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SIMULTANEOUS ATTAINABILITY OF CENTRAL LYAPUNOV

AND BOHL EXPONENTS FOR ODE LINEAR SYSTEMS

ROBERT E. VINOGRAD

Abstract. Millionscikov's Accessibility Theorem for the central Lyapunov exponent

of a linear ODE system is extended to simultaneous attainability of both central

Lyapunov and Bohl exponents.

1. Let

(1) x = A(t)x,       t 3=0, x GR", \\A(t)\\ <a0.

The Lyapunov exponent X(x) and Bohl exponent ß(x) of a solution x(t) are given

by

X(x) = lim —In | jt(/) | ,   resp.ß(x)=    lim      _   In     . .   .
/-oo  l r-i-oo l      s     \x\s) I

(In fact these are upper exponents; the lower ones are defined similarly, with lim in

place of lim.)

In general neither these exponents nor their suprema À0 = supx X(x), ß0 =

supx/?(.*) are stable under small perturbations of the system. Instead the so-called

central Lyapunov exponent' A 3= X0 and Bohl exponent B > ß0 can be defined being

stable upward (resp. lower exponents being stable downward). To introduce them

and to describe exactly this " upward stability" we need a notion of upper functions

(for brevity we omit similar notions and results about lower exponents).

2. Let X(t, s) = X(t)X~x(s) where X(t) is a fundamental matrix of (1). As is

known,

(2) \X(t,s)\<ea^'-s\

and

l*(0
(3) \X(t,s)\= max ,

x      \x(s)\

where max is taken over all nonzero solutions of (1).

Definition. A bounded function K(t) is an upper function for system (1) if there

is a constant D = DK such that

(4) \X(t,s)\^Del>K^da       (t>s).
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For example, by (2), K(t) = a0 is an upper function with D = 1. Let

(5) K= hm - ('K(a)da,       K=    Hm    —^— ('K(a)da.
t J(\ t      s J,.

Definition, 77ie central Lyapunov exponent A, resp. 7?o/i/ exponent B is given by

(6) A = inf K,    resp. B = inf K,

where the inf is taken over all upper functions.

It is easily seen that X0 =£ A, ß0 =£ B and A < B.

3. Consider a perturbed system

(7) y=[A(t)+Ä(t)]y

and let its upper functions and exponents be marked by ~ .

The upward stability of K(t), A, B means that given e > 0 there is 8 = ¿5(e) > 0

such that if | Ä(t) | < 8, then

K(t)<K(t) + z,       Ä<A + e,        B < B + e.

The next theorem is well known [1].

4. Theorem. K(t), A, and B are always upward stable.

Proof. It suffices to prove K(t) < K(t) + e; then the rest follows by (5), (6). Let

Y(t, s) — Y(t)Y~x(s) where Y(t) is a fundamental matrix of (7). By the Variation of

Constants Formula,

Y(t,s) = X(t,s) + ¡'x(t,r)Ä(r)Y(r,s)dT.
Js

Take norms, use (4) and set

(8) \Y(t,s)\=De''K(a)dau(t).

Then

u(t) < 1 + CD I Ä(r) | u(r)dT
•'s

and by Gronwall's inequality, u(t) < exp//D \A(t) \ dr. Now, if \Ä(t) |< 8, then

by (8) K(t) = K(t) + D8 is upper for (7). So 0(e) = e/D.

In particular Theorem 4 implies that if À0 = À (or ß0 = B), then X0 (or ß0) is itself

stable up. As is known, for a constant system (1) (i.e. A(t) = const) one has always

X0 = ß0 — A = B, and so all exponents are stable up.

5. In contrast, for nonautonomous systems the central exponents A and B need

not be attainable by individual solution exponents, i.e. it may happen that A0 < A

and/or A0 < B (as well as A < B). However the Accessibility Theorem [2] states that

the central Lyapunov exponent A is always attainable by means of arbitrarily small

perturbations in the following sense: given 8 > 0 there is a perturbation with

\Ä(t)\< 8 such that Â0 > A for the perturbed system (7).

It turns out that this theorem can be extended to the attainability of B; moreover,

a simultaneous attainability of both A and B can be established and at the same time

the original proof [2] can be considerably shortened.
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6. Theorem. Let system (1) have central Lyapunov exponent A and Bohl exponent

B. Given ô0 > 0 there is a perturbation A(t) with \ A(t) | < 8Q such that system (6) has a

solution y(t) with both X(y) 3= A and ß(y) 3= B.

To prove this theorem we start with a technical remark and a number of lemmas.

7. Remark. All the above definitions of exponents or upper functions are given

with continuously varying t and s. But nothing will be changed if we replace them by

discrete variables tn — nT, sm — mT, where T > 0 is fixed and m, n = 1,2,_This

follows by the fact that by (2), | X(t, s)\< e"°T = const as well as | x(t) \/\ x(s)\<

e""T = const for |r —i|<r, so that any difference between continuous t and

discrete tn < t < tn+, vanishes by taking lim or else is absorbed by the constant D in

(4). In particular, K(t) remains upper if (4) holds just for t = /„, s — sm.

