rule, is intermediate between the

case where exit on each object is irrevocable and the case with unrestricted

reentry.

Second, the tie-breaking rules are designed to maximize the probability

of realizing the complementarities, i.e. of assigning both objects to the same

bidder. This is why the two-unit bundle is allocated to one (randomly cho-

sen) bidder when both bidders reduce their demand to zero simultaneously.

Also, when one bidder reacts to the demand reduction of another bidder

lifting both buttons, both objects are allocated to the bidder who reduced

demand to one. By maximizing the probability of assigning both objects to

a single bidder we minimize the inefficiencies caused by the presence of po-
tentially binding budget constraints. If the tie-breaking rules were changed

the equilibria described in the next two sections would remain qualitatively

the same, but would entail additional distortions from the efficient outcome.
In our analysis we rule out (weakly) dominated strategies, hence we focus

on equilibria where each bidder reduces demand to zero only after the price

becomes at least as large as the stand—alone value. Moreover, since our

main goal is to study the impact that the simultaneous presence of budget

constraints and complementarities has on the level of efficiency that can be
achieved in the SACA, we focus on ‘noncollusive’ equilibria, i.e. equilibria

in which the bidders bid ‘straightforwardly’ as much as possible. Equilibria

with a collusive flavor, in which the bidders manage to coordinate on buying

one object each for a low price, can be constructed as follows.5 Suppose that

bidder 1 reduces demand to one when the price is 0, implicitly inviting the

opponent to split the objects. If this ‘offer’ is declined (i.e. if bidder 2 does
not releases any of her buttons), the only optimal continuation strategy for

bidder 1 is to bid on a single unit up to her value v1, in which case bidder 2’s

optimal continuation strategy is to release one object at an optimally chosen

5We have studied collusive behavior in simultaneous ascending auctions in Brusco and

Lopomo [3].
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‘stopping time’. For some distributions of vi and ki, splitting the objects

at p = 0 is an equilibrium, and there can be similar equilibria inducing the

splitting of the objects at prices below h1.

We ignore collusive equilibria here because their existence does not hinge

on the presence of budget constraints. Our goal is to identify the distortions

from the first best that arise in the SACA when both budget constraints

and complementarities are present. Thus we only consider ‘noncollusive’

strategies, according to which bidder i bids on both objects as long as p ≤
min {h1, vi + ki} , i.e. unless either the implied payment is more than her

value for the bundle — i.e. 2p > 2 (vi + ki); or the price is above h1, in which

case bidder 1 cannot bid on both objects, as her budget constraint becomes

binding.

We begin by establishing an easy benchmark: without budget constraints,

the SACA has a ‘bundling’ equilibrium in which both objects always go to

the bidder with the highest total value, thus implementing the efficient al-
location.6

Proposition 1 If 2
¡
1 + k

¢
< wi for each i ∈ {1, 2}, there exists a perfect

Bayesian equilibrium in which bidder i wins both objects whenever vi+ ki >

v−i + k−i.

In the equilibrium of Proposition 1 each bidder bids straightforwardly, de-

manding both objects when p ≤ vi + ki and zero otherwise. This is always

feasible under the assumption that the type with the highest value for the

bundle 2
¡
1 + k

¢
can do so. Thus on the equilibrium path the bidders only

compete for the two-unit bundle. To guarantee that demanding one unit is

never a profitable deviation, we select beliefs that assign high probability to

low values for any bidder who lifts only one button. Thus if bidder i releases

only one button (an out of equilibrium action) her opponent will not accept

to split the objects and will instead keep bidding on both objects up to her

value, because she expects to pay a low price. This makes the deviation

unprofitable.

6Chakraborty [5] discusses conditions under which various simultaneous (but non-

ascending) auctions may have ‘bundling equilibria’, i.e. equilibria in which the strategies

are such that a bidder either gets the bundle or nothing, so that the exposure problem

does not arise.
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The relevant implication of Proposition 1 here is that the sole presence of

complementarities is not sufficient in our setting to generate any distortion
from efficiency, as the exposure problem does not arise without the possibil-
ity of binding budget constraints.7 Thus the distortions from the efficient
outcome that we are going to find are due to the simultaneous presence of

complementarities and potentially binding budget constraints.

