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1. Introduction
The YBa2Cu3O6+z phase is the first high temperature superconductor that has been

found to exist above the liquid nitrogen temperature. Its properties have been studied in
many laboratories and numerous experimental values are currently available. The goal of
the present study is to compile all the experimental values related to the thermodynamic
properties of the YBa2Cu3O6+z phase and to assess the most reliable Gibbs energy as a
function of temperature and non-stoichiometry index z. When the Gibbs energy of the
phase is known all the other thermodynamic properties can be obtained by means of the
thermodynamic laws.

The present work is the continuation of 93DEG/VOR (see also 90DEG, 90DEG2,
90MER/DEG, 91VOR/DEG) where the thermodynamic model of the YBa2Cu3O6+z phase
has been suggested and the Gibbs energy has been already estimated. In the present work,
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the new experimental results that have appeared recently have been included in the
assessment, and the more attention has been paid to the statistical treatment.

We are aware of other papers that have been devoted to the assessment of the
YBa2Cu3O6+z phase thermodynamics since 1991 (discussion of the previous attempts can
be found in 91VOR/DEG). However, in our view, none of them has reached the final goal.

The YBa2Cu3O6+z thermodynamic model in 91LEE/LEE treats this compound as a
single phase and hence the results of 91LEE/LEE do not allow us to distinguish between
the YBa2Cu3O6+z orthorhombic and tetragonal modifications. This is very unfortunate
because only the orthorhombic phase possesses superconducting properties, and thus all
the practitioners would like to know what a modification will be formed under given
conditions.

93PLE/ALT have assessed the thermodynamic properties of the YBa2Cu3O6+z phase by
means of a step-by-step approach. This means that they evaluated the heat capacity, the
enthalpy, oxygen partial pressure and other properties consecutively without employing
any uniform model. As a result, the equations given do not obey the thermodynamic laws.
For example, Eq. (12) in this paper contradicts with Eqs (9) and (11), i.e., according to
the thermodynamic laws these equations can not be held simultaneously.

Recently 96BOU/HAC have published a paper where they have claimed that an
assessment of YBa2Cu3O6+z phase thermodynamics has been accomplished (none of
Degterov and Voronin's works have been cited). Unfortunately, all that is available there is
a sentence "we did it". In order to discuss this statement we have to wait until some more
details are published.

For a given system, the more experiments that are conducted, the more reliable the
results. Nobody seems to argue with this statement. On the other hand, however, the
results of the distinct experiments usually differ more between each other that the
reproducibility error in a single experiment. In this respect, the YBa2Cu3O6+z phase is a
very good example because we do have a lot of data that have been published since it has
been discovered: more than 3000 experimental points obtained in about 220 experiments
conducted by nearly 50 laboratories. Nevertheless, as one may expect, the scatter of the
results is rather huge and mere processing of all the results makes no sense at all.

The quality of different experiments is certainly different, and moreover, the quality of
the result presentation is also different. For example, many authors have presented their
experimental results as figures only. With advent of the digital scanners it is relatively easy
to convert these figures to numbers but the question how these figures have been made
remains unanswered.

Traditionally the question of the data quality has been solved by means of the weight
least squares when an expert assigned a weight to each experimental point a priori based
on her preferences. The main problem on this way is the subjectivity. It is relatively easy to
say that the weight for this point should be equal to one and for that point is equal to one
and half. It is not that easy though to explain how you have come to that conclusion. It
should be especially mentioned that we are not against subjectivity. Whether we want it or
not, the subjectivity can never be completely excluded in practical applications. Hope for
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the "golden" algorithm that would just take raw data and produce the true answer is
ungrounded because before data processing we must always postulate some hypothesis
than can not be proved empirically in that treatment.

Still, the subjectivity can be put under stronger control than in the case of the weight
least squares as has been shown by 96RUD, 97RUD and 97KUZ/USP. The new advanced
methods of mathematical statistics allow the expert to make the qualitative conclusions
only and let the formal methods do the rest. Making qualitative statements is much easier
for the human being, and furthermore, this also leads us to the formal way of expressing
the qualitative conclusions that are necessary for the simultaneous assessment.

Thus, the goal of the present work is twofold: first, to obtain the most reliable Gibbs
energy of the YBa2Cu3O6+z phase, second, to discuss with this example the new
approaches for the simultaneous assessment. We will start with the description of the
thermodynamic model of the phase in Section 2 and available experimental results in
Section 3. Then in Section 4, we will review the linear error model (see 96RUD and
97RUD for details) and describe its application to the thermodynamics of the
YBa2Cu3O6+z phase. Section 5 is devoted to another important question in the
simultaneous assessment: the visual comparison of different solutions. In Section 6, the
results obtained are compared with those in the weight least squares. Finally, Section 7
summarizes the methodological results that, in our view, have been achieved in the present
study.

2. Thermodynamic model
The thermodynamic model of the YBa2Cu3O6+z phase has been developed earlier by

Voronin and Degterov in 90DEG, 90DEG2, 90MER/DEG, 91VOR/DEG and
93DEG/VOR. Below there is just a brief review and 92VOR/DEG should be consulted for
the complete description of the model.

The YBa2Cu3O6+z phase has a layered structure (CuOz)(BaO)(CuO2)(Y)(CuO2)(BaO)
of the perovskite type. Only one of the three copper-based layers, so called basal plane, is
responsible for the oxygen non-stoichiometry (adsorption, desorption and ordering). All
other layers are considered to be stoichiometric and the overall formula unit can be written
as

[Y+3(Ba+2)2(Cu+2)2(O
-2)6] (Cu+1, Cu+3)1

(m)(O-2, Va)1
(a)(O-2, Va)1

(b) (1)

Here the basal plane is considered to comprise three sublattices: a cation sublattice for
copper and two anion sublattices filled with the atoms of oxygen and vacancies (Va). It
was necessary to introduce the two oxygen sublattices because the YBa2Cu3O6+z phase
was found to exist in two modifications, tetragonal and orthorhombic. The occupancies of
the sublattices (a) and (b) are the same in the tetragonal form, and the sublattice (b) is
richer by oxygen in the orthorhombic form.

The sublattice model leads to the expression for the phase Gibbs energy as follows
(complete calculus are in 91VOR/DEG):
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∆oxG(T, z, x) = g1(T) + g2(T)z + z(1 - z)Σiai(T)(1 - z)i + (c2 - x2)Σibi(T)(1 - z)i-1

+ T[(c + x) ln (c + x) + (c - x) ln (c - x) + (1 - c + x) ln (1 - c + x)
+ (1 - c - x) ln (1 - c - x) + z ln z + (1 - z) ln (1 - z)] (2)

where z is the shoichiometry index of the basal plane (0 ≤ z ≤ 1), c is short for z/2, x is the
order parameter (0 ≤ x ≤ z/2), gi(T), ai(T) and bi(T) are some temperature functions to be
determined. ∆oxG stands for the Gibbs energy of formation from the oxides, Y2O3, BaO,
CuO, and oxygen i.e., the Gibbs energy of reaction

0.5Y2O3 + 2BaO + 3CuO + (0.5z-0.25)O2= YBa2Cu3O6+z (3)

The thermodynamic properties of the oxides and oxygen employed in the present work are
listed in Table 1.

The order parameter x is defined as the difference between the oxygen occupancies yO

in the sublattices (b) and (a) as follows

x = (yO
(b) - yO

(a))/2 = z/2 - yO
(a) (4)

Thus, x should be equal to zero for the tetragonal phase and it is inside the interval
0 < x < z/2 for the orthorhombic phase. The parameter x is considered as "inner", that is
for all the thermodynamic functions at equilibrium we have just two independent variables,
the temperature T and the index z. The value of x at any given T and z can be determined
by minimizing Eq. (2) over x, or by equating to zero the partial derivative of ∆oxG in
respect to x

(∂∆oxG/∂x)T,z = 0 (5)

This equation can not be solved in the closed form but this is quite an easy task for the
modern numerical analysis. The only precaution that should be taken here is to choose the
right root of Eq. (5) that corresponds to the minimum of Eq. (2).

The "inner" variable x makes the model a bit unusual even though this is quite an
ordinary approach for the modern solution models. Eq. (2) describes function ∆oxG(T, z, x)
in three variables in the closed form. In practice, function ∆oxG(T, z) is required because in
the case of YBa2Cu3O6+z it is possible to control two external variables only. Then, the
order parameter x is assumed to reach the equilibrium value xeq and we have

∆oxG(T, z) = ∆oxG{ T, z, xeq(T, z)} (6)

where function xeq(T, z) represents the solution of Eq. (5). Because the latter is not
available in the closed form, Eq. (6) can be considered as an algorithm that suggests
computing ∆oxG(T, z) in two steps: first solving Eq. (5) numerically for the equilibrium
value of x and then substituting it in Eq. (2). It is worthy noting that the same is held for
other thermodynamic properties of the YBa2Cu3O6+z phase, for example ∆oxH(T, z) =
∆oxH{ T, z, xeq(T, z)}. The use of numerical methods changes nothing in principle, we can
safely think that function xeq(T, z) is completely known, and the only difference is that
calculations become unworkable without computers.

Let us stress once more that the lattice model that brought Eq. (2) forth gives the
uniform description for both modifications of the YBa2Cu3O6+z phase. Provided all the
parameters in Eq. (2) are known the type of the phase at any given T and z is determined
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by function xeq(T, z) that is doubtlessly defined by Eq. (2) itself. If the equilibrium value of
x is equal to zero then we have the tetragonal phase, otherwise the orthorhombic phase is
more stable. The phase border between the two modifications (the transition temperature
at the given index z) can be found by solving the next equation

(∂2∆oxG/∂x2)T,z|x=0 = 0 (7)

Again, in the general case this can be done by numerical methods only.

While writing Eq. (2) down we have neglected the influence of the hydrostatic

pressure, i.e., the term 

9 S
P

S

S

R

G∫
because it is usually small for condensed phases. In the last

expression po is the standard pressure for which the Eq. (2) is supposed to be held (in the
present work po = 101325 Pa). However, in our model the Gibbs energy of the
YBa2Cu3O6+z phase depends heavily on the partial pressure of oxygen in the surrounding
atmosphere. If there is the gas phase in equilibrium with YBa2Cu3O6+z then according to
the equilibrium criterion the oxygen partial pressure there must be equal to

ln {p(O2)/p
o} = 2∆oxG'O/RT (8)

where ∆oxG'O is the partial Gibbs energy, i.e., the partial derivatives

∆oxG'O ≡ {∂∆oxG(T, z)/∂z} T (9)

Taking into account Eq. (6) and the differentiation rule for a compound function we
obtain

∆oxG'O = {∂∆oxG(T, z, x)/∂z} T,x + {∂∆oxG(T, z, x)/∂x} T,z{ ∂xeq(T, z)/∂z} T (10)

The second term vanishes because of Eq. (5) and finally the partial Gibbs energy takes the
next form

∆oxG'O = {∂∆oxG(T, z, x)/∂z} T,x (11)

In many experiments it was the oxygen partial pressure that was fixed externally and
then the index z should be considered as a function, z{ p(O2), T}. The latter is implicitly
given by Eqs (5), (8) and (11), which should be solved for z at given oxygen partial
pressure and temperature. Then, all the thermodynamic properties are also can be
estimated under such conditions. For example, the Gibbs energy can be computed as
follows

∆oxG{ p(O2), T}  = ∆oxG{ T, z[p(O2), T], xeq(T, z[p(O2), T])} (12)

Certainly, we should rely again on numerical methods here.

