
Simultaneous Calibration and Tracking with a Network of

Non-Overlapping Sensors

Ali Rahimi Brian Dunagan Trevor Darrell

{ali,bdunagan,trevor}@mit.edu

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA

Abstract

We describe a method for simultaneously recovering the tra-

jectory of a target and the external calibration parameters of

non-overlapping cameras in a multi-camera system. Each

camera is assumed to measure the location of a moving

target within its field of view with respect to the camera’s

ground-plane coordinate system. Calibrating the network of

cameras requires aligning each camera’s ground-plane co-

ordinate system with a global ground-plane coordinate sys-

tem. Prior knowledge about the target’s dynamics can com-

pensate for the lack of overlap between the camera fields

of view. The target is allowed to move freely with varying

speed and direction. We demonstrate the idea with a net-

work of indoor wireless cameras.

1. Introduction

Networks of sensors are often used to instrument large

spaces. To track moving people in large environments with

as few cameras as possible, we have developed a multi-

camera system where the fields of view of the cameras do

not overlap. Calibrating such a network is difficult without

access to ancillary information such as a map of the envi-

ronment or additional sensors.

Our main contribution is to show that a model of dy-

namics for targets can compensate for the lack of overlap

between the cameras by allowing us to estimate the target’s

position when it is not in the field of view of any sensor.

Using the dynamics model and sporadic observations from

a non-overlapping network of cameras, we can calibrate

the camera network and track the target concurrently. We

demonstrate our simultaneous calibration and tracking al-

gorithm with a distributed system of wireless camera nodes.

Intuitively, we could estimate the velocity v of the target

as it exits the field of view (FOV) of a camera. When, after

some time δt, the target enters the FOV of another cam-

era, we could estimate the relative displacement between

the two cameras with vδt. The displacements between pairs

of cameras can be combined to recover the relative location

and orientation of all the cameras in the network. This ve-

locity extrapolation approach works well when the target

moves in a straight line while it is invisible, but does not

work well in structured environments such as office build-

ings where people take sharp turns to enter and exit offices.

We refine the velocity extrapolation solution to recover the

camera poses and the target’s trajectory simultaneously in a

batch process that allows curved trajectories.

We recover the calibration parameters of the cameras and

the target’s trajectory using MAP estimation. Each camera

observes the target for a few time steps at a time because

the target moves between the fields of view. These obser-

vations impose a likelihood over both the trajectory and the

calibration parameters. Knowledge about dynamics can be

encoded with a prior probability distribution p(x) over tra-

jectories x. For example, a prior p(·) on the dynamics of

cars will assign a higher probability to trajectories that obey

the laws of physics as they apply to cars than to the trajec-

tory of a pedestrian. One popular way to define p(·) is with

a state space model (section 3), though our method can ac-

commodate many smooth models.

We presume that each camera can map the image coor-

dinate of the target to a local coordinate system laid on the

ground-plane. Each camera’s local ground-plane coordinate

system must be aligned to a global ground-plane coordinate

system up to a rotation and a translation prior to perform-

ing our procedure. We briefly discuss in section 2 how to

find a transformation between image coordinates and a local

ground-plane coordinate. The aim of this paper is to align

these local ground-plane coordinate systems with a global

ground-plane coordinate system by recovering the appropri-

ate rotation and translation of each camera.

1



2. Related Work

We assume that the motion of the target is confined to a

ground-plane. Cameras are placed at unknown locations

and orientations above the ground-plane, with a portion of

the ground-plane visible to each camera. Each camera can

map the image plane location of a target to the ground-plane

via a homography. Calibrating a network of cameras con-

sists of recovering this homography for each camera.

Outside the computer vision community, ultra-sound or

radio links between sensor nodes are the most popular way

to recover the pose parameters of the sensors [17, 9, 5].

These approaches triangulate the locations of the sensors

by computing pairwise distances between nodes from ultra-

sound or radio measurements.

Many methods explicitly designed for calibrating net-

works of cameras rely on overlapping fields of view [19,

20, 12]. Javed et al. [11] is one exception. They use an

idea similar to velocity extrapolation to find the projection

of the field of view lines of one camera onto another cam-

era. Knowing these projections is tantamount to recovering

calibration parameters. Because it is based on velocity ex-

trapolation, this method requires people to walk in a straight

line when they are not visible. This paper is most closely

related to [10], which shows how to calibrate a network of

non-overlapping cameras using distant objects (stars) to re-

cover orientation, and nearby objects (airplanes) to recover

relative position. Whereas [10] relies on strict constraints

on the motion of the calibration targets (the motion of stars

is parabolic, nearby targets must move in a line with con-

stant velocity), our targets may move freely. Furthermore,

we require only one type of target, and this target may be

the same type of target the network will ultimately track.