These distortions are caused by three effects. First, there is an obvious
direct effect due to the fact that in some cases the bidder with the higher
value for the two-unit bundle cannot afford to pay for both objects, hence
the objects end up being split. The bidder who suffers more from this effect
is the one with the lower budget.

A second, more interesting effect, is caused by the exposure problem that
is created for the high budget bidder, i.e. bidder 2. As we will see, there

are cases in which, in any noncollusive equilibrium, bidder 2 will lift both

buttons well before the total payment implied by the current price arrives

at her value for the bundle, because she is afraid of ending up having to buy

a single object and thus earning negative surplus. The loss of social surplus

in this case is not due to the fact that the objects are split, but rather by

the fact that the bundle may be assigned to the bidder with the lower value.

Interestingly enough, the bidder who is hurt by this second effect is the one
with the higher budget, because it is the ‘poor’ bidder who is the first to

reduce demand to one unit, thus creating the exposure problem for the ‘rich’

opponent.

Finally there is a ‘monopsony effect’ that arises after bidder 1 lifts one
button at h1. (We will show that this happens in any noncollusive equilib-

rium). In this case bidder 2 faces a classic monopsonistic trade-off between
quantity (one versus two units) and price, and thus will generally lift one

button before the total payment implied by the price reaches her value for

the two-unit bundle. Therefore the objects may end up being split even if

bidder 2 is not budget constrained and has a higher value for the bundle.

Proceeding to the formal analysis, we define an assignment rule as a set

of four functions q =
³
q
(1)
i , q

(2)
i

´
, i ∈ {1, 2}, where q

(j)
i : [0, 1]2 ×

£
k, k

¤2 →
[0, 1] specifies the probability that j objects are assigned to bidder i when

the type profile is θ := (v1, k1, v2, k2). An assignment rule is feasible if, for

7The exposure problem would reappear however if the objects were heterogeneous, (e.g.

if a bidder were only interested in one of the objects), even without budget constraints.
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each profile θ, the allocation q (θ) is consistent with the fact that there are

two objects for sale.

Our first proposition pertains to the direct effect that budget constraints
have on the outcome. In any noncollusive equilibrium, a bidder can win both

objects only if her budget is at least as large as twice her opponent’s stand-

alone value. This is because the opponent reduces demand to zero only after

the price becomes larger than the stand-alone value.

Proposition 2 If q is the assignment rule of an equilibrium outcome, then

for each i = 1, 2,

q
(2)
i (θ) = 0 if hi < v−i. (1)

The restriction in (1) generates a loss of social surplus because it immedi-

ately implies that the objects must be split (hence the complementarities

cannot be realized) whenever hi < v−i for each i ∈ {1, 2}. Note that this is
true in any equilibrium (with undominated strategies). Thus Proposition 2

identifies an upper bound on the level of efficiency that can be obtained.
As we will see next, this upper bound cannot be obtained by any equi-

librium of the SACA. This is because of both the exposure problem and the

monopsony effect, which induce bidder 2 to reduce her demand, to zero and
one respectively, before the total payment implied by the price arrives at

her value. It is worth pointing out that, while the exposure problem only

arises in the presence of complementarities, the monopsony effect is most
severe when bidder 2’s complementarity premium k2 is zero, as the incen-

tive to buy the second unit increases with k2. Thus the overall impact that

the presence of complementarities has on the level of efficiency with budget
constrained bidders is ambiguous: while they create the exposure problem,

they also mitigate the monopsony effect.
To see how these two additional effects manifest themselves in all noncol-

lusive equilibria, first observe that straightforward bidding pushes the price

to h1 when both bidders have sufficiently high values, i.e. vi + ki ≥ h1 for

each i. Once the price arrives at h1, bidder 1 must reduce her demand, as

her budget constraint becomes binding. The next lemma establishes, that

her only equilibrium continuation strategy is to reduce her demand to one,

and then, if bidder 1 keeps demanding both objects, lift her second button

before the price resume its upward movement or bid on one unit up to v1,

depending on whether her stand-alone value is below or above h1.
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Lemma 1 In any noncollusive equilibrium, all types of bidder 1 with h1 <

v1 + k1 reduce their demand to one at h1, and then lift their second button,

if v1 ∈ (h1 − k1, h1), and bid on one unit up to v1, if v1 > h1.