The YBa2Cu3O6+z phase can be considered as a two-component solution and the
formation of the miscibility gap can not be excluded. Actually there are evidences that that
the miscibility gap with the upper critical temperature should occur in the YBa2Cu3O6+z

phase about room temperatures. The criterion for the complete miscibility requires Eq. (2)
as a function of z at constant temperature to be convex, or the partial Gibbs energy ∆oxG'O
(and then the oxygen partial pressure) to monotonously increase with the growth of z. If at
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some temperature this is not the case, then we have a miscibility gap and its borders can be
found by solving a system of the two equations for two unknowns, z' and z" (z' ≠ z")

∆oxG(T, z") - ∆oxG(T, z') = ∆oxG'O(T, z')(z" - z') = ∆oxG'O(T, z")(z" - z') (13)

All other thermodynamic properties of the YBa2Cu3O6+z phase can also be found
provided the Gibbs energy (Eq. 2) is known. Taking into account that H = -
T 2{ ∂(G/T)/∂T} p and S = - {∂G/∂T} p and then following the same way as for the partial
Gibbs energy (see Eqs 9 to 11) we have

∆oxH = -T 2{[ ∂∆oxG(T, z, x)/T]/∂T} z,x (14)

∆oxS = -{∂∆oxG(T, z, x)/∂T} z,x (15)

Then, the thermodynamic relationship Cp = (∂H/∂T)p lead us to the computational
expression for the heat capacity as follows

∆oxCpz = {∂∆oxH(T, z, x)/∂T} z,x + {∂∆oxH(T, z, x)/∂x} T,z{ ∂xeq(T, z)/∂T} z (16)

Note that the second term is not equal to zero here and that in the case of YBa2Cu3O6+z

some other heat capacities can be also introduced (see 93DEG/VOR). Eqs (15) and (16)
give the entropy and the heat capacity of reaction (3). The absolute values can be also
obtained as follows

S = ∆oxS + 0.5SY2O3 + 2SBaO + 3SCuO + (z/2 - 0.25)SO2 (17)

Cpz = ∆oxCpz + 0.5Cp,Y2O3 + 2Cp,BaO + 3Cp,CuO + (z/2 - 0.25)Cp,O2 (18)

Another thermodynamic property that has been measured for the YBa2Cu3O6+z phase is
the partial enthalpy. After analogous considerations as above it can be computed as
follows

∆oxH'O = {∂∆oxH(T, z)/∂z} T = {∂∆oxH(T, z, x)/∂z} T,x

+ {∂∆oxH(T, z, x)/∂x} T,z{ ∂xeq(T, z)/∂z} T (19)

Therefore, if the values of all the parameters in Eq. (2) are known then each
thermodynamic property of the YBa2Cu3O6+z phase is also known, and then the
assessment of the YBa2Cu3O6+z thermodynamics is equivalent to determining the unknown
temperature functions, gi(T), a(T)i, bi(T) in Eq. (2). The latter is possible if we choose
some analytical function in temperature and put unknown parameters within it. Along this
way, the traditional approach for solution thermodynamics was followed when the
temperature function is based on the expression for the Gibbs energy of the stoichiometric
compounds that in turn depends on the temperature dependence of the heat capacity.
However, the form of the heat capacity function accepted in the present work

Cp = k0 + k1T -0.5 + k2T -2 + k3T -3 (20)

does not enjoy widespread use yet. Eq. (20) is invented by 85BER/BRO who have
demonstrated its advantage as compared with traditional Maier and Kelley's and other
equations. Provided k1 and k2 are negative, Eq. (20) ensures that heat capacity approaches
the high temperature limit predicted by lattice vibrational theory and thus this makes
extrapolating the low-temperatures heat capacities to high temperatures rather reliable.
According to 85BER/BRO, Eq. (20) can be safely used from 250 K to 3000 K and this
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has set the lower limit for the temperature interval in the present work. Eq. (20) leads to
the temperature dependence of the Gibbs energy as follows

G - H298 = A + B T + C TlnT + D T 0.5 + E T -1 + F T -2 (21)

where two additional parameters have appeared during two integrations.

3. Literature experimental values
In this section the experiments are classified according to the measured properties of

the YBa2Cu3O6+z phase. For each group of experiments a measured property and variables
under control are considered first. As we neglected the hydrostatic pressure, the
YBa2Cu3O6+z phase has two degrees of freedom and thus two variables should be
controlled in any experiment. The only exception is experiment for determining the line of
the phase transition when according to the Gibbs rule the YBa2Cu3O6+z phase has one
degree of freedom. A typical notation for the experimental point is

{ yij, uij, vi} (22)

where the index i enumerates the experiments, j does the experimental points inside the i-
th experiment (j = 1, ..., Ni), yij is what has been measured, uij is what has been changed
and vi is what has been fixed during this experiment.

Then the relationship between the measured property and the controlled variables is
discussed. In the general form it can be expressed as

yij = yij
calc{ uij, vi; Θ} + εij (23)

where yij
calc is the value that is calculated by thermodynamic laws at given uij and vi and

that differs from the experimentally measured yij by the experimental error εij. The
discussion of errors will be delayed until Section 4. Θ is the vector of unknown parameters
to be determined. As was discussed in the previous section, all the thermodynamics
properties of the YBa2Cu3O6+z phase, yij

calc can be obtained from Eq. (2) by means some
algebraic and/or numerical methods. This means that vector Θ contains the same set of
unknown parameters for all the equations described below. Note that some parameters
may vanish during differentiation of Eq. (2).

The results of the experiments in each category is possible to compare between each
other directly. The results of this comparison and the quality of experiments are discussed
and the further partition of the experiments in each group into smaller sets of about the
same quality is presented. The comparison between different experimental groups is
impossible without simultaneous assessment and will be discussed in Sections 4 and 5.

Figures with the experimental points are given for most experiments. On the figures
there are three solutions also: two of them are obtained in the present work (ML and
WLS) and one is taken from the previous assessment by 93DEG/VOR. The solutions are
discussed later in Sections 4 to 6.

Table 2 summarizes all the experimental information available. It contains the codes
assigned to the experiments, references, and information on experiments: the number of
experimental points, whether the experiment is included in the assessment (column inc)
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and the value of vi. The different experimental groups are separated by solid lines and
subgroups of about the same quality are by dashed lines. The division into the
experimental groups is summed up in Table 3.

3.1. Tetragonal-orthorhombic phase transition and oxygen
occupancies

It seems that first measurements related to thermodynamic properties of the
YBa2Cu3O6+z phase were the determination of temperatures of the tetragonal-
orthorhombic phase transition. In a typical experiment the sample of the YBa2Cu3O6+z

phase was heated or cooled in the controlled atmosphere with the known oxygen partial
pressure. The phase transition was detected by the bend at the TGA or resistivity curve or
by X-ray method. Then we have a number of experimental points {Tij, ln p(O2)ij} (see Fig.
1 and Table 2). One can compute the temperature of the phase transition Tij

calc at a given
oxygen partial pressure by solving the system of the two equations (7) and (8) for the two
unknowns z and T assuming that x is equal to zero.

The experiments carried out by 88MEU/RUP and 89MEU/RUP were quite similar
except that the oxygen partial pressure was not fixed during the heating/cooling cycle. The
problem is that the authors have presented not the original experimental values in the form
{ Tij, ln p(O2)ij} but rather recalculated p(O2)ij to the index zij according to their own
measurements. Thus, here we have the experimental points in the form {Tij, zij} (Table 2
and Fig. 2). The calculation of Tij

calc at the given zij is easier than in the previous case. It is
necessary to solve one equation (7) for one unknown T. In the simplest case it is even
possible in the closed form. However, it should be especially mentioned that in this case
we don't have the results of the original experiments, and it is very difficult to estimate
uncertainties in the values of zij ascribed by the authors to the measured values of the
temperature of the phase transition.

The oxygen occupancies in the sublattices (a) and (b) (see Eq. 1) have been measured
by 87JOR/BEN and 88IKE/NAG and according to Eq. (4) this gives us the equilibrium
value of the order parameter x. The neutron diffraction has been employed in the first
work and the profile fitting of X-ray diffraction reflections in the second one. The
experiments were carried out at the constant oxygen partial pressure at several
temperatures and the experimental points look like {xij, Tij, ln p(O2)i} (see Table 2 and Fig.
3). Computing the value of xij

calc at given temperature and oxygen partial pressure is to be
done numerically by solving the system of Eqs (5) and (8) for two unknowns, index z and
the value of the equilibrium order parameter x.

3.2. Oxygen partial properties
In most experiments, the relationship between the oxygen partial pressure over the

YBa2Cu3O6+z phase, index z and temperature has been studied. Because of the Gibbs
phase rule one can state that f{ln p(O2), T, z} = 0. There are many possibilities to study
this two-dimensional surface and it seems that all of them have been implemented in the
case of the YBa2Cu3O6+z phase.
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It is rather simple to control the oxygen partial pressure over the YBa2Cu3O6+z phase.
Then the thermogravimetry (TGA) allows us to measure the weight of the sample as a
function of temperature and thus to measure the dependence of index z from temperature
at constant partial pressure. This gives the experimental points in the form
{ zij, Tij, ln p(O2)i} and it is possible to calculate zij

calc by solving the system of Eqs (5) and
(8) for the two unknowns, index z and the value of the equilibrium order parameter x.

All the experiments in this category were divided into three groups Z_b, Z_g, and Z
(see Table 3) based on the fact that most researchers have presented the results in the
graphic form. The results in group Z are available as numbers and they should be
considered as most reliable. It is interesting, that if alternatively we divided the papers
based on our expert opinion, neglecting whether there are numeric results or not, the same
works that are now in group Z have been marked as the best ones. For the rest of the
papers numerical values have been obtained from figures by means of scanning and they
were put into two groups as follows. The results in group Z_g are in reasonable
agreement with group Z and the results in group Z_b are not.

Fig. 4 and Fig. 5 display the results of group Z (89LIN/HUN, 89VER/BRU and
92CON/KAR).

Another opportunity is to study isotherms, that is the dependence of ln p(O2) from z at
constant temperature. This gives experimental points in the form of {ln p(O2)ij, zij, Ti}. The
techniques employed here were the emf method, volumetric apparatus and TGA (see
Table 2). The work of 89MEU/NAE is also included in this group even though the real
experimental path differed from the isotherm. The reason is that the results are available in
this form only. It happens that computing p(O2) ij

calc at given index z and temperature is
simpler than in the previous case. Here the system of the two equations, (5) and (8) can be
simplified. First, Eq. (5) is to be solved numerically and then it is possible to utilize Eq. (8)
directly in the closed form.

As for the previos category, most results are available in the graphic form and the
experiments were partitioned into three groups, O, O_g, and O_b by means of analogous
considerations. Only authors of the three works, 89GER/PIC, 91SCH/HAR and
92MAT/JAC have given the numerical values (group O) and their results are shown in
Fig. 6 and in Fig. 7.

89VER/BRU have made the special apparatus based on the volumetric approach to
maintain the constant value of index z while heating or cooling the YBa2Cu3O6+z. As a
result, they have managed to obtain the results in the form of {ln p(O2)ij, Tij, zi}. The
computation of the p(O2)ij

calc here is analogous to that in the case of the isotherms. The
results are shown in Fig. 8.

A different experimental path has been implemented by 94TAR/GUS during the
traditional volumetric experiment. The total pressure was measured as a function of
temperature at constant total volume and after assumption that the gas phase contains
molecular oxygen only the experimental points look like {ln p(O2)ij, Tij, Vi, zi

o, mi
o}, where

Vi is the volume of the chamber, zi
o is the index and mi

o is the mass of the original sample.
During the experiment index z has changed because some oxygen escaped from
YBa2Cu3O6+z to the gas phase. Assuming that molecular oxygen obeys the perfect gas law
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and neglecting the volume of the condensed phase the current index zij can be estimated as
follows

zij = zi
o - 2p(O2)ij

calcVi{M(YBa 2Cu3O6) + M(O2)zi
o}/( RTijmi

o) (24)

Computing p(O2)ij
calc(Tij, Vi, mi

o, zi
o) is a bit more difficult. To this end, one has to solve a

system of three equations, (5), (8) and (24) for three unknowns, ln p(O2)ij
calc, index z and

the equilibrium order parameter x. The results will be discussed in Section 5.