8. Lemma. Let T> 0 be fixed, tn = nTJn = [/„_,, fj, n = 0,1,... and

ln\X(t,s)\ = f{t,s),    i.e.,    \X(t,s)\=e«'-*\

Define a step function K(t) by

(9) K(t)=Xn = jf(tn,t„_x)   on J„,n= 1,2,...

(the illegal "double definition" at t = t„ can be neglected). Then K(t) is an upper

function and hence K 3= A, K > B.

Proof. By (2), K(t) is bounded: | K(t)\< a0. Since X(t, s) = X(t, r)X(r, s), we

have/(f, s)<f(t,r)+f(r,s), and since

fih,h-à = KT=Çk K(a)da,

we have for t = tn,s = tm, n 3= m,

f(t,s)<2f(tk,tk-x)= i'K(a)da,    i.e.    | X(t, s) |< e''K(a)da.
Js

By Remark l,K(t) is upper.

The next several lemmas constitute so-called Millionscikov's Rotation Method. It

can be found in [2], that is why we mostly restrict ourselves to some brief outlines of

the proofs. Recall that the angle y — <$ (a, b) between two vectors a, b ER" is

given by cos y — a- b/(\ a\ • | ft |), 0 < y < w.

9. Lemma. Let a and c be vectors in R" with \a\ = \c\ and -$ (a, c) — y ¥= 0, -n.

Then there is a unitary operator U(t): R" -» R" defined on a given interval J*:

t* < í < r* + T,T> 1, such that

(i) U(t*) = 7, U(t* + T)a = c,

(ii) \ U(t) - I\ = \ U~x(t)-I\< y,

(iii)\Ü(t)U-\t)\<y.

Sketch of proof. Let V(u>): R" -* R" be the rotation by the angle w from a to c

in the 2-plane Pac. spanned by a, c, and V(u) = identity on the orthogonal comple-

ment to Pac. Then V(u) is unitary and in a proper orthonormal basis of 7?" (the two
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598 R. E. VINOGRAD

first elements in Pac) the matrix of V(u) is

-sin todiag[(cos"
{\ sin w

,1,...,1
cos to

Set ¿7(0 = V[(t - t*)y/T], Then (i) is clear and (ii), (iii) follow by direct

computation.

10. Lemma. Let x(t) be a solution of (1) considered on an interval J* = [t*,t* + T],

T 3= 1. Next, let x(t* + T) — a, and c be a vector with \ c | = | a \ and <) (a, c) = y ¥=

0, it. Then there is a perturbation A(t) with norm

(10) \Ä(t)\<y(2a+ I)

such that the perturbed system (7) has a solution y(t) with

(H)

y(t*)=x(t*)    and   y(t* + T) = c        (so that \y(t* + T) \ = \x(t* + T)\).

Proof. Lety(t) — U(t)x(t) where U(t) is as in Lemma 9. Then clearly (11) holds.

Next, y = Ux + Üx = (UAU~X + UU'x)y = (A + Ä)y where Ä = UAU'X - A +

[/£/-'. By Lemma 9, | ÙU~X |< y and

\UAU~X -A\<\UA(U~X - I)\+\(U-I)A\

<\UA\ -Y +y|i4|

= 2y | A |       (since U is unitary, | UA \ = \A |).

Now (10) follows.

11. Lemma. Let a, b, c be three coplanar vectors in R" such that \ a \ = | b | = | c \ and

0 < y < 6 where y — •$ (a,c),6 = <$ (a, b). Then c = aa + ßb where

/,„\ r.     siny     „ , sin(0 — y)
(12) ß = ^—ñ>0   and   a = —\    , " > 0.
v    ' sinö sinö

Proof is by direct computation.

12. Proof of Theorem 6. Choose first y and T as follows. Let 8 = 80/2. Fix y

with

(13) 0<y <8/(2a + 1).

Then fix T 3= 1 and so large that sin y > 2e~ST, i.e.

(14) siny - e-ST^e~ST.

Define K(t) as in Lemma 8 and classify the solutions x(t) of system (1) on each

interval./„ = [/„_,, tn] as follows.

If

= ex,,T, then x(t) is maximal on /„,

2- e(x.-s)Ti then x(t) is rapid on /„,

< e(^„-S)7•) then x(t) is slow on Jn.

I*(ÜI

Notice that a maximal solution always exists by (3) and (9). Since a constant

multiple of x(t) falls into the same category as x(t), we can normalize x(t) as we like

without change of its category.
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Now we are going to perturb system (1) inductively on each interval /,, J2.

Each time the perturbation Ä(t) will be found by Lemma 10 and hence with

| Ä(t) \< 8 by virtue of (10) and (13). We will not mention this smallness any longer.

Starting with a rapid solution on Jn we will watch its behavior on Jn+X and

depending on that choose a perturbation on Jn (but not on Jn+ x yet).