Our solution works indoors, where simpler solutions such

as GPS or radio-based methods do not work reliably.

Most research involving non-overlapping multi-camera

trackers has focused on maintaining consistent identity be-

tween multiple targets as they exit one field of view and en-

ter another [22, 15]. This is known as the data association

problem. These techniques provide machinery for estab-

lishing correspondences across disjoint views, but not for

determining the real-world trajectory of targets.

To solve the data association problem, one could run the

procedure presented in this paper inside an EM iteration that

optimizes for the best trajectory and sensor configurations

while marginalizing over target labels [8]. We assume that

the targets are already labeled using either this, or one of

[22, 15]. Once the identity of each target is known, we can

treat each trajectory separately. So for the rest of this paper,

we assume that the tracking problem is decoupled in this

way and we only discuss tracking one target.

There are several methods for recovering the homogra-

phy between a single camera and the ground-plane. [3]

finds the homography that yields the best alignment be-

tween the ground-plane locations of known landmarks and

the image plane location of the landmarks. [4] avoids rely-

ing on landmarks by watching trajectories of objects mov-

ing in a straight line with constant velocity. In each case,

the problem is ill-posed for a network of cameras, unless the

landmarks’ locations are globally known, or unless the same

linear trajectory crosses all sensors. For a network of cam-

eras, these methods can only recover a mapping between

each image plane and a local ground-plane coordinate sys-

tem for that camera. These local ground-plane coordinate

systems are arbitrarily rotated and translated with respect to

the global ground-plane coordinate system.

By applying this mapping to the image coordinate of the

target, a sensor can transform an image plane coordinate

to its local ground-plane coordinate system, allowing the

camera to behave like a virtual overhead camera. In the re-

mainder of this paper, we presume that these homographies

have been recovered up to a rotation and a translation us-

ing a method such as [4] or [3], and focus on aligning the

local ground-plane coordinate system of each camera to the

global ground plane coordinate system. In section 8, we use

overhead cameras, so no further calibration is necessary.

Concurrently recovering calibration parameters and tra-

jectories is reminiscent of SFM (Structure from Motion)

and SLAM/CML (Simultaneous Localization and Mapping,

a.k.a. Concurrent Mapping and Localization) [6]. In SFM

and SLAM, a moving camera measures the image plane co-

ordinate of scene features and recovers the trajectory of the

camera and the 3D location of the scene features. Our prob-

lem is converse: A set of stationary cameras observe the

image-plane coordinate of a moving feature (the target), and

the goal is to recover the pose of the cameras and the trajec-

tory of the feature. We cast our problem in an optimization

framework similar to bundle adjustment [21].

Various SFM and SLAM techniques, particularly those

based on the Kalman Filter [13, 7, 2, 1, 18], have a dynam-

ics model for the motion of the camera. The major differ-

ence between our problem and SLAM or SFM is that due

to the lack of overlap, at most one camera can observe the

target at any time. This corresponds to an SFM setup where

the moving camera observes only one scene feature in each

frame. Because this is rarely the case in SFM, motion mod-

els are merely used to provide robustness against noisy mea-

surements. But as the simple example in the introduction

illustrates, a motion model is a critical component of our

method.

In SFM, computing the camera trajectory is easy if the

feature locations are known, and recovering the scene struc-

ture is easy if the camera motion is known. In our problem,

finding the camera locations is easy if the target’s motion

is known, and estimating the target’s motion is simple if the

cameras are fully calibrated. This suggests an algorithm that

begins with a guess for the camera poses, and iterates be-

2



tween estimating a trajectory and updating the camera poses

with this new trajectory. In Structure from Motion, this al-

gorithm is known to work, albeit slowly. We have proved in

a technical report that this algorithm does not converge at all

in our case [16]. Incidentally, this non-convergence proves

that coordinate ascent cannot solve the Structure from Mo-

tion problem when only one feature is observed in each

frame. Therefore, our algorithm estimates the trajectory and

the calibration parameters simultaneously.

3. Trajectory Model

We represent dynamics with a distribution p(·) over the

space of trajectories. p(·) will be used as a prior for the

trajectory in a MAP framework. To define this function, we

begin with a generative model for trajectories.

Define xt to be the state of the target at time t. This

state contains information about the location, velocity, or

any other dynamic state of the target. We assume that the

state evolves according to linear Gaussian Markov dynam-

ics:

xt+1 = Axt + νt, (1)

where νt is a zero mean Gaussian random variable with co-

variance Σν .