Oxygen partial enthalpies (see Eq. 19) have been measured by reaction
microcalorimetry in 89GER/PIC as a function of index z at 873 K, i.e., we have
experimental points in the form of {∆oxH'O,ij, zij, Ti}. Computing ∆oxH'O,ij

calc is rather
straightforward. The results are in Fig. 9.

89PAR/NAV have also employed high temperature reaction calorimetry, however the
experiment was carried out differently and the results here are available as transposed-
temperatures-drop enthalpies

YBa2Cu3O6+z'(T') = YBa2Cu3O6+z"(T") + (z'/2 - z"/2)O2(T") (25)

It is possible to convert the measured enthalpies to the oxygen partial enthalpies but we
have preferred to employ them directly in the form of {∆Hij, z'ij, T'i, z"i, T"i} (see Fig. 10).
The use of direct experimental values may look as more difficult procedure but this
excludes a lot of ambiguity otherwise introduced during the conversion of the primary
experimental results. Enthalpy of Reaction (25), ∆Hij

calc(z'ij, T'i, z"i, T"i) can be easily
calculated from the enthalpies of YBa2Cu3O6+z phase and oxides as follows

∆Hij
calc = ∆oxH(T"i, z"i) - ∆oxH(T'i, z'ij) + 0.5{H(T"i) - H(T'i)} Y2O3

+ 2{H(T"i) - H(T'i)} BaO + 3{H(T"i) - H(T'i)} CuO + (z'/2 - 0.25){H(T"i) - H(T'i)} O2 (26)

3.3. Integral properties
Thermodynamics properties discussed so far would be enough to predict the behavior

of the YBa2Cu3O6+z phase by itself even though they do not allow us to estimate
temperature function g1(T) in Eq. (2) because it disappears during the differentiation in
respect to index z. Yet, in order to predict results of the interaction with other substances
one has got to know the Gibbs energy as a whole. To this end, we have experiments
available when the integral Gibbs energy, the enthalpy, the entropy and the heat capacity
have been measured.

Oxygen adsorption and desorption from the YBa2Cu3O6+z phase below ≈ 450 K can be
considered as "frozen" and index z at these temperatures is not controlled by the external
oxygen partial pressure anymore. This allows us to measure the heat capacity, Cpz as a
function of temperature at constant z. The experimental point has a form of {Cpz,ij, Tij, zi}
and the corresponding value of Cpz,ij

calc(Tij, zi) can be estimated by Eqs (16) and (18). All
the available values are divided into the two groups: low-temperature heat capacity
measured by adiabatic calorimetry (see Fig. 12, Table 2, and Table 3) and high
temperature heat capacity measured by differential scanning calorimetry, DSC (see Fig.
13).
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The low-temperature heat capacity is characterized by rather good accuracy and the
results are usually available in the temperature range from liquid helium to the room
temperature. Because of the limitation of the temperature function accepted in the present
work (see Eqs 20 and 21) the description of the heat capacity was possible just above 250
K. Accordingly, the results of the adiabatic calorimetry were employed as two different
kinds of measurements, the absolute entropy at 298.15 K that was estimated as an integral
over all the temperature range and the upper part of the heat capacity curve (T > 250 K).
The experimental entropies, {Sij, zij, Ti} are shown in Fig. 11 and Eqs (15) and (17) show
the way how Sij

calc can be computed from the model.

The precision of the heat capacity measured by DSC is not as good as for adiabatic
calorimetry. Another problem is that at higher temperatures the oxygen
adsorption/desorption can occur and interpretation of the results becomes rather difficult
(see discussion in 93DEG/VOR). This was the reason why only the high-temperature heat
capacities below 425 K were considered in the present work. In the original works,
90MAT/FUJ and 91SHA/OZE, the results are available up to 900 K.

It is impossible to obtain absolute values of the enthalpy and the Gibbs energy, and as
was mentioned in Section 2, these properties are given for Reaction (3) (see Eqs. 2 and
14).

The enthalpy of formation of the YBa2Cu3O6+z phase has been measured in a number of
laboratories by means of solution calorimetry (see Fig. 14 and Table 2) and, as one may
expect, there is great scatter among the results. 95MON/POP have made a thorough
review of calorimetry results where they have pointed out that the main problem
responsible for the scatter between different laboratories is in impurities of the oxides used
for the calorimetry (especially BaO that easily reacts with H2O and CO2 from the air).
Then two sets of calorimetry experiments have been made based on rather a good
correlation as follows. If authors have not paid attention to the purity of the samples, at
least this question is not discussed in the paper (group H_b), then their results are quite
different from those who have carefully discussed this problem (group H). Numerical
results for the assessment have been taken from 95MON/POP where almost all results
have been recalculated with the same set of auxiliary values.

There are few papers, 90AZA/SRE, 90FAN/JI, and 91SKO/PAS with the emf
measurements of the Gibbs energy of formation from oxides. Because of the high-
temperature nature of the method the results are available at the fixed oxygen partial
pressure, i.e., in the form of {∆oxGij, Tij, ln p(O2)i} (see Fig. 15). Only the results of
91SKO/PAS are in reasonable agreement with calorimetric enthalpies and entropies (∆G =
∆H - T∆S). 91VOR/DEG2 have discussed all works and suggested that the disagreement
in the case of 90AZA/SRE and 90FAN/JI can be explained by ambiguities in auxiliary
values that are necessary to recalculate the experimental values to Reaction (3). As a
result, group G which, in our view, we can rely upon contains just 91SKO/PAS and two
other works are put into unreliable group G_b.
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4. Simultaneous assessment under the linear error model

4.1. Formal task
Formally speaking, the task of the simultaneous assessment is to obtain a set of

unknown parameters in Eq. (2) that gives the best description of the original experimental
values described in Section 3 provided that thermodynamics properties of the oxides and
oxygen are fixed (see Table 1). In other words, the system of equations (23) is to be
solved in respect to vector Θ with the given set of experimental points {yij, uij, vi} (Eq.
22).

Thermodynamics adds some specifics to this rather general problem. First, function
yij

calc{ uij, vi; Θ} is different for different experiments in which yij may mean completely
different physical quantities. Second, the unknown parameters are defined in the Gibbs
energy, they are inside the temperature functions gi(T), ai(T), bi(T) (see Eq. 21), but most
equations are written for other thermodynamic properties that can be derived from the
Gibbs energy by means some calculus. Because of that, the set of unknown parameters is
the same for all the equations, even though equations may look quite differently. The
lattice model also adds its own specifics, that is the most of the functions is not available in
the closed form and thus the computation is heavily based on the numerical analysis.

Although computing yij
calc{ uij, vi; Θ} and thus solving the system (23) can not be named

as routine, this is not the issue with current computer power at hand. The main problem
lies in question what should be considered as the best description of the experimental
points. Actually the number of unknowns in the system (23) is always greater that the
number of equations because experimental errors εij are also unknown. Therefore, there is
an infinite number of solutions and which one should be taken as the best strongly depends
on our considerations of errors. The latter will be referred as the error model and should
not be confused with the thermodynamic model taken by itself.

The conventional approach is to employ the weight least squares (WLS) method, i.e.,
to find such a solution that brings the sum of squares of the errors

SS = Σijεij
2/Wij = ε' W ε (27)

to the minimum. In matrix notation ε is the vector that comprises all the errors εij from all

the experiments (the number of elements ΣiNi) and W is the weight matrix that contains
weights for each experimental point on its diagonal, W = diag{ Wij}.

The problem that has got no clear answer in the weight least squares is how to assess
the weights. The final solution certainly depends on the values of the accepted weights and
a different set of weights would lead us to the different solution. Consequently, in the
weight least squares method the task of the simultaneous assessment becomes mainly of
that of the weight assignment. Mathematical statistics gives a guideline such that in order
to obtain the reliable solution the weight matrix should be equal to inverse of the
dispersion matrix of the error vector up to the factor

W = k D(ε)-1 (28)
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The weight least squares based on Eq. (28) will be referred below as the strict weight least
squares method. We can proceed from Eq. (28) to the weight least squares if all the errors
εij are postulated to be non-correlated �only in this case the dispersion matrix takes the
diagonal form� and ratios between variances for all the errors are known a priori.
Unfortunately, both statements are too restrictive for real-life applications. The variance
ratio for experimental points is not known and there are clear evidences that at least some
errors are correlated between each other because of the systematic errors. Then let us start
with Eq. (28) and develop a more general approach than the weight least squares.

If variances are not known the maximum likelihood method allows us to determine
both unknown parameters (vector Θ) and variances simultaneously by means of
maximizing the likelihood function. This permits us to drop the requirement for variance
ratios to be known. Provided all the errors are described by the multinormal distribution
the maximum of the likelihood function coincides with the maximum of

L = − ln {det[D(ε)]} − ε' D(ε)-1 ε (29)

If the error distribution is unknown, finding the maximum of Eq. (29) may be viewed as a
heuristic procedure that gives not the worst estimates of the thermodynamics parameters
and the components of the dispersion matrix (referred below as variance components).
Some other methods for this task are also available (see 88RAO/KLE). Note that the
weight least squares method is a special case of maximizing Eq. (29) when the variance
components are known up to a constant, that is the maximum of (30) matches the
minimum of (27) provided there are no other unknowns inside the dispersion matrix but
the general factor (Eq. 28).

The linear error model

εij = εr,ij  + εa,i + εb,i(uij - ui) (31)

where

ui = (Σjuij)/Ni (32)

has been recently introduced by 96RUD. It is assumed that the total experimental error εij

consists not only from the reproducibility error εr,ij but also from two systematic errors εa,i

and εb,i. Both systematic errors are constant within the i-the experiment but they are
assumed to change randomly among different experiments. The former systematic error
accounts for the shift systematic error and latter for the tilt laboratory factor (tilt
systematic error). Note that the linear error is a special case of so-called mixed models
(see 88RAO/KLE).

The practical reason for introducing new two terms in Eq. (31) is that the results of the
distinct experiments usually differ more between each other than the reproducibility error
in a single experiment. Formally speaking, there is a statistically significant difference
between distinct experiments, i.e., the ratio of the corresponding sum of squares is more
than Fisher's criterion allows. Then the systematic errors introduced above permit us to
treat this situation by means of formal statistical procedures.
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Eq. (31) was designed for one-dimensional tasks. Fortunately, it can be applied for the
YBa2Cu3O6+z phase without any change even though functions ycalc{ u, v} that should be
considered are at least two-dimensional. The reason is that all the measurements in the
case of the YBa2Cu3O6+z phase are made by means of conventional approach when only
one variable has been changed within a single experiment and thus they can be treated as
pseudo-one-dimensional. Provided experimental physical chemistry switches to
multidimensional experimental design, taking the modern analytical chemistry as a
successful example, the linear error model may need to be modified.

The linear error model brings forth the dispersion matrix of experimental errors, D(ε) in
the block-diagonal form (see details in 96RUD). Each block corresponds to the single
experiment and its elements are functions of three variance components

D(εr,ij) = σ2
r,i, D(εa,i) = σ2

a,i, D(εb,i) = σ2
b,i (33)

It is worthy of noting that according to mathematical statistics (see Eq. 28) weights are
related to variances of errors and not to the errors by themselves. In mathematical
statistics, an error is considered to be a random quantity with the expected value equal to
zero, and the variance is a property of this random quantity.

The considerations above allow us to set up a task as follows. For the given
experimental points {yij, uij, vi}, it is necessary to determine vector Θ with unknown
parameters in the thermodynamic model and unknown variance components contained in
the dispersion matrix simultaneously. The maximum likelihood method provides a
framework to achieve this goal and also the criterion for the best solution for the system
(23). The algorithm for maximizing Eq. (29) under the linear error model is described by
96RUD. Once more, the weight least squares is a special simplified case of the new
general task that can be reached by equating the variances of systematic errors (and hence
the systematic errors by themselves) to zero and supplying the ratio between variances of
the reproducibility error a priori.