In light of Lemma 1 it is easy to characterize the set of all equilibrium

continuation strategies for bidder 2. Recall that in equilibrium, once the

price has arrived at h1, it is common knowledge that vi + ki ≥ h1 for each

i = 1, 2. After bidder 1 stops the price by lifting one button, bidder 2 can

reduce her demand to zero before the price starts moving again, thus earning

zero surplus, or do nothing until the price moves again and arrives at any

level p ∈ [h1, h2], and then lift one button. The latter strategy yields both
objects at unit price v1 if v1 < p, and one object at price p if v1 > p, hence

an expected surplus of

V (p|v2, k2) ≡
Z p

h1

2 (v2 + k2 − v1) dG (v1) + [1−G (p)] (v2 − p) ,

where G (p) ≡ F (p)−F (h1)
1−F (h1)

. It is easy to see that, as v2 + k2 approaches

h1, the integral in the expression above goes to zero and the second term

becomes negative, hence V (p|v2, k2) < 0 for all p ∈ [h1, h2] . Therefore there
exists a set of types of positive measure with v2 + k2 > h1 for whom it is

optimal to lift both buttons before the price starts raising again. These

are the types whose behavior is affected by the exposure problem. In this
case bidder 1 wins both objects, and the resulting allocation is inefficient
whenever v1 + k1 < v2 + k2.

For all other types of bidder 2, any equilibrium continuation strategy is

characterized by an optimal ‘stopping time’

p∗ (v2, k2) ∈ arg max
p∈[h1,h2]

V (p|v2, k2) , (2)

which is often strictly below bidder 2’s willingness to pay v2 + k2. To see

this, note that the first derivative

∂V (p|v2, k2)

∂p

¯̄
¯̄
p=v2+k2

= G0 (p) k2 − [1−G (v2 + k2)]

is negative for k2 sufficiently small.
We now proceed to complete the characterization of the noncollusive

equilibria. We will first present the case in which complementarities are
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known and identical, since most of the intuition can be obtained for this

special case, and then turn to the general case in which both stand—alone

values and complementarity premia are privately known.

3 Known and Identical Complementarities

In this section we discuss the noncollusive equilibrium of the SACA when

it is common knowledge that the bidders have the same complementarity

premium, i.e. k = k = k > 0. To simplify the exposition we will assume

h1 − k > 0; the discussion can be easily adapted to accommodate the case

h1−k < 0without significant changes. Since complementarities are identical,

efficiency requires that both objects be assigned to the bidder with the
highest stand-alone value vi.

We define a pair of partition strategies as follows.

Player 1 (low budget player):

� types with v1 ∈ [0, h1 − k] bid on both objects up to v1+ k, and then

reduce their demand to zero;

� types with v1 ∈ (h1 − k, h1] bid on both objects up to h1, and then

reduce their demand to one; if bidder 2 does not react, they reduce

demand to 0;

� types with v1 ∈ (h1, 1] bid on both objects up to h1, and then bid on

one object up to v1.

Player 2 (high budget player):

� types with v2 ∈ [0, h1 − k] bid on both objects up to v2+ k, and then

reduce their demand to zero;

� types with v2 ∈ (h1 − k, v∗2], where the threshold v∗2 is determined
by equation (4) below, bid on both objects up to h1 and then, when

bidder 1 reduces demand to 1, react by reducing demand to 0;

� types with v2 ∈ (v∗2, 1] bid on both objects up to h1, and then, when

bidder 1 reduces demand to 1, do not react; if bidder 1 does not lift

her second button, keep their demand at 2 until an optimally chosen
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‘stopping time’ p∗ (v2) determined by (5), and then reduce demand to
1, thus ending the auction.

The strategy of the low—budget bidder can be loosely described as follows.