The states form a Markov chain over time. x, the col-

lection of states from time 1 to time T is itself a Gaussian

random variable of dimension 1 × 4T :

p(xt|xt−1) = N
(

xt

∣

∣Axt−1,Σν

)

p(x) =

T
∏

t=1

p(xt|xt−1) = N
(

x
∣

∣0,Λx

)

. (2)

The prior p(x) is the probability that a given location and

velocity trajectory emanated from our generative model of

target dynamics.

In our experiments, we let xt = [ut; u̇t; vt; v̇t], where

(ut, vt) is the ground-plane location of the target and

(u̇t, v̇t) is its ground-plane velocity. We use the model pa-

rameters

A =









1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1









(3)

Σν = diag
([

10−4 1 10−4 1
])

so that each xt+1 adds the velocities in xt to the positions

of xt, and nudges the old velocities by Gaussian noise. The

resulting poses are also nudged by a small amount of Gaus-

sian noise. To extract the location components of xt, we can

multiply xt by C:

C =

[

1 0 0 0
0 0 1 0

]

.

4. Observation Model

Measurements from the camera network provide the like-

lihood function over trajectories and camera parameters.

When the target’s location xt falls within the field of view

of camera i, the camera sees xt in its own ground-plane co-

ordinate system. This coordinate system is rotated by θi

and translated by pi with respect to the global ground-plane

coordinate system. Let µi =
[

pi; θi
]

be the parameters of

camera i, and we define µ =
[

µ1; · · · ;µN
]

to be the col-

lection of all the camera parameters. Let Z be a set of (t, i)
pairs, where (t, i) ∈ Z iff camera i sees the target at time t.

With R
i the rotation matrix corresponding to a rotation

of −θi, a camera observing the target at xt reports

yi
t = πi(xt) + ωt = R

i(Cxt − pi) + ωt, (4)

where ωt is white Gaussian noise with covariance σ2
yI.

Equation (4) describes a likelihood function for the calibra-

tion parameters and the trajectory:

p(yi
t|xt, µ

i) = N
(

yi
t

∣

∣πi(xt), σ
2
yI

)

.

These measurements are independent of each other condi-

tioned on xt and µi. Given the trajectory and calibration

parameters, the probability of y = {yi
t|(t, i) ∈ Z}, the col-

lection of all measurements from all sensors, is:

p(y|x, µ) =
∏

(t,i)∈Z

p(yi
t|xt, µ

i). (5)

The absence of a pair (t, i) from Z is informative. It says

that at time t, the target was out of the field of view of all

the sensors. However, we do not count the absence of an

observation as a measurement, even though this type of field

of view constraint could improve the recovered trajectory.

5. Finding the MAP configuration

The most a posteriori probable trajectory and calibration pa-

rameters are:

(x∗, µ∗) = arg max
x,µ

p(y|x, µ)p(x)p(µ), (6)

with the trajectory prior p(x) defined by equation (2) and

p(y|x, µ) defined by equation (5). p(µ) is a prior on the

calibration parameters.

Any configuration of x and µ is equivalent to the same

configuration arbitrarily rotated and translated. In Structure

from Motion, this is known as a gauge freedom [21]. The

prior p(µ) fixes the first sensor at the origin of the global

ground-plane coordinate system, and points it in a given di-

rection. If any other information about the sensor param-

eters is available a priori, for example, from GPS or other

sensor localization algorithms, it can be encoded p(µ) as

well.

3



The optimization of equation (6) is a non-linear least-

squares problem over the variables µ and x:

(x∗, µ∗) = arg max
x,µ

log p(y|x, µ)p(x)p(µ)

= arg min
x,µ

∑

(t,i)∈Z

1

σ2
y

‖yi
t − πi(xt)‖2 (7)

+xT
Λ

−1
x x +

1

σ2
µ

‖µ1 − µ0‖2

To find the optimal µ and x we use Newton-Raphson.

Newton-Raphson produces a sequence of iterates χ(t) =
[µ(t);x(t)] that often converges to the bottom of the cost

function. In the case of non-linear least squares, it itera-

tively linearizes the non-linearity inside the L2 norm and

solves a linear least squares problem. Appendix A derives

the quantities needed by each Newton-Raphson step.

6. Multiple Trajectories

So far, we have discussed recovering camera parameters by

observing a single long trajectory. Long trajectories are dif-

ficult to obtain in real tracking systems because it is diffi-

cult to consistently label targets over long stretches of time.