4.2. Expert conclusions
Let us stress the difference between experimental errors that can be treated statistically

and mere mistakes of experimenters. If the expert conclusion is that there were some
mistakes in carrying out the experiment, its results should not be averaged with other
experiments because it is insensible to average "bad" and "good". In our case, several
groups have been discarded before the statistical analysis based on our subjective opinion.

The experiments in groups Z_b, O_b, H_b and G_b have been assumed to be "bad"
based on comparison with others in the alike category (see Section 3). During
simultaneous assessment three other groups, T_z, P_b, and V have been found to strongly
disagree with the results from different experimental categories and they also have been
discarded. The question how to visualize the difference between results in different
experimental categories is discussed in Section 5. We can speculate that adsorbed gases
were responsible for high total pressures at lower temperatures measured by 94TAR/GUS
(group V, see also Section 5) and that the indirect nature of the values presented in group
T_z led to their shift by about 200 K in the temperature of tetragonal-orthorhombic
transition (see Fig. 2). Yet, we can not say for sure what went wrong in the experiment on
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oxygen partial enthalpy made by 89GER/PIC (group P_b) but the shape of the curve
obtained (see Fig. 9) is in strong disagreement with our model and with the results in
groups P and H.

It should be stressed once more that the results of groups Z_b, O_b, H_b, G_b, T_z,
P_b, and V are in strong disagreement with the experiments included into the
simultaneous assessment. If any experiment discarded by us happens to be the "true" one,
then the results obtained in the present work should be reconsidered.

Three more groups, Z_g, O_g, and C_h have been also not included in the final
assessment even though the results there are in reasonable agreement with the
recommended solution. This means that the final solution does not depends principally
whether these groups are included or not.

There were several reasons to exclude groups Z_g and O_g from the simultaneous
assessment. First, the accuracy of these results that have been scanned from the figures are
difficult to estimate because is not clear how these figures have been made (it is difficult to
treat statistically errors made by the illustrator). Second, we believe that the authors that
have failed to supply the results in the acceptable form should be somewhat punished
(luckily we can afford this in the case of the YBa2Cu3O6+z phase). Generally speaking, the
case of the YBa2Cu3O6+z phase is a very good example of the statement made by the
IUPAC commission: "All will have had experience of cases when it has not been possible
to decide on the relative merits of conflicting data because of insufficient reporting of
uncertainties. Thus, years of work may be rendered useless by the failure of the authors to
present his results fully or perhaps by failure to battle with editors for the essential space"
(81OLO/ANG). Finally, if we would include these groups in the assessment, the statistical
assumptions made below had become much more complicated.

The reason for excluding group C_h was mostly for cosmetic reasons. If the results of
this group would left in the assessment this produced some sag in the description of the
low-temperature heat capacities obtained by adiabatic calorimetry. As we think that these
results are more accurate than those obtained by DSC, we have preferred the better
description of the results in group C.

In the first step of expert conclusions described so far there were no difference between
the weight least squares and the new approach described in the previous section. The
difference starts in the next step when it is necessary to ascribe weights to the
experimental points that have been included in the simultaneous assessment.

In order to utilize either the weight least squares or maximum likelihood method, some
hypotheses should be formulated about the error dispersion matrix. Note that because of
Eq. (28) the terms "dispersion matrix" and "weight matrix" are considered sometimes as
synonyms in the present work. In many works the weights are just chosen by expert
without any use of Eq. (28). We will call this as the informal weight least squares method.
In the last case, the expert has to specify the numerical values of the weights (the ratios
between variances) for all the experimental points. This usually takes a lot of meditating.
The statement "this work is better than that one" is relatively easy to make but the
numerical assertion "this work is better by two and half times that that one" is certainly not
that straightforward for the human being.
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The maximum likelihood method allows the expert to limit herself by qualitative
conclusions only. The expert set the structure of the error dispersion matrix and all the
numerical values will be estimated during maximizing the likelihood function. Let us see
how this idea was implemented in the present work.

First, all the experiments have been divided into the groups of the same quality as was
discussed in Section 3 (see Table 3) and some of groups have been discarded as explained
above. Certainly, some meditating was inevitable during this process but because of the
qualitative nature of this procedure the considerations can be explained easier than in the
informal weight least squares.

Our final expert conclusion was that we have ten miscellaneous groups of experiments
(T_z, X, Z, O, N, P, S, C, H, G) and that all of them seem to have about the same quality.
Now this statement is necessary to express in the formal manner. First, the variance of the
reproducibility error can be assumed to be the same within each group that gives ten
unknown variances. The statement of the same quality of the experiments in these groups
can not be applied to the reproducibility variances because we can not ever think that there
is any relationship between the reproducibility variances in different groups.

The problem now is that the experimental values that have been put into the assessment
can not be described within their reproducibility error. If we put the solution within the
reproducibility error for one group then it for sure will go beyond the reproducibility error
for another group. Then Eq. (31) allows us to make the next step and to explain this fact
by introducing the systematic errors and to reformulate the statement of the same quality
for the different groups as the principle of the like compromise. This is that the two rations

γa,i = σ 2a,i/σ 2r,i, γb,i = σ 2b,i/σ 2r,i (34)

are assumed to be the same for all the groups included in the simultaneous assessment. To
clarify this principle, let us start with the first ratio, γa,i.

Under the linear error model the total error is considered to consist from three terms.
The first is the reproducibility error and the second is the shift systematic error. The latter
allow us to model the calibration error because now one can say that the experimenter has
made the common error while preparing the apparatus. This error was constant for all the
points in this experiment and then during the measurement procedure the reproducibility
error was added at each point. Statistically speaking, both errors are considered to be
random but they are characterized by different variances, reproducibility variance and shift
systematic variance. The sift systematic variance should be different for different groups
because it is dimensional quantity and the dimension is different. However, ratio γa,i shows
the shift systematic variance measured by the reproducibility variance in the i-th group and
thus it is dimensionless. Then, when we speak about the same quality for the experiments
in different groups this may well mean that ratio γa,i is the same for these groups.

The situation is analogous with the second ratio, γb,i. However there is some small
additional problem here because γb,i is still dimensional. The third term in Eq. (31) as the
second one is also tied with the systematic error but its nature is different. It is such an
systematic error that forces the measured curve to tilt from the true behavior. As a result
the tilt systematic variance is associated with the unit length of the controlled variable u,
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and ratio γb,i has the dimension equal to the inverse of the u variable. Then before we say
that ratio γb,i is the same for different groups it is necessary to compare unit lengths of
different controlled variables. This was done by choosing typical ranges of the controlled
variable as 1000 K for temperature, as 10 for ln p(O2), and as 1 for index z and by
somewhat arbitrary equating these ranges between each other.

The assumptions made above gives twelve unknowns in the error dispersion matrix (ten
for reproducibility variances and two for the ratios in Eq. 34). The maximum likelihood
method allow us to leave the variance components as unknowns in the dispersion matrix
and to estimate them during the maximization of (29) simultaneously with estimating
unknown parameters in Eq. (2).

4.3. Maximizing the likelihood function
Another reason for meditating during the simultaneous assessment is a choice of the

number of unknown parameters. Actually, Eq. (2) is the expansion in series and before
maximizing Eq. (29) the number of terms in the two sums is to be defined. The same also
concerns Eq. (21) employed in the present work as the temperature function within Eq.
(2). A typical solution to this problem is to perform the assessment several times when the
number of unknowns is changed. Two criteria have been used to choose the optimal
number of unknown parameters: the best description of the experimental points and, at the
same time, the conformity of the thermodynamic properties obtained to the general trends
of similar materials. Also during the addition of new unknowns, the attention has been
paid not to make the whole task ill-behaved.

In the previous assessment of 93DEG/VOR, the approximation for the heat capacity,
∆oxCpx = 0 has been utilized. This means that just two unknown parameters, A and B have
been left in each temperature function, gi(T), ai(T), bi(T) there. However, Fig. 12 and Fig.
13 display that the experimental heat capacity is higher than predicted by this
approximation and one of the goals in the present assessment was to obtain the better
description of the heat capacity. To this end, additional unknowns are to be introduced in
the temperature functions in addition to A and B. Yet, the number of these additional
unknowns happens to be rather limited. It happened to be impossible to put new
unknowns in each temperature function because this would lead to unphysical behavior of
the heat capacity.

After many attempts, we have preferred to introduce new variables C and D in
temperature function g2(T) only. This means that approximation ∆oxCpx = 0 has been
changed to ∆oxCpx = k(T) z. The more realistic approximations will be possible after new
experimental values on the heat capacity for the compositions close to z = 0 appear.

In the second sum of Eq. (2) the only the first term, b1(T) has been left. The unknowns
in the second sum depend mainly on the tetragonal-orthorhombic phase transition and
occupancies in the oxygen sublattices. It happens that one term is enough for the
description of these values. The addition of other terms made the task ill-behaved.

Fig. 16 explains our choice for the number of terms in the first sum of Eq. (2). As the
number of terms grows the maximum likelihood function after sharp rise comes to the
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saturation, and simultaneously, the opposite is held for the ratios, γa,i and γb,i. Based on
this fact, the two terms in the first sum have been assumed to be optimal for the
description of the YBa2Cu3O6+z thermodynamic properties.

Finally, we have twelve unknown parameters in the Gibbs energy in addition to ten
unknown variance components defined in the previous section. All of them have been
determined by maximizing Eq. (29) numerically (see 96RUD for the description of the
algorithm). The final values of variance components are presented in Table 4, the values of
parameters are in Table 5. Fig. 1 to Fig. 15 compare the solution obtained with the
original experimental points and Fig. 17 presents the phase diagram of the YBa2Cu3O6+z

phase computed from the assessed Gibbs energy. Some less usual pictures (Fig. 18 to Fig.
27) are discussed in the next sections. The correlation matrix for the parameters obtained
is given in Table 6. It is important for estimating the variance of the predicted
thermodynamic properties at given external conditions. Finally, some thermodynamic
properties of the YBa2Cu3O6+z phase are tabulated in Table 7. A small program
Y123.EXE working under WINDOWS 95 and WINDOWS NT to compute the
thermodynamic properties on the fly is available from the authors
(http://www.chem.msu.su/~rudnyi/Y123/welcome.html).

5. Visualizing the quality of the fit
Recently 93ALC/ITK have emphasized the necessity for the intelligent appearance of

the measurements in the graphical form in the excellent paper devoted to O.
Kubaschewski. We agree completely with 93ALC/ITK that a single statistical criterion can
not replace the analysis of the figures.

Fig. 1 to Fig. 15 are typical examples of figures when the fitted curves are compared
with the experimental points. The problem is that there are too many figures and it would
be good to make some digest. Also note that the scale of the figures is low and. As a
result, we can see large effects only, and it is difficult to follow fine details of the data
description.

Plotting deviates, i.e., the differences yij - yij
calc{ uij, vi; Θ} allow us to sharply enhance

the scale and to put more values on the same graph. Fig. 18 and Fig. 19 demonstrate this
statement with an example of two groups, Z_g and O_g which were not included in the
assessment. It would be necessary at least several figures in each group to plot all the
experimental points in reasonable fashion by means of the conventional figures. Note that
because of the enhanced scale, at first glance the scatter may look as rather bad but
actually it is about 0.05 in the value of index z and about 0.8 in the value of ln p(O2). The
latter value means that the difference in the oxygen partial pressures is two times that
should not be considered as bad because the absolute value of the oxygen partial pressure
was changed by six orders of magnitude and the method employed were rather diverse.

It is possible to go further and to plot deviates normalized by the square root of the
reproducibility variance, [yij - yij

calc{ uij, vi; Θ}]/ σr,ij (see Fig. 20). This allows us to put the
results of heterogeneous experiments on the same figure and to compare them between
each other because now the deviates are dimensionless as they are measured by their
standard deviation of the reproducibility. Fig. 20 can be named as a statistical picture of
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the YBa2Cu3O6+z phase because it contains all the experimental points that have been
processed simultaneously.