1st step. Pick a maximal solution x(t) on /,. Then it is also rapid

!*('<) I  - fx,r>e(A,-«jr       (,() = 0).

l*('o)|

Look at its natural extension to J2. If it remains rapid on J2, i.e.

\X(h)\  ^ei\2-S)T

\x(t.)\

then put A(t) = 0 on /,, relable x(t) by y(t) on Jx, and the 1st step is completed. As

a result we have

f\<\ \y('\) 1 s „(A|-«jr lílíiil > -{\,-S)T
[     ' W'oH ' [*(hl\

where x(t) is a natural (unperturbed) extension of>•(/).

Suppose x(t) is slow on J2 and let .v(',) = a. Find a maximal solution ¿(r) on J2

and normalize it so that the vector £(',) = b has norm | ¿ | = | a | . Since x(t) is slow

while £(/) is maximal, they cannot be proportional; therefore •=£ (a, b) ¥= 0, it.

Define a vector c like this: c = b if <) (a, b) < y, otherwise let c = aa + /?6 be as in

Lemma 11.

Now perturb system (1) on 7, as in Lemma 10. This yields a solution y( t ) of (7)

with>>(/„) = x(t()), \y(ti)\ = \x(t])\ and hence with

\y(t\) 1 g,   (X^idt

\y(t0) |

The crucial point is that the natural (unperturbed) extension z(t) of y(t) beyond r,

is rapid on J2. Indeed, if c — b, then z(t) — £(t) which is even maximal on J2.

Otherwise z(tx) = c = aa + ßb = ax(tx) + ß£(tx) and by linearity

z(t) = ax(t) + ße(t),       t>tx.

At t = /, all three norms of z, x, £ are equal, therefore

■z(r2)| _|ax(f2) + j8¿(f2)|     |¿(f2)|( |x(/2)| ,

(16) |z(OI tf(ft)J        r.lK?JiV'   a|^'2)

Since | is maximal and x is slow on /2, we have

l*('2)|   =  l*('2)l/l*('l)l        e^-'>r =

|€(i2)|      |€(i2)|/l^.)r     ex^
- s r
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Then

ß_a\Ahl[>slny-sln(0-y)e^

\è(t2)\ sm6

siny — e ST

>e'ST       (by (14)).

Combining with (15), z is rapid on J2

\zih)\
j,     (A2-S)7-

Relabeling z(t) by x(t) on J2, we come again to (15), and the 1st step is entirely

completed.

Suppose we have already completed m — 1 steps of the induction with the

following results:

(i) The system is properly perturbed on J, U ■ ■ • U •/„,_, but unperturbed yet on

Jm = ['w-i»'J or further.

(ii) There is a solution y(t) of the perturbed system on J, U ■ ■ • U/m_, with

natural (unperturbed) continuous extension x(t) on Jm such that

(17a) )yjtk)\j*e^-"T,       k=l,...,m-l,

(17b) U0m)\   ^e(K-S)T

wth step is now exactly as the 1st one, just with /„,_,, tm, tm+x in place of t0, tx, t2.

Namely, if x(t) remains rapid on Jm+X too, then we set Ä(t) = 0 on Jm, relabel x(t)

by y(t) on Jm and so get (17a,b) with m replaced by m + 1. In this case the wth step

is completed.

If x(t) is slow on Jm+X, then let x(tm) — a, find a maximal solution £(/) on Jm+X

with i(tm) — b, | b | = | a \ , and define c as before: c = b if <) (a, 6) *£ y, otherwise

c = aa + ßb as in Lemma 11. Now perturb the system on Jm as in Lemma 10. This

creates a solution y(t) with y(tm_x) = x(tm_x), \y(tm)\ — \x(tm)\ and hence, by

(17b), with

It    ÏI
l-A*m)l     >     (Am-8)r

b('m-,)r
As before, the unperturbed continuous extension z(t) of j'(r) beyond im is rapid on

•/„,+,, and relabeling z(t) hy x(t) gives again (17a,b) with m replace by m + 1. The

m th step is entirely completed.

By induction, we obtain a system (7) defined for all / > 0 with perturbation Ä(t)

of smallness | Ä(t) |< 5 = 60/2 and having a solution >/(?) which satisfies (17a) for

all k = 1,2,.... By the very definition (9) of #(0,

/'" Ä-(a) o"a = XJ,        f" [K(a) - 8] da = (A„ - 5)r,
r/l - I 'n - 1
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so that (17a) implies for s = tm, t = tn (t > s)

\^\^expf'[K(a)-8]da    and    jg^| > exp f'[K(a) - 8] da.
\y(0)\        Jo \y(s)\        Js

It follows by Remark 7 and Lemma 8 that the Lyapunov and Bohl exponents of

y(t) satisfy X(y) ^K~-8>A-8and ß(y) >K-8>B- 8 respectively. To

complete the proof let y*(t) = y(t)eSl. Then X(y*) > A, ß(y*)>B and y*(t)

satisfies the system with perturbation A(t) + 81 of smallness 28 = 80.
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