First, types with v1 + k ≤ h1 bid straightforwardly, demanding two objects

until the price reaches v1 + k and then dropping both objects. All other

types bid on both objects until the price reaches h1 and watch bidder 2’s

reaction. If 2 reduces her demand to 0, they win both objects,

Second, types with v1 + k > h1 and v1 ≤ h1 try to buy both objects

until the price reaches h1. At that point they lift one button, hoping that

the opponent will leave the auction. If the opponent leaves the auction then

bidder 1 gets both objects. If instead the opponent does not react, thus

keeping the demand at 2, then bidder 1 leaves the auction, since the stand

alone value is inferior to the price. Finally, types with v1 + k > h1 and

v1 > h1 behave much in the same way, except that they keep trying buying

a single object until the price reaches v1. Notice that these are exactly the

types that bidder 2 fears the most, since they are the ones who can get

bidder 2 exposed.

Consider now the strategy of the high budget player. Again, types with

v2+k ≤ h1 bid straightforwardly. The set (h1 − k, v∗2] is the most interesting
one, since these are the types who fear the exposure problem and may leave

the auction against an opponent with lower value. These types demand two

objects until the price reaches h1. At that point, bidder 1 reduces demand

to 1, and bidder two has to decide how to react. To better understand the

problem of bidder two, consider what happens if the bidder does not react

(thus keeping both buttons pushed). In this case, either bidder 1 reacts by

leaving the auction, or bidder 2 remains in the auction. The first case occurs

when v1 ≤ h1, and in that case bidder 2 obtains a utility of 2 (v2 + k − h1).

The second case occurs when v1 > h1. Notice that in this case the auction

continues with bidder 1 having reduced demand to one, so that bidder 2 is

forced to buy at least one object. This implies that in this case the highest

expected utility that bidder 2 can attain is given by

V (v2) ≡ max
p∈[h1,h2]

Z p

h1

2 (v2 + k − v1) dG (v1) + [1−G (p)] (v2 − p) , (3)

where G (v1) = F (v1| v1 ≥ h1). If we define

φ ≡ Pr (v1 ≤ h1|h1 − k < v1)

13



then we conclude that the expected utility of continuing to push two buttons

after the opponent has reduced demand to one is

H (v2) ≡ φ [2 (v2 + k − h1)] + (1− φ)V (v2) .

This is a continuous and strictly increasing function of v2, and it is easy to

see that the function is strictly negative at v2 = h1− k and strictly positive

at v2 = h1. The threshold v∗2 is the unique solution to the equation

H (v2) = 0, (4)

and it is an interior point of the interval [h1 − k, h1]. In fact, notice that

bidder 2 can always obtain a utility of zero by lifting both buttons. Thus,

bidders with v2 < v∗2 are better off by leaving the auction, since it is too
costly for them to be exposed to the risk of buying a single object. On the

other end, types in the set (v∗2, 1] obtain a strictly positive expected utility if
they continue to compete in the auction.8 At that point they have to decide

at what price p∗ to let the auction end, i.e. they have to decide the highest
price that they are willing to pay in order to try to get both objects. This

‘optimal stopping time’ is obtained solving the problem.

max
p∈[h1,h2]

Z p

h1

2 (v2 + k − v1) dG (v1) + [1−G (p)] (v2 − p) . (5)

Notice that the types of bidder 2 such that v2 ∈ (h1 − k, v∗2] always give up
both objects when the price reaches h1 and the opponent reduces demand to

one. This means that they will lose both objects against all types of bidder

1 in the interval [h1 − k, 1]. If follows that whenever h1 − k < v1 < v2 < v∗2
the two objects go to bidder 1.

The next proposition establishes the existence of the equilibrium. Its

proof consists in showing that it is possible to find a set of consistent beliefs

for which the partition strategies are sequentially rational.

Proposition 3 When k is known and identical across bidders there exists a

perfect Bayesian equilibrium in which the bidders adopt the partition strat-

egy.

8Notice that it is never optimal for bidder 2 to react by reducing demand to one. Bidder

2 has always the option of keeping both buttons pushed, observe the reaction of bidder 1,

and then reducing demand to one immediately when the auction restarts.
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The outcome of the equilibrium described in Proposition 3 is as follows.

� When min {v1, v2} ≤ h1 − k, the outcome is the same as the one of

the the bundling equilibrium described in Proposition 1. The auction

ends with bidder i buying both objects, and paying v−i+k−i for each,

whenever vi + ki > v−i + k−i.