Because of the huge number of experimental points, Fig. 18 to Fig. 20 are too messy.
Now it is difficult to find out a particular experiment. Fig. 20 is more of esthetic than
practical value (especially when it is made in colors). Then the linear error model suggests
us a new type of the graph when each experiment is represented by a single point. The
idea is that a typical behavior of the deviates in a single experiment can be described by a
line and hence the experimentally measured values are shifted and tilted over the final
fitted curve. Hence it is possible to plot the tilt vs. shift to see the extent of overall
agreement among all the experiments. Again, the tilt and shift is to be normalized by the
standard deviation of the reproducibility to make the comparison of different types of
experiments possible. More details about this type of a graph are given elsewhere
(96RUD, 97KUZ/USP, and 97RUD).

Fig. 21 and Fig. 22 present this type of the figure for two solutions, recommended in
the present work (ML) and from the previous assessment by 93DEG/VOR. This gives us
an overview of the description of all the experiments. It is clearly seen that in the present
assessment two things have been improved considerably: the description of the high
pressure results of 92CON/KAR and the heat capacity.

Now let us take the paper of 94TAR/GUS as an example to demonstrate how it is
possible to compare different type of experiments during the simultaneous assessment.
The problem is that in the beginning of the assessment is not quite clear what experiments
agree between each other and what do not. Our approach was to start by including all the
experiments, to draw the graphs similar to explained above and then to take a decision.
During this process we have seen that the results of 94TAR/GUS are in great
disagreement with many papers on the oxygen partial properties and one of the tricks that
helped us significantly was to play a game "what if". The disagreement can be seen from
Fig. 23 where our solution is shown with respect to the experimental points. If we include
the results of 94TAR/GUS with non-zero weight the description of their experiments gets
much more reasonable (solution TAR in Fig. 23). However the better description for the
94TAR/GUS means much worse description for other experiments that can be clearly seen
from Fig. 24. It shows that if we say that 94TAR/GUS is right then it would mean that
many others are wrong, and we have preferred the opposite conclusion. It is worthy of
noting that the experimental consideration also played not the last role in our conclusion:
it may well be that the adsorbed gases and not the oxygen led to high total pressure at low
temperatures in the experiments of 94TAR/GUS.

6. Comparison with the weight least squares
The main difference of the present assessment from the conventional approach lies in

introducing the linear error model with two systematic errors. Let us now discuss what the
practical difference this brought about. To this end, another solution have been found
when the variances of systematic errors have been zeroed and the variance of the
reproducibility error was assumed to be equal to that obtained in solution ML. This
implements the strict weight least squares method when the weight is equal to the inverse
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of the reproducibility variance. Note that the reproducibility variances found by maximum
likelihood method under the linear error model should be close to the pool variance of
reproducibility for a particular group of experiments. The solution, referred as WLS is
shown in Fig. 1 to Fig. 15. It is also compared with solution ML in Fig. 25 to Fig. 27.

First, it is possible to state that the description of the original experimental points by
both solutions is rather similar. The overall description is even a bit better in solution
WLS. This can be seen while Fig. 25 is compared with Fig. 21: a circle of experiment
marks is a bit smaller in the case of solution WLS.

However, there are some subtle effects that allow us to declare solution WLS as worse
in comparison with ML. In the case of the YBa2Cu3O6+z phase it is possible to distinguish
between the overall description (for example, the sum of weighted squares) and the
description of the function behavior, and our conclusion is that while the former is better
for solution WLS the latter is better for solution ML. Fig. 26 and Fig. 27 demonstrate this
with an example of experiments from group Z. The deviates in group Z are smaller in Fig.
27 (solution WLS) than in Fig. 26 (solution ML). However the deviates for a particular
experiment in Fig. 27 possess S-form that can be seen for most series. Therefore, one can
say that the function behavior is described better in Fig. 26 even though the overall
agreement there is a bit worse. The same can be also said about other groups.

The function behavior in groups Z and O determine the condition for the tetragonal-
orthorhombic phase transition. As a result, we believe that the description of the phase
transition is better in solution ML. This may be confirmed by the predicted phase diagram
of the YBa2Cu3O6+z phase (see Fig. 17). The phase diagram that follows from solution ML
is rather close to that obtained in the previous assessment of 93DEG/VOR and to what
may be expected from many structural and theoretical studies. The phase diagram
predicted by solution WLS is quite different and we believe that it is physically
unreasonable.

Pragmatically speaking, solutions ML and WLS differ by variances of systematic
errors: these variances were assumed to be zero in the last case and were considered to be
unknowns in the former case. This is responsible for the effect described above. When the
weights have been assigned to the experimental points based on the reproducibility
variance in the strict weight least squares, the number of points in a particular experiment
and the range of the controlled variable automatically have been used as additional weights
while the results of the different experiments have been processed altogether.

From the first glance, employing number of experimental points as a weight at
otherwise equal conditions seems not to be a bad idea. Yet, if we take into account
systematic errors, this should be carefully reconsidered. A systematic error is what was
constant in a particular experiment. Then the number of experimental points should not
lower the systematic error. Let us imagine that there are two experiments with the number
of points 10000 and 10 accordingly. Provided there were systematic errors that are bigger
than the reproducibility error in each experiment, ascribing weights equal to the numbers
of points seems not to be a good solution. The large number of points lead us to small
reproducibility error of the mean but this does not count for systematic error. Then from a
viewpoint of the like compromise the systematic errors may be assumed to be the same in
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both experiments, and because they do not depend on the number of points it is necessary
to average the two means with weights equal to one.

There is no other way in the weight least squares to lessen the number of points in a
particular experiment than to switch the informal weight least squares. Here, the weight is
considered to be an expert opinion about the quality of the experiment and Eq. (28) is
thrown out. This is always possible but lead us to a lot of meditating because the solid
ground to take the decision is already lost.

The inclusion of the systematic errors in the error model allow us to lessen the effective
number of experimental points formally because of the block-diagonal structure of the
dispersion matrix in this case. After the total error has been separated to the
reproducibility error and the systematic errors, the structure of Eq. (29) leads to the
following fact. For the likelihood function under the linear error model to reach maximum,
it is more beneficial to make the reproducibility variance as low as possible even if this
would require some increase in the variances of systematic errors. This explains why the
better description of the function behavior has been achieved in solution ML.

7. Conclusion
The main practical result of the present work is a new set of parameters for the Gibbs

energy of the YBa2Cu3O6+z phase which is the key phase for thermodynamics of the
Y-Ba-Cu-O quaternary system. Most results for other phases in this system include
equilibria with the YBa2Cu3O6+z phase, and thus, the assessment of the whole system
depends heavily on thermodynamic values accepted for the YBa2Cu3O6+z phase.

Even though the YBa2Cu3O6+z phase has attracted a lot of attention in the last decade
there are some "white spots" left. First, this concerns the area about room temperature
where the phase diagram shown in Fig. 17 may well be not quite correct. The recent
results suggest existence of so called superstructures at these temperatures, and the model
employed in the present work does not allow us to describe superstructures at all. Another
direction for the improvement of the model is the high pressure region (more than 108 Pa)
where it is impossible to neglect the hydrostatic pressure. At the same time, we believe
that the thermodynamic properties at high temperatures and at moderate pressures are
well-studied now, that our model describes these experimental values adequately, and that
this description will not be changed significantly in the foreseeable future.

Besides concrete numbers, there are some methodological points to discuss that are of
general interest in thermodynamic assessment. Steps to be taken in simultaneous
assessment are as follows:

1)  Collecting a database of experimental values.

2)  Developing a thermodynamic model.

3)  Formulating expert conclusion.

4)  Computing unknown parameters and optionally unknown variance components.

Let us see what improvements can be achieved here by employing the linear error model.
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First, the whole process can not be done in a single sequence and in practice the
thermodynamic assessment is somewhat a circular movement over these steps until the full
satisfaction of the assessor or probably more often until the time or/and money limit has
been reached. Second, this process can not be completely formalized and the strategic
decisions for the final model and the quality of the experimental works are always
subjective (see 93ALC/ITK for a good discussion on this matter). While keeping this in
mind, we enlarge on the last two steps when the model and the experiments to be
processed are already chosen.

The starting point for the expert conclusions is the error model that determine the
structure of the dispersion and hence weight matrix. It is the error model that gives the
solid background for averaging the experimental values. In the conventional approach, the
error model includes just a reproducibility error and, as a result, the weight (dispersion)
matrix has the diagonal form. Then an expert should supply the numerical values of all the
weights. Sometimes the expert proceeds from Eq. (28) with the use of some estimates of
reproducibility variances, but more often she just weighs somehow the quality of
experimental points.

However if we study deviates (see Fig. 18 to Fig. 20, Fig. 26 and Fig. 27) we can see
that the total error can not be modeled as the reproducibility scatter only, and this is quite
common for all the real experimental measurements. The results of a single experiment are
not scattered over the fitted curve randomly but rather they are shifted and tilted
systematically. Then, if we need reliable results we have got to explain this behavior, or
otherwise the experimental values will be processed under a wrong error model.

The linear error model accepted in the present work is a first step in explaining the
regular behavior of the deviates. It is said that the results are shifted and tilted because of
the systematic errors, and, in our view, this is quite conceivable. Definitely, the linear error
model is also some approximation of the real picture, and it is possible to introduce more
sophisticated error models (see, for example, 88RAO/KLE). Yet, the linear error model
allows us to catch the main effects in the trend of the deviates which can not be ignored
and to leave some more subtle effects to the future development.

Pragmatically speaking, the linear error model allow us to switch to the non-diagonal
dispersion and hence weight matrix. This, in turn, gives us some appropriate tool to
influence the number of experimental points in different experiments as discussed in the
previous section. The comparison of the two solutions, ML and WLS shows that because
of treating the systematic errors as the reproducibility ones the weight least squares have
brought such a solution when the description of the function behavior is inappropriate.

Another difference of our approach with the conventional one is in estimating variance
components. It is possible to say that in the weight least squares the estimation of the
variance components is expert's responsibility and in our approach they are estimated by
means of the maximum likelihood method simultaneously with unknown parameters. This
means that expert's work gets a bit easier because the expert can express her opinion in the
qualitative form.

The importance of graphics could not be overestimated. It is impossible to produce a
reliable assessment by any method without viewing what the agreement between
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experimental points and the fitted curve looks like in figures. In the present work three
types of figures have been employed and from our experience we can state that the best
results can be achieved by a combination of all three graph types. Each type shows up its
own specific information that is difficult to figure out from another types of graphs.

Finally, the advancement of Internet permits archiving the materials that are necessary
for the assessment in the public domain. Our materials including the database of all the
experimental values and the optimization software (for WINDOWS 95 and WINDOWS
NT) are available from our site, http://www.chem.msu.su/~rudnyi/Y123/welcome.html.
After all, if you are not satisfied with our set of parameters you are welcome to make your
own.
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Table 1. Auxiliary thermodynamic properties of oxides employed in the present
work (according to 97VOR/USP)a

oxide ∆fH
o
298

kJ.mol-1
A B C D E F

Y2O3 -1919.4 -30047.83 954.1052 -146.996 -2120.104 737146.5 -12441857

BaO -548.0 -5092.968 463.41195 -72.028 -1858.564 0 -9963433

CuO -161.7 -5669.132 477.64762 -69.785 -1801.184 61609 0

O2 0 -1776.280 132.54252 -44.978 -1294.168 0 -13651002

a the parameters from A to F allow us to compute the standard Gibbs energy of the
oxide (po = 101325 Pa) according to Eq. 21 in J.mol-1 in the temperature interval from 250
K to 1300 K, all other thermodynamic properties of the oxide can be obtained by means of
well-known thermodynamic relationships.
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Table 2. Experimental results available for the assessment of the YBa2Cu3O6+z

phase thermodynamics

Code Set of values Ni Inc.
a

vi
b Methodc Reference

TB1 {Tij , ln p(O2)ij} 5 + n/a XRD 87BRY/GAL
TE {Tij , ln p(O2)ij} 2 + n/a XRD 87EAT/GIN
TF {Tij , ln p(O2)ij} 10 + n/a resistivity 87FIO/GUR
TK { Tij , ln p(O2)ij} 5 + n/a TGA 87KUB/NAK
Ts {Tij , ln p(O2)ij} 1 - n/a XRD 87SCH/HIN
TT { Tij , ln p(O2)ij} 2 + n/a TGA, XRD 87TAK/UCH
TY { Tij , ln p(O2)ij} 1 + n/a XRD 87YUK/SAT
To {Tij , ln p(O2)ij} 2 + n/a XRD 88KOG/NAK
Tp {Tij , ln p(O2)ij} 5 + n/a XRD 88SPE/SPA
Tu {Tij , ln p(O2)ij} 4 + n/a XRD 88TOU/MAR
TW { Tij , ln p(O2)ij} 4 + n/a XRD 88WAN/LI
TB2 {Tij , ln p(O2)ij} 1 + n/a XRD 89BRY/GAL
TM1 { Tij , zij} 7 - n/a resistivity 88MEU/RUP
TM2 { Tij , zij} 13 - n/a resistivity 89MEU/RUP
XJ0 {xij , Tij , ln p(O2)i} 16 + p = 1 ND 87JOR/BEN
XJ1 {xij , Tij , ln p(O2)i} 7 + p = 0.2 ND 87JOR/BEN
XJ3 {xij , Tij , ln p(O2)i} 7 + p = 0.02 ND 87JOR/BEN
XI1 { xij , Tij , ln p(O2)i} 9 + p = 0.2 XRD 88IKE/NAG
ZJ0 {zij , Tij , ln p(O2)i} 17 - p = 1 ND 87JOR/BEN
ZJ1 {zij , Tij , ln p(O2)i} 7 - p = 0.2 ND 87JOR/BEN
ZJ3 {zij , Tij , ln p(O2)i} 7 - p = 0.02 ND 87JOR/BEN
ZI1 { zij , Tij , ln p(O2)i} 10 - p = 0.2 TGA 88IKE/NAG
Zt0 {zij , Tij , ln p(O2)i} 7 - p = 1 TGA 87STR/CAP
Zt1 {zij , Tij , ln p(O2)i} 7 - p = 0.25 TGA 87STR/CAP
Zt3 {zij , Tij , ln p(O2)i} 7 - p = 0.050 TGA 87STR/CAP
Zt4 {zij , Tij , ln p(O2)i} 7 - p = 0.01 TGA 87STR/CAP
Zt6 {zij , Tij , ln p(O2)i} 4 - p = 0.001 TGA 87STR/CAP
ZS0 {zij , Tij , ln p(O2)i} 35 - p = 0.74 TGA 88SPE/SPA
ZS1 {zij , Tij , ln p(O2)i} 8 - p = 0.36 TGA 88SPE/SPA
ZT0 {zij , Tij , ln p(O2)i} 8 - p = 1 TGA 88TOU/MAR
ZT1 {zij , Tij , ln p(O2)i} 6 - p = 0.2 TGA 88TOU/MAR
ZY0 { zij , Tij , ln p(O2)i} 26 - p = 1 TGA 88YAM/TER
ZY0a {zij , Tij , ln p(O2)i} 9 - p = 0.7 TGA 88YAM/TER
ZY1 { zij , Tij , ln p(O2)i} 9 - p = 0.4 TGA 88YAM/TER
ZY1a {zij , Tij , ln p(O2)i} 29 - p = 0.2 TGA 88YAM/TER
ZY3 { zij , Tij , ln p(O2)i} 24 - p = 0.053 TGA 88YAM/TER
ZY4 { zij , Tij , ln p(O2)i} 26 - p = 0.013 TGA 88YAM/TER
ZY5 { zij , Tij , ln p(O2)i} 24 - p = 0.005 TGA 88YAM/TER
ZY6 { zij , Tij , ln p(O2)i} 9 - p = 0.0022 TGA 88YAM/TER
ZY7 { zij , Tij , ln p(O2)i} 6 - p = 3.10-4 TGA 88YAM/TER
ZB8 {zij , Tij , ln p(O2)i} 10 - p = 1.3.10-4 TGA 89BRY/GAL
ZBA { zij , Tij , ln p(O2)i} 4 - p = 1.8.10-5 TGA 89BRY/GAL
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Table 2. Continued

Code Set of values Ni Inc. vi Method Reference
ZF0 {zij , Tij , ln p(O2)i} 12 - p = 1 TGA 90FUE/IDE
ZF1 {zij , Tij , ln p(O2)i} 12 - p = 0.4 TGA 90FUE/IDE
ZF2 {zij , Tij , ln p(O2)i} 11 - p = 0.1 TGA 90FUE/IDE
ZF3 {zij , Tij , ln p(O2)i} 10 - p = 0.05 TGA 90FUE/IDE
ZF4 {zij , Tij , ln p(O2)i} 9 - p = 0.007 TGA 90FUE/IDE
ZK0 { zij , Tij , ln p(O2)i} 12 - p = 1 TGA 94KIM/GAS
ZK2 { zij , Tij , ln p(O2)i} 12 - p = 0.1 TGA 94KIM/GAS
ZK4 { zij , Tij , ln p(O2)i} 11 - p = 0.01 TGA 94KIM/GAS
ZK6 { zij , Tij , ln p(O2)i} 10 - p = 0.001 TGA 94KIM/GAS
ZK8 { zij , Tij , ln p(O2)i} 8 - p = 1.10-4 TGA 94KIM/GAS
ZKA { zij, Tij , ln p(O2)i} 8 - p = 1.10-5 TGA 94KIM/GAS
ZKC { zij , Tij , ln p(O2)i} 3 - p = 1.10-6 TGA 94KIM/GAS
ZL0 { zij , Tij , ln p(O2)i} 25 + p = 1 TGA 89LIN/HUN
ZL2 { zij , Tij , ln p(O2)i} 12 + p = 0.1 TGA 89LIN/HUN
ZL4 { zij , Tij , ln p(O2)i} 11 + p = 0.01 TGA 89LIN/HUN
ZL6 { zij , Tij , ln p(O2)i} 9 + p = 0.001 TGA 89LIN/HUN
ZL8 { zij , Tij , ln p(O2)i} 6 + p = 1.10-4 TGA 89LIN/HUN
ZLA { zij , Tij , ln p(O2)i} 2 + p = 1.10-5 TGA 89LIN/HUN
ZV0 { zij , Tij , ln p(O2)i} 7 + p = 0.89 analysis 89VER/BRU
ZC0 {zij , Tij , ln p(O2)i} 16 + p = 1 TGA 92CON/KAR
ZC0a {zij , Tij , ln p(O2)i} 13 + p = 1 TGA 92CON/KAR
ZC2 {zij , Tij , ln p(O2)i} 10 + p = 0.09 TGA 92CON/KAR
ZC4 {zij , Tij , ln p(O2)i} 7 + p = 0.01 TGA 92CON/KAR
ZC6 {zij , Tij , ln p(O2)i} 6 + p = 0.0017 TGA 92CON/KAR
ZCK { zij , Tij , ln p(O2)i} 13 + p = 4 TGA 92CON/KAR
ZCL { zij , Tij , ln p(O2)i} 11 + p = 11 TGA 92CON/KAR
ZCM { zij , Tij , ln p(O2)i} 9 + p = 50 TGA 92CON/KAR
Os9 {ln p(O2)ij , zij , Ti} 22 - T = 838 K VA 87SAL/KOE
OsB {ln p(O2)ij , zij , Ti} 23 - T = 884 K VA 87SAL/KOE
OsD {ln p(O2)ij , zij , Ti} 21 - T = 926 K VA 87SAL/KOE
OsG {ln p(O2)ij , zij , Ti} 18 - T = 990 K VA 87SAL/KOE
OsJ {ln p(O2)ij , zij , Ti} 11 - T = 1081 K VA 87SAL/KOE

OBD {ln  p(O2)ij , zij , Ti} 5 - T = 913 K emf 89BOR/NOL
OBG {ln p(O2)ij , zij , Ti} 4 - T = 993 K emf 89BOR/NOL
OBH {ln  p(O2)ij , zij , Ti} 4 - T = 1023 K emf 89BOR/NOL
OK1 {ln  p(O2)ij , zij , Ti} 4 - T = 623 K TGA 87KIS/SHI
OK3 {ln  p(O2)ij , zij , Ti} 4 - T = 673 K TGA 87KIS/SHI
OK5 {ln  p(O2)ij , zij , Ti} 7 - T = 723 K TGA 87KIS/SHI
OK7 {ln  p(O2)ij , zij , Ti} 11 - T = 773 K TGA 87KIS/SHI
OK9 {ln  p(O2)ij , zij , Ti} 12 - T = 823 K TGA 87KIS/SHI
OKB {ln  p(O2)ij , zij , Ti} 11 - T = 873 K TGA 87KIS/SHI
OKD {ln  p(O2)ij , zij , Ti} 12 - T = 923 K TGA 87KIS/SHI
OKF {ln  p(O2)ij , zij , Ti} 10 - T = 973 K TGA 87KIS/SHI
OKH {ln  p(O2)ij , zij , Ti} 10 - T = 1023 K TGA 87KIS/SHI
OKJ {ln p(O2)ij , zij , Ti} 9 - T = 1073 K TGA 87KIS/SHI
OKL {ln  p(O2)ij , zij , Ti} 9 - T = 1123 K TGA 87KIS/SHI
OKN {ln  p(O2)ij , zij , Ti} 7 - T = 1173 K TGA 87KIS/SHI
OKQ {ln  p(O2)ij , zij , Ti} 7 - T = 1223 K TGA 87KIS/SHI
OKS {ln p(O2)ij , zij , Ti} 4 - T = 1273 K TGA 87KIS/SHI
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Table 2. Continued