� When (v1, v2) ∈ (h1 − k, 1]× (h1 − k, v∗) , bidder 1 reduces demand to
1 when the price reaches h1, and bidder 2 reacts by reducing demand

to zero. Thus, bidder 1 buys both objects for h1 each.

� When (v1, v2) ∈ (h1 − k, h1] × (v
∗, 1] , bidder 1 reduces demand to 1

when the price reaches h1, bidder 2 keeps both buttons pushed, and

then bidder 1 releases her second button. Thus bidder 2 buys both

objects for h1 each.

� When (v1, v2) ∈ (h1, 1] × (v∗, 1] bidder 1 reduces demand to 1 when
the price reaches h1, bidder 2 keeps both buttons pushed, and bidder 1

continues to push one button. Thus, the price starts raising again and

bidder 1 bids up to v1 on a single object, while bidder 2 releases one

button at her optimal stopping time p∗ (v2) defined in (5). Thus the
auction ends with bidder 2 buying both objects for v1, if v1 < p∗ (v2) ,
and with each bidder buying one object for p∗ (v2) otherwise.

The value v∗ depends on the parameters of the model. It is interesting to
observe what happens to v∗ when h2 changes. When h2 increases, the value

V (v2) (weakly) increases for each value v2, since the constraint set expands.

Therefore the expected value of continuing the auction increases, and the

value v∗ (weakly) decreases. Thus, the lowest value of v∗ is obtained by
setting h2 = 1 in the definition of V (v2) and then solving equation (4).

The highest value of v∗ is instead obtained when h2 converges to h1 from

above. In this case it becomes pointless for bidder 2 to try to get both

objects, since the tight budget will force bidder 2 to reduce demand to one

very quickly after the price has passed h1. In that case V (v2) converges

to [1−G (h1)] (v2 − h1) = v2 − h1, since G (h1) goes to 0. Therefore, v
∗

converges to

v2 =
h1 − φk

1 + φ
,
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We finally observe that

dH

dk
=

dφ

dk
[2 (v2 + k − h1)− V (v2)] + φ2 + V (v2) + (1− φ) 2G (p∗) > 0

since
dφ

dk
=

1− F (h1)

(1− F (h1 − k))2
f (h1 − k) .

It follows that dv∗
dk < 0. Since the magnitude of v∗ is a measure of the

severity of the exposure problem, we conclude that the exposure problem

becomes less severe as the value of the complementarities increases. This

is intuitive. When k becomes larger the expected cost of getting a single

object remains constant, but the expected benefit of getting the bundle goes

up. Thus, more types will be willing to take the risk of pursuing the bundle.

4 Privately Known Complementarities

In this section we show that an equilibrium with the same qualitative prop-

erties of the one described in section 3 can be found for the more general case

in which both vi and ki are privately known. Again, for ease of exposition

we assume that k > h1, but the case k ≤ h1 can be easily accommodated.

The pair of partition strategies is now defined as follows.

Player 1 (low budget player).

� Types with v1 + k1 < h1 bid on both objects up to v1 + k1 and then

reduce their demand to zero. We call this set A.

� Types with h1 − k1 < v1 < h1 bid on both objects up to h1 and then

reduce their demand to one; if bidder 2 does not react, they reduce

demand to 0. We call this set B.

� Types with v1 ∈ (h1, 1] bid on both objects up to h1, then bid on one

object up to v1. We call this set H.

Player 2 (high budget player).

� Types with v2 + k2 < h1 bid on both objects up to v2 + k2 and then

reduce their demand to zero. We call this set C.
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Figure 1: Partition of types for the low budget bidder.

� Types with h1 − k2 < v2 < v∗∗ (k2) , where the function v∗∗ :
£
k, k

¤
→

[0, h1] is determined by equation (7) below, bid on both objects up to

h1 and then, when bidder 1 reduces demand to 1, react by reducing

demand to 0. We call this set D.

� Types with v∗∗ (k2) < v2 < 1 bid on both objects up to h1, and then,

when bidder 1 reduces demand to 1, do not react. If the opponent

remains in the auction, they keep their demand at 2 until an optimal

‘stopping time’ p∗ (v2, k2) (determined by (6) below), and then reduce
demand to one thus ending the auction. We call this set G.