Code Set of values Ni Inc. vi Method Reference
OT7 {ln p(O2)ij , zij , Ti} 5 - T = 773 K TGA 88TOU/MAR
OTB {ln  p(O2)ij , zij , Ti} 4 - T = 873 K TGA 88TOU/MAR
OTJ {ln p(O2)ij , zij , Ti} 3 - T = 1073 K TGA 88TOU/MAR
OS7 {ln p(O2)ij , zij , Ti} 10 - T = 776 K TGA 88SPE/SPA
OSB {ln p(O2)ij , zij , Ti} 10 - T = 861 K TGA 88SPE/SPA
OSD {ln p(O2)ij , zij , Ti} 10 - T = 938 K TGA 88SPE/SPA
OSH {ln p(O2)ij , zij , Ti} 10 - T = 1012 K TGA 88SPE/SPA
OSJ {ln p(O2)ij , zij , Ti} 10 - T = 1070 K TGA 88SPE/SPA
OSM {ln p(O2)ij , zij , Ti} 10 - T = 1148 K TGA 88SPE/SPA
OM3 {ln  p(O2)ij , zij , Ti} 19 - T = 673 K VA 89MEU/NAE
OM4 {ln  p(O2)ij , zij , Ti} 20 - T = 698 K VA 89MEU/NAE
OM5 {ln  p(O2)ij , zij , Ti} 22 - T = 723 K VA 89MEU/NAE
OM6 {ln  p(O2)ij , zij , Ti} 20 - T = 748 K VA 89MEU/NAE
OM7 {ln  p(O2)ij , zij , Ti} 26 - T = 773 K VA 89MEU/NAE
OM8 {ln  p(O2)ij , zij , Ti} 25 - T = 798 K VA 89MEU/NAE
OM9 {ln  p(O2)ij , zij , Ti} 26 - T = 823 K VA 89MEU/NAE
OMA {ln  p(O2)ij , zij , Ti} 28 - T = 848 K VA 89MEU/NAE
OMB {ln  p(O2)ij , zij , Ti} 28 - T = 873 K VA 89MEU/NAE
OMC {ln  p(O2)ij , zij , Ti} 30 - T = 898 K VA 89MEU/NAE
OMD {ln  p(O2)ij , zij , Ti} 30 - T = 923 K VA 89MEU/NAE
OME {ln  p(O2)ij , zij , Ti} 31 - T = 948 K VA 89MEU/NAE
OMF {ln  p(O2)ij , zij , Ti} 32 - T = 973 K VA 89MEU/NAE
OMG {ln  p(O2)ij , zij , Ti} 32 - T = 998 K VA 89MEU/NAE
OMH {ln  p(O2)ij , zij , Ti} 30 - T = 1023 K VA 89MEU/NAE
Ot3 {ln p(O2)ij , zij , Ti} 26 - T = 673 K emf 89TET/TAN
Ot4 {ln p(O2)ij , zij , Ti} 27 - T = 698 K emf 89TET/TAN
Ot5 {ln p(O2)ij , zij , Ti} 27 - T = 723 K emf 89TET/TAN
Ot6 {ln p(O2)ij , zij , Ti} 28 - T = 748 K emf 89TET/TAN
Ot7 {ln p(O2)ij , zij , Ti} 29 - T = 773 K emf 89TET/TAN
Ot9 {ln p(O2)ij , zij , Ti} 28 - T = 823 K emf 89TET/TAN
OtB {ln  p(O2)ij , zij , Ti} 24 - T = 873 K emf 89TET/TAN
OGB {ln p(O2)ij , zij , Ti} 38 + T = 873 K TGA 89GER/PIC
Oc5 {ln p(O2)ij , zij , Ti} 28 + T = 723 K VA 91SCH/HAR
Oc6 {ln p(O2)ij , zij , Ti} 36 + T = 748 K VA 91SCH/HAR
Oc7 {ln p(O2)ij , zij , Ti} 33 + T = 773 K VA 91SCH/HAR
Oc9 {ln p(O2)ij , zij , Ti} 32 + T = 823 K VA 91SCH/HAR
OcB {ln p(O2)ij , zij , Ti} 30 + T = 873 K VA 91SCH/HAR
OcD {ln p(O2)ij , zij , Ti} 28 + T = 923 K VA 91SCH/HAR
Om7 {ln p(O2)ij , zij , Ti} 19 + T = 773 K emf 92MAT/JAC
OmB {ln p(O2)ij , zij , Ti} 18 + T = 873 K emf 92MAT/JAC
OmF {ln p(O2)ij , zij , Ti} 12 + T = 973 K emf 92MAT/JAC
OmJ {ln p(O2)ij , zij , Ti} 8 + T = 1073 K emf 92MAT/JAC
OmN {ln p(O2)ij , zij , Ti} 6 + T = 1173 K emf 92MAT/JAC
OmQ {ln p(O2)ij , zij , Ti} 6 + T = 1273 K emf 92MAT/JAC
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Table 2. Continued

Code Set of values Ni Inc. vi Method Reference
N1 {ln  p(O2)ij , Tij , zi} 55 - z = 0.978 VA 89VER/BRU
N2 {ln  p(O2)ij , Tij , zi} 55 + z = 0.922 VA 89VER/BRU
N3 {ln  p(O2)ij , Tij , zi} 44 + z = 0.801 VA 89VER/BRU
N4 {ln  p(O2)ij , Tij , zi} 77 + z = 0.632 VA 89VER/BRU
N5 {ln  p(O2)ij , Tij , zi} 66 + z = 0.508 VA 89VER/BRU
N6 {ln  p(O2)ij , Tij , zi} 55 + z = 0.404 VA 89VER/BRU
N7 {ln  p(O2)ij , Tij , zi} 22 + z = 0.285 VA 89VER/BRU

VT1 {ln  p(O2)ij , Tij , Vi}
d 86 - n/a VA 94TAR/GUS

VT2 {ln  p(O2)ij , Tij , Vi}
d 41 - n/a VA 94TAR/GUS

VT3 {ln  p(O2)ij , Tij , Vi}
d 39 - n/a VA 94TAR/GUS

VT4 {ln  p(O2)ij , Tij , Vi}
d 28 - n/a VA 94TAR/GUS

VT5 {ln  p(O2)ij , Tij , Vi}
d 41 - n/a VA 94TAR/GUS

VT6 {ln  p(O2)ij , Tij , Vi}
d 51 - n/a VA 94TAR/GUS

VT7 {ln  p(O2)ij , Tij , Vi}
d 35 - n/a VA 94TAR/GUS

VT8 {ln  p(O2)ij , Tij , Vi}
d 50 - n/a VA 94TAR/GUS

VT9 {ln  p(O2)ij , Tij , Vi}
d 29 - n/a VA 94TAR/GUS

VTA {ln  p(O2)ij , Tij , Vi}
d 30 - n/a VA 94TAR/GUS

VTB {ln  p(O2)ij , Tij , Vi}
d 31 - n/a VA 94TAR/GUS

VTC {ln  p(O2)ij , Tij , Vi}
d 40 - n/a VA 94TAR/GUS

VTD {ln  p(O2)ij , Tij , Vi}
d 47 - n/a VA 94TAR/GUS

VTE {ln  p(O2)ij , Tij , Vi}
d 43 - n/a VA 94TAR/GUS

VTF {ln  p(O2)ij , Tij , Vi}
d 43 - n/a VA 94TAR/GUS

VTG {ln  p(O2)ij , Tij , Vi}
d 47 - n/a VA 94TAR/GUS

PG { ∆oxH'O,ij , zij , Ti} 19 - T = 873 K calorimetry 89GER/PIC
PP1 { ∆Hij , z'ij , T'i}

e 10 + n/a calorimetry 89PAR/NAV
PP2 { ∆Hij , z'ij , T'i}

e 14 + n/a calorimetry 89PAR/NAV
PP3 { ∆Hij , z'ij , T'i}

e 3 + n/a calorimetry 89PAR/NAV
S {Sij , zij , Ti} 6 + T = 298 K AC f

CG7 {Cpz,ij, Tij , zi} 7 + z = 0.70 AC 88GAV/GOR
CG9 {Cpz,ij, Tij , zi} 7 + z = 0.85 AC 88GAV/GOR
CJ9 {Cpz,ij, Tij , zi} 5 + z = 0.9 AC 89JUN/ECK
CS9 {Cpz,ij, Tij , zi} 9 + z = 0.9 AC 90SHA/WES
CAA { Cpz,ij, Tij , zi} 7 + z = 0.96 AC 91ATA/HON
CsA {Cpz,ij, Tij , zi} 2 + z = 1.0 AC 88SHE/CHU
CM4 {Cpz,ij, Tij , zi} 9 - z = 0.4 DSC 90MAT/FUJ
CM7 {Cpz,ij, Tij , zi} 11 - z = 0.65 DSC 90MAT/FUJ
CM8 {Cpz,ij, Tij , zi} 10 - z = 0.82 DSC 90MAT/FUJ
Ca5 {Cpz,ij, Tij , zi} 21 - z = 0.5 DSC 91SHA/OZE
Ca9 {Cpz,ij, Tij , zi} 20 - z = 0.85 DSC 91SHA/OZE
HG { ∆oxHij , zij , Ti} - T = 298 K calorimetry 89GRU/PIV
Hg { ∆oxHij , zij , Ti} - T = 298 K calorimetry 91GAR/RAI
HC { ∆oxHij , zij , Ti} - T = 298 K calorimetry 92CHO/KAN
HI { ∆oxHij , zij , Ti} - T = 298 K calorimetry 92IDE/TAK
HP { ∆oxHij , zij , Ti} - T = 298 K calorimetry 93PRI/ZIN
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Table 2. Continued

Code Set of values Ni Inc. vi Method Reference
HM { ∆oxHij , zij , Ti} 4 + T = 298 K calorimetry 88MOR/SON
Hm { ∆oxHij , zij , Ti} 2 + T = 298 K calorimetry 95MON/POP
Ha { ∆oxHij , zij , Ti} 5 + T = 298 K calorimetry 93MAT/POP
HZ { ∆oxHij , zij , Ti} 7 + T = 298 K calorimetry 92ZHO/NAV
HH { ∆oxHij , zij , Ti} - T = 298 K calorimetry 95HEN/ZHE
GA { ∆oxGij , Tij , ln p(O2)i} - p = 1 emf 90AZA/SRE
GF { ∆oxGij , Tij , ln p(O2)i} - p = 0.21 emf 90FAN/JI
GS { ∆oxGij , Tij , ln p(O2)i} 26 + p = 1 emf 91SKO/PAS

a Plus means that the experiment is included into the final assessment, minus means that
it is not.

b p in this column means dimentionless quantity p/po, where po = 101325 Pa.
c XRD - X-ray diffraction, TGA - thermal gravimetry analysis, ND - neutron

diffraction, VA - volumetric analysis, emf - electromotive force, AC - adiabatic
calorimetry, DSC - differential scanning calorimetry.

d The experimental point looks like {ln p(O2)ij, Tij, Vi, zi
o, mi

o}
e The experimental point looks like {∆Hij, z'ij, T'i, z"i, T"i}
f The references are 88GAV/GOR, 89JUN/ECK, 90SHA/WES, 91ATA/HON,

88SHE/CHU.
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Table 3. Grouping the experiments

Quantity Group Codes of the experiments Inc.a

Temperature of T-O
phase transition

T_O TB1, TE, TF, TK, TT, TY, To, Tp, Tu,
TW, TB2

+b

Temperature of T-O
phase transition

T_z TM1, TM2 -

Oxygen occupancies X XJ0, XJ1, XJ3, XI1 +

Index z Z_b ZJ0, ZJ1, ZJ3, ZI1 -

Index z Z_g Zt0, Zt1, Zt3, Zt4, Zt6, ZS0, ZS1, ZT0,
ZT1, ZY0, ZY0a, ZY1, ZY1a, ZY3, ZY4,
ZY5, ZY6, ZY7, ZB8, ZBA, ZF0, ZF1,
ZF2, ZF3, ZF4, ZK0, ZK2, ZK4, ZK6,
ZK8, ZKA , ZKC

-

Index z Z ZL0, ZL2, ZL4, ZL6, ZL8, ZLA , ZV0,
ZC0, ZC0a, ZC2, ZC4, ZC6, ZCK, ZCL,
ZCM

+

Oxygen partial
pressure (T = const)

O_b Os9, OsB, OsD, OsG, OsJ, OBD, OBG,
OBH, OK1, OK3, OK5, OK7

-

Oxygen partial
pressure (T = const)

O_g OK9, OKB, OKD, OKF, OKH, OKJ, OKL,
OKN, OKQ, OKS, OT7, OTB, OTJ, OS7,
OSB, OSD, OSH, OSJ, OSM, OM3, OM4,
OM5, OM6, OM7, OM8, OM9, OMA,
OMB, OMC, OMD, OME, OMF, OMG,
OMH, Ot3, Ot4, Ot5, Ot6, Ot7, Ot9, OtB

-

Oxygen partial
pressure (T = const)

O OGB, Oc5, Oc6, Oc7, Oc9, OcB, OcD,
Om7, OmB, OmF, OmJ, OmN, OmQ

+

Oxygen partial
pressure (z = const)

N N2, N3, N4, N5, N6, N7 +c

Oxygen partial
pressure (V = const)

V VT1, VT2, VT3, VT4, VT5, VT6, VT7,
VT8, VT9, VTA , VTB, VTC, VTD, VTE,
VTF, VTG

-

Partial enthalpy P_b PG -

Drop enthalpy P PP1, PP2, PP3 +

Entropy S S +

Heat capacity C CG7, CG9, CJ9, CS9, CAA, CsA +

Heat capacity C_h CM4, CM7, CM8, Ca5, Ca9 -

Enthalpy H_b HG, Hg, HC, HI, HP -.

Enthalpy H HM, Hm, Ha, HZ, HH +

Gibbs energy G_b GA, GF -

Gibbs energy G GS +
a Plus means that the group is included into the final assessment, minus means that it is not.

Explanations are in Section 4.2.
b Ts was excluded because it was assumed to be the outlier.
c N1 was excluded because it was assumed to be the outlier.
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Table 4. The variance components obtained

group σ
U L�

� γ
D

γ
E

T_O 11.4 K 2.61 7.19

X 0.0388 2.61 7.19

Z 0.00743 2.61 7.19

O 0.106 2.61 7.19

N 0.156 2.61 7.19

P 4.54 kJ.mol-1 2.61 7.19

S 2.51 J.K-1mol-1 2.61 7.19

C 0.813 J.K-1mol-1 2.61 7.19

H 5.01 kJ.mol-1 2.61 7.19

G 1.00 kJ.mol-1 2.61 7.19
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Table 5. The parameters obtained in solution MLa

A B C D

g1 ����� ± ��� ������ ± ����� 0 0

g2 ������ ± ��� ����� ± ���� ������ ± ����� ������ ± ����

a1 ���� ± ��� ������ ± ����� 0 0

a2 ����� ± ��� ����� ± ����� 0 0

b1 ����� ± ��� ����� ± ����� 0 0

a See Eq. (2) and (21). The parameters lead to the Gibbs energy normalized by the gas
constant, G/R.
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Table 6. Thermodynamic properties of the YBa2Cu3O6+z phase

T/K z x Cpz
o

J.mol-1K-1
So

J.mol-1K-1
Ho - Ho

298

kJ.mol-1
∆oxH

o

kJ.mol-1
OQ

� �S

S
R

2
�

298.15 0.00 0.00 265.64 311.10 0.00 -29.63 -∞
300.00 0.00 0.00 266.14 312.74 0.49 -29.63 -∞
400.00 0.00 0.00 287.66 392.48 28.26 -29.63 -∞
500.00 0.00 0.00 302.12 458.32 57.79 -29.63 -∞
600.00 0.00 0.00 312.62 514.38 88.56 -29.63 -∞
700.00 0.00 0.00 320.66 563.20 120.24 -29.63 -∞
800.00 0.00 0.00 327.08 606.45 152.63 -29.63 -∞
900.00 0.00 0.00 332.34 645.29 185.61 -29.63 -∞

1000.00 0.00 0.00 336.77 680.54 219.07 -29.63 -∞
1100.00 0.00 0.00 340.55 712.82 252.94 -29.63 -∞
1200.00 0.00 0.00 343.84 742.59 287.17 -29.63 -∞
298.15 0.25 0.00 270.14 320.85 0.00 -53.01 -54.04

300.00 0.25 0.00 270.66 322.52 0.50 -53.01 -53.60

400.00 0.25 0.00 293.29 403.72 28.78 -52.87 -35.75

500.00 0.25 0.00 308.57 470.90 58.92 -52.64 -25.13

600.00 0.25 0.00 319.70 528.20 90.36 -52.36 -18.14

700.00 0.25 0.00 328.25 578.15 122.77 -52.04 -13.21

800.00 0.25 0.00 335.07 622.44 155.95 -51.67 -9.57

900.00 0.25 0.00 340.68 662.24 189.75 -51.28 -6.79

1000.00 0.25 0.00 345.39 698.38 224.06 -50.86 -4.61

1100.00 0.25 0.00 349.43 731.50 258.80 -50.43 -2.87

1200.00 0.25 0.00 352.93 762.06 293.92 -49.97 -1.45

298.15 0.50 0.16 275.60 326.08 0.00 -75.07 -50.21

300.00 0.50 0.16 276.14 327.78 0.51 -75.07 -49.77

400.00 0.50 0.09 299.75 410.70 29.30 -74.70 -31.94

500.00 0.50 0.00 315.03 479.35 60.04 -74.20 -21.40

600.00 0.50 0.00 326.79 537.88 92.16 -73.64 -14.54

700.00 0.50 0.00 335.84 588.96 125.31 -72.98 -9.72

800.00 0.50 0.00 343.07 634.29 159.27 -72.26 -6.16

900.00 0.50 0.00 349.02 675.05 193.88 -71.47 -3.44

1000.00 0.50 0.00 354.02 712.09 229.04 -70.64 -1.31

1100.00 0.50 0.00 358.31 746.04 264.66 -69.76 0.40

1200.00 0.50 0.00 362.03 777.38 300.68 -68.85 1.79
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Table 6. Continued

T/K z x Cpz
o

J.mol-1K-1
So

J.mol-1K-1
Ho - Ho

298

kJ.mol-1
∆oxH

o

kJ.mol-1
OQ

� �S

S
R

2
�

298.15 0.75 0.34 280.05 326.98 0.00 -98.03 -50.69

300.00 0.75 0.34 280.62 328.72 0.52 -98.02 -50.21

400.00 0.75 0.31 305.39 413.09 29.82 -97.51 -31.06

500.00 0.75 0.29 322.21 483.15 61.16 -96.76 -19.66

600.00 0.75 0.26 334.50 543.04 93.96 -95.85 -12.15

700.00 0.75 0.24 343.96 595.34 127.85 -94.81 -6.86

800.00 0.75 0.22 351.52 641.78 162.58 -93.67 -2.95

900.00 0.75 0.20 357.75 683.55 198.01 -92.45 0.04

1000.00 0.75 0.19 362.99 721.53 234.02 -91.16 2.38

1100.00 0.75 0.17 367.48 756.34 270.52 -89.82 4.27

1200.00 0.75 0.15 371.39 788.49 307.44 -88.43 5.80

298.15 1.00 0.43 285.09 319.68 0.00 -123.50 +∞
300.00 1.00 0.43 285.68 321.44 0.53 -123.49 +∞
400.00 1.00 0.40 311.37 407.41 30.33 -122.80 +∞
500.00 1.00 0.38 328.91 478.88 62.29 -121.80 +∞
600.00 1.00 0.36 341.76 540.04 95.76 -120.58 +∞
700.00 1.00 0.34 351.68 593.50 130.38 -119.20 +∞
800.00 1.00 0.32 359.62 640.99 165.90 -117.69 +∞
900.00 1.00 0.30 366.17 683.74 202.15 -116.07 +∞

1000.00 1.00 0.29 371.68 722.61 239.00 -114.36 +∞
1100.00 1.00 0.28 376.41 758.27 276.38 -112.57 +∞
1200.00 1.00 0.27 380.53 791.20 314.20 -110.72 +∞
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Table 7. The correlation matrix for the parameters obtained in solution ML

g1,A g1,B g2,A g2,B g2,C g2,D

g1,A 1 - - - - -

g1,B -0.8456 1 - - - -

g2,A -0.1218 0.1345 1 - - -

g2,B 0.1600 -0.1655 0.2049 1 - -

g2,C -0.1588 0.1640 -0.2007 -0.9992 1 -

g2,D -0.1353 0.1394 -0.3648 -0.9787 0.9727 1

a1,A -0.05636 0.06241 -0.09119 -0.2819 0.2870 0.2644

a1,B 0.03600 -0.04097 0.1732 0.2677 -0.2758 -0.2549

a2,A -0.04552 0.05858 0.2790 0.04880 -0.06001 -0.05707

a2,B 0.04405 -0.05768 -0.2795 -0.04931 0.06060 0.05815

b1,A -0.04051 0.04131 0.01065 -0.3108 0.3184 0.2680

b1,B 0.04406 -0.04575 -0.03082 0.3079 -0.3148 -0.2641

a1,A a1,B a2,A a2,B b1,A b1,B

a1,A 1 - - - - -

a1,B -0.9832 1 - - - -

a2,A -0.6399 0.6645 1 - - -

a2,B 0.6637 -0.6948 -0.9926 1 - -

b1,A 0.002190 0.01899 0.03187 -0.05097 1 -

b1,B 0.01712 -0.04418 -0.06832 0.08911 -0.9914 1
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Fig. 1. The temperatures of the phase transition as a function of the oxygen
partial pressure. The solid line is solution ML, the long dashed line is solution WLS,
the short dashed line is the solution by 93DEG/VOR.

Fig. 2. The temperatures of the phase transition as a function of index z. The solid
line is solution ML, the long dashed line is solution WLS, the short dashed line is the
solution by 93DEG/VOR.
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Fig. 3. The order parameter as a function of the temperature at the fixed oxygen
partial pressure. The solid line is solution ML, the long dashed line is solution WLS,
the short dashed line is the solution by 93DEG/VOR.
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Fig. 4. Index z as a function of the temperature at the fixed oxygen partial
pressure: 89LIN/HUN and 89VER/BRU. The solid line is solution ML, the long
dashed line is solution WLS, the short dashed line is the solution by 93DEG/VOR.

Fig. 5. Index z as a function of the temperature at the fixed oxygen partial
pressure: 92CON/KAR. The solid line is solution ML, the long dashed line is
solution WLS, the short dashed line is the solution by 93DEG/VOR.
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Fig. 6. The oxygen partial pressure as a function of index z at constant
temperature: 89GER/PIC and 91SCH/HAR. The solid line is solution ML, the long
dashed line is solution WLS, the short dashed line is the solution by 93DEG/VOR.

Fig. 7. The oxygen partial pressure as a function of index z at constant
temperature: 92MAT/JAC. The solid line is solution ML, the long dashed line is
solution WLS, the short dashed line is the solution by 93DEG/VOR.
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Fig. 8. The oxygen partial pressure as a function of the inverse temperature at
constant z. The solid line is solution ML, the long dashed line is solution WLS, the
short dashed line is the solution by 93DEG/VOR.

Fig. 9. The partial enthalpy as a function of index z at 873 K (89GER/PIC). The
solid line is solution ML, the long dashed line is solution WLS, the short dashed line
is the solution by 93DEG/VOR.
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Fig. 10. The enthalpy of Reaction (25) as a function of index z (89PAR/NAV). The
solid line is solution ML, the long dashed line is solution WLS, the short dashed line
is the solution by 93DEG/VOR.

Fig. 11. The entropy and the heat capacity as functions of index z at 298.15 K.
The solid line is solution ML, the long dashed line is solution WLS, the short dashed
line is the solution by 93DEG/VOR.
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Fig. 12. The heat capacity as a function of the temperature at fixed index z
(adiabatic calorimetry). The solid line is solution ML, the long dashed line is
solution WLS, the short dashed line is the solution by 93DEG/VOR.

Fig. 13. The heat capacity as a function of the temperature at fixed index z (DSC).
The solid line is solution ML, the long dashed line is solution WLS, the short dashed
line is the solution by 93DEG/VOR.
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Fig. 14. The enthalpy of formation from oxides as a function of index z at
298.15 K. The solid line is solution ML, the long dashed line is solution WLS, the
short dashed line is the solution by 93DEG/VOR.

Fig. 15. The Gibbs energy as a function of the temperature at the fixed oxygen
partial pressure equal to 1 atm. The solid line is solution ML, the long dashed line is
solution WLS, the short dashed line is the solution by 93DEG/VOR.
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Fig. 16. The dependence of the likelihood function and the ratios, γa,i and γb,i on
number of terms in the first sum of Eq. (2).

Fig. 17. Phase transformation diagram of the YBa2Cu3O6+z phase. The solid line is
solution ML, the long dashed line is solution WLS, the short dashed line is the
solution by 93DEG/VOR.
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Fig. 18. Deviates for the experiments in group Z_g for solution ML.

Fig. 19. Deviates for the experiments in group O_g for solution ML.
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Fig. 20. Normalized deviates for all the experimental points included into the
assessment for solution ML.
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Fig. 21. Tilt systematic error versus shift systematic error for solution ML. The
code of the experiment is used as a mark.

Fig. 22. Tilt systematic error versus shift systematic error for 93DEG/VOR. The
code of the experiment is used as a mark.
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Fig. 23. The total pressure as a function of inverse temperature in 94TAR/GUS.
The solid line is solution ML, the dot dashed line is solution TAR.

Fig. 24. Tilt systematic error versus shift systematic error for solution TAR. The
code of the experiment is used as a mark.



��

Fig. 25. Tilt systematic error versus shift systematic error for solution WLS. The
code of the experiment is used as a mark.
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Fig. 26. Deviates for the experiments in group Z for solution ML.

Fig. 27. Deviates for the experiments in group Z for solution WLS.