The main difference with respect to the case in which complementarities
are known and identical is that now the type sets are portions of the plane,

rather than an interval. Figures 1 and 2 show how the partition strategy

works for the low budget and high budget bidder, respectively.

The functions v∗∗ (k2) is computed from an indifference condition, i.e.
it gives the set of types (v2, k2) who are indifferent between not reacting
when the opponent lifts one button at h1 and lifting both objects. The

formalism parallels that of the previous section. First notice that, once the

low budget bidder has decided to remain in the auction, only the distribution

of v1 matters for bidder 2, and this is given by G (v1) = F (v1| v1 ≥ h1).
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Figure 2: Partition of types for the high budget bidder.

Therefore, the optimal stopping time is found solving

max
p∈[h1,h2]

Z p

h1

2 (v2 + k − v1) dG (v1) + [1−G (p)] (v2 − p) , (6)

and we will call V (v2, k2) the value of the objective function at the optimal

point. We also define

ξ ≡ Pr (v1 ≤ h1|v1 + k1 ≥ h1) .

In graphical terms, the conditional probability ξ is the ratio between the

probability mass contained in area B and the mass contained in the areas B

and H of Figure 1. The expected utility for bidder 2 of continuing to push

two buttons after the opponent has reduced demand to one is

H (v2, k2) ≡ ξ [2 (v2 + k2 − h1)] + (1− ξ)V (v2, k2) .

For each fixed value k2, the function H (·, k2) is a continuous and strictly

increasing function of v2, strictly negative at v2 = h1−k2 and strictly positive

at v2 = h1. Thus, the value v∗∗ (k2) is obtained as the unique solution to
the equation

H (y, k2) = 0, (7)

and it belongs to the interval [h1 − k, h1]. The function v∗∗ (k2) can be
characterized as follows. First when k2 = 0 we have v∗∗ (0) = h1. Second,
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the function is decreasing, since ∂H
∂k2

> 0. Third, there is a value bk2 such
that H

³
0,bk2

´
= 0. If bk2 < k then all types (v2, k2) with k2 ≥ bk2 will not

react when bidder 1 lifts one button (this is the case pictured in Figure 2).

At this point, the task of completing the description of the perfect

Bayesian equilibrium can be easily accomplished following the steps used

in the proof of Proposition 3. We record this in the next proposition, which

we state without proof.

Proposition 4 When (vi, ki) is private information of bidder i there ex-

ists a perfect Bayesian equilibrium in which the bidders adopt the partition

strategy.

The equilibrium outcome can be described as follows.

� When min {v1 + k1, v2 + k2} ≤ h1, i.e. either the type of bidder 1

is in A or the type of bidder 2 in is C, the outcome is the same as

in the bundling equilibrium described in Proposition 1. The auction

ends with bidder i buying both objects and paying a price v−i + k−i

whenever vi + ki > v−i + k−i.

� When h1 < v1 + k1 < 1 and h1 − k2 < v2 < v∗∗ (k2), i.e. the type of
bidder 1 is in B or H and the type of bidder 2 is in D, bidder 1 reduces

demand to 1 when the price reaches h1 and bidder 2 reacts reducing

demand to zero. Thus bidder 1 buys both objects at a price h1.

� When h1 − k1 < v1 < h1 and v∗2 (k2) < v2 < 1, i.e. the type of bidder

1 is in B and the type of bidder 2 is in G, bidder 1 reduces demand

to 1 when the price reaches h1. Bidder 2 does not react, and bidder 1

releases the second button. Thus bidder 2 buys both objects at h1.

� When h1 < v1 < 1 and v∗2 (k2) < v2 < 1, i.e. the type of bidder 1 is in

H and the type of bidder 2 is in G, bidder 1 reduces demand to 1 when

the price reaches h1, bidder 2 does not react, and bidder 1 bids up to

v1 on a single object. The auction continues until the price reaches v1
(with bidder two getting both objects) or the optimal stopping time

p∗ (v2, k2) (with the objects being split), whichever is lower.

The outcome of the equilibrium is inefficient basically in the same ways
and for the same reasons described for the case of k known. One fact that
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should be pointed out however is that in the case of two-dimensional un-

certainty there is no mechanism that can implement a ‘budget—constrained’

efficient allocation, i.e. an allocation that maximizes efficiency subject to
the constraints given in Proposition 2, while in the case of one-dimensional

uncertainty such mechanisms may exists. Since in this paper we do not deal

with optimal mechanisms, we do not discuss the matter farther and refer

the reader to Maskin [11] and Jehiel et al. [10].

5 An Example: The Uniform Case

To have a better grasp of the equilibrium, in this section we compute ex-

plicitly the equilibrium for the case in which vi is uniformly distributed on

[0, 1] and ki is uniformly distributed on
£
0, k
¤
. For the low budget bidder

we have

Pr ((v1, k1) ∈ A) =
h21
2
, Pr ((v1, k1) ∈ B) =

(2− h1)h1
2

,

Pr ((v1, k1) ∈ H) = 1− h1.

Suppose that k is sufficiently large, so that we can conjecture that v∗∗ (k2)
intersects the horizontal axis a shown in Figure 2. We have

ξ =
(2− h1)h1
2− h21

The optimal stopping time is found solving

max
p∈[h1,h2]

Z p

h1

2 (v2 + k2 − v1) dv1 + (v2 − p) (1− p) .

The first derivative of the objective function is v2 + 2k2 − 1, so that the
optimal stopping time is h1 when v2 < 1 − 2k2 or h2 if v2 > 1 − 2k2 (and
any point in the interval [h1, h2] is optimal when v2 = 1 − 2k2). Therefore
we have

V (v2, k2) =





(v2 − h1) (1− h1) if v2 ≤ 1− 2k2

(1− h1) v2 + (h2 − h1) (v2 + 2k2)− h2 + h21 if v2 ≥ 1− 2k2

and we observe that V (v2, k2) is continuous and strictly increasing, since we

have assumed h1 < 1 and h2 > h1. Notice that, as h2 converges to h1 from
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above, V (v2, k2) converges to (v2 − h1) (1− h1). The type v∗∗ (k2) is found
solving the equation

ξ2 (v2 + k2 − h1) + (1− ξ)V (v2, k2) = 0

Consider first the interval v2 < 1− 2k2. If v∗∗ (k2) is in this interval then it
must be the solution to

ξ2 (v2 + k2 − h1) + (1− ξ) (v2 − h1) (1− h1) = 0

which is

v∗∗2 (k2) = h1 −
2ξ

(1 + ξ)− (1− ξ)h1
k2. (8)

If we define

T (h1, ξ) =
(1− h1) ((1 + ξ)− (1− ξ)h1)

2 (1− (1− ξ)h1)
,

we have that the value will actually belong to the desired interval (i.e.

v∗∗2 (k2) as defined in 8 is actually lower than 1− 2k2) if

k2 < T (h1, ξ) .

When k2 exceeds this threshold the relevant equation becomes

ξ2 (v2 + k2 − h1)+

+ (1− ξ)
¡
((1− h1) + (h2 − h1)) v2 + 2 (h2 − h1) k2 − h2 + h21

¢
= 0

and the solution is

v∗∗ (k2) =
2ξh1 − (1− ξ)

¡
h21 − h2

¢

2ξ + (1− ξ) (h2 + 1− 2h1)
− 2 (ξ + (1− ξ) (h2 − h1))

2ξ + (1− ξ) (h2 + 1− 2h1)
k2

It can be readily checked that the solution belongs to the desired interval

only if

k2 > T (h1, ξ) .

We conclude that the function v∗∗2 (k2) has the following shape

v∗∗ (k2) =





h1 − 2ξ
(1+ξ)−(1−ξ)h1

k2 if k2 < T (h1, ξ)

2ξh1−(1−ξ)(h21−h2)
2ξ+(1−ξ)(h2+1−2h1) −

2(ξ+(1−ξ)(h2−h1))
2ξ+(1−ξ)(h2+1−2h1)k2 if k2 ≥ T (h1, ξ) .

Since the absolute value of the slope is higher when k2 is larger, in the

uniform distribution case the types of the high budget bidder are partitioned

as shown in Figure 3.
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Figure 3: Partition of types for the high budget bidder in the uniform case.

6 Conclusions

In this paper we have discussed the structure of noncollusive equilibria in

a simultaneous ascending clock auction in which the bidders are budget

constrained and have increasing marginal payoffs from the objects. Our

equilibria exhibit some intuitive properties, such as the existence of an ex-

posure problem for the high-budget bidder. The simultaneous ascending

clock auction has an efficient noncollusive equilibrium when there are no

budget constraints, but it generates various inefficiencies when budget con-
straints are present. Not only objects are split too frequently, but it may

also happen that, because of the exposure problem, the low—budget bidder

may win the bundle even if her value for the bundle is lower than the value

of the high budget bidder.
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Appendix

Proof of Proposition 1. We specify strategies and beliefs, and show that

they form a perfect Bayesian equilibrium. The equilibrium is symmetric, so

the two bidders have the same strategies and beliefs.

Strategy. Type (vi, ki) of bidder i keeps both buttons pushed whenever the

price is p < vi+ki, no matter how many buttons the opponent has previously

released, and releases both buttons when the price reaches p = vi+ki. Also,

the bidder releases all the remaining buttons whenever the price is p > vi+ki
(this can only happen out of equilibrium).

Beliefs. At any price p at which the opponent j has not released any but-

ton the belief on vj and kj is computed using the Bayes’ rule, i.e. the

belief on vj is given by F (vj | vj + kj ≥ p) and the belief on kj is given by

G (kj | vj + kj ≥ p). If the opponent releases only one button at price p then

the belief on vj is any arbitrary distribution with support [0,min {p, 1}].

The beliefs are compatible with the strategy profile, since they are ob-

tained using the Bayes’ rule on the equilibrium path. We have to check

optimality of the strategy on and off the equilibrium path.

If at any p bidder i keeps following the equilibrium strategy then the

utility is max {2 [vi + ki − (vj + kj)] , 0}. The only possible deviations are

releasing two buttons, which gives 0, and releasing one object, which gives

max {[vi − (vj + kj)] , 0}. Thus, no deviation is profitable.

Out of the equilibrium path, the only case that matters is the one in

which the opponent has released one button at some price p0 < p, where p is

the current price. Given the beliefs, the opponent will exit immediately the

auction, so that by keeping both buttons pushed the utility is 2 (vi + ki − p),

since bidder i expects bidder j to leave the auction immediately. Releasing

one or two buttons yields (vi − p), which is clearly less.

The outcome of this strategy profile is that both objects are sold to the

bidder with the highest value for the two-unit bundle, say bidder i, for a

price of v−i + k−i. Thus, the outcome is efficient.

Proof of Lemma 1. Once the price arrives at h1, bidder 1 cannot

continue to bid on both objects. Reducing demand to zero is dominated

by reducing demand to 1, and lifting the second button if bidder 2 does

not react. Thus, in any noncollusive equilibrium, all types of bidder 1 with
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v1 + k1 > h1 reduce their demand to one when the price arrives at h1. If

bidder 2 does not react, it is optimal for all types with v1 ∈ (h1 − k1, h1)

to lift the second button, as buying a single object for h1 would generate a

surplus of v1−h1 < 0. For all types with v1 > h1 it is optimal to bid on one

object up to v1.

Proof of Proposition 3. We have to find beliefs which are compatible with

the proposed strategy profile, describe behavior off the equilibrium path and
show that no profitable deviation exists.

Beliefs are the same as in the proof of Proposition 1, i.e. they are given

by the Bayes’ rule on the equilibrium path and they assign low values to the

stand-alone type of a bidder who drops only one object at any price lower

than h1.

The only relevant out-of-equilibrium path is the one in which some bidder

i reduces demand to one at a price p < h1. Given the beliefs, in that case it

is optimal for the other player j to pursue both objects as long as vj+kj > p.

The reason is that bidder i is expected to drop out of the auction immediately

on the other object as well.

Finally, it is obvious (given the definition of optimal stopping time) that

no profitable deviation exists for player 2 after bidder 1 has reduced demand

to one at h1. Also, no bidder can profit from reducing demand to one at

a price p < h1, since the opponent becomes more aggressive. In particular,

notice that if bidder 2 reduces demand to one at p < h1 then the oppo-

nent will try to get both objects until the price reaches min {v1 + k1, h1}.

The outcome is therefore that bidder 2 gets only one object at a price

min {v1 + k1, h1}, making the deviation unprofitable.
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