To ease the burden on the data association algorithm, we

can process several shorter trajectories instead. In a future

paper, we will investigate using the following method for

handling multiple trajectories.

Let X = [X1..XM ] be a collection of M trajectories of

differing lengths. Let Y = [Y1..YM ] be the corresponding

measurements made by the cameras for each of these tra-

jectories. Assume that each Xm is a priori independent of

the others. Because given Xm and µ the Ym are indepen-

dent, the best reconstruction of the sensor parameters µ and

of the trajectories X is:

(X, µ) = arg max
X,µ

p(X1..XM , µ|Y1..YM )

= arg max
X,µ

p(µ)
M
∏

m=1

p(Ym|Xm, µ)p(Xm)

This optimization can again be carried out with Newton-

Raphson as before. More trajectories naturally result in bet-

ter estimates for µ, and through µ, yield better trajectory

estimates.

7. Synthetic Results

We simulated a point target traveling in a square environ-

ment with elastic walls. The target’s trajectory was gen-

erated by a random walk that reflected off of walls. The

resulting trajectory was smoothed to yield the setup shown

in Figure 1(a). The synthetic cameras are depicted as tri-

angular fields of view that can measure the location of the

target without noise.

We used the A and Σν matrices of equation (3) to de-

fine the dynamics model. Notice that the generative model

described in section 3 was not the model used for gener-

ating the synthetic trajectory. Our dynamics model does

not model the bouncing behavior near walls. Our goal with

these synthetic experiments was to see if such a large dispar-

ity between the dynamics model and actual target behavior

had adverse effects on trajectory estimation and calibration.

The Newton-Raphson iterations begin with an initial

guess for the configuration with all trajectory points and

sensors at the origin, pointing to the right. Figures 1(b-c)

show a few iterations and the converged estimate.

The estimated locations are wrong by an average of 0.03

size units, or 1.4% of the size of the environment. These

experiments show that when there is no observation noise,

the sensor parameters and trajectories are recovered very

accurately, even if the target’s true dynamics don’t match

those used in estimation.

8. Real Data

We have implemented this system on a network of wireless

PDAs equipped with cameras. The PDAs were mounted

on the ceiling in an indoor lab environment (see Figure 2).

The camera image planes are approximately parallel to the

ground-plane so that computing the local ground-plane lo-

cation of the person does not require any calibration beyond

finding the focal length of the cameras. A real-time person

tracker runs on each PDA and reports to a base station the

time-stamped location of a person with respect to the cam-

era’s ground plane coordinate system every 250 ms. The

person tracker uses background subtraction to extract the

target and clusters the foreground pixels to compute the per-

son’s location. The individual trackers do not need to filter

or smooth the data, as our optimization procedure already

regularizes trajectories with the dynamics model.

In our first experiment, we install 4 cameras in an open

area in our building. The fields of view of the cameras are

about 1.5 meters on each side, and the cameras are 3-4 me-

ters apart. One person traced a long trajectory, walking be-

tween the cameras at varying velocities. Figure 3(a) illus-

trates the setup. The ground truth µ was found by comput-

ing the FOVs of every camera and measuring their locations

and orientations by hand. To find the trajectory, we set µ to

the true sensor locations and optimized (6) for the trajectory

only.

We used the same dynamics model as in the synthetic

case, without any modification. The initial condition was

the same as before. We set σ2
y a factor of 105 smaller than

the driving noise of the velocity. Figures 3(b-c) show the

recovered trajectory and sensor locations. On average, the

sensor were misplaced by 28 cm from the locations mea-

sured by hand. Cameras ipaq3 and ipaq10 are off by 50

4



(a)

(b)

(c)

Figure 1: (a) 2,000 steps of a synthetic trajectory. Sensor

fields of view are depicted as squares. Circles along the

trajectories indicate time steps in which a synthetic camera

measures the target’s location relative to its coordinate sys-

tem. (b) After 9 iterations. The gauge is fixed by fixing sen-

sor 1 at its true location and orientation. Blue denotes the

recovered trajectory. Gray are the recovered sensor fields of

view. Dashed squares are the ground truth sensor locations

from (a). (c) Convergence after about 65 iterations. The

sensor locations are estimated correctly.

Figure 2: We use Compaq IPAQs as wireless camera nodes

in our network. The IPAQs are mounted on the ceiling, with

their camera image plane parallel to the ground plane.

cm. The rotation of ipaq3 is off by 8◦. That of ipaq8 by 9◦

degrees. Ipaq10’s rotation is off by 0.7◦.

In the second experiment, we instrumented the hallway

to the south of the open area with 2 additional cameras. The

setup and results appear in Figure 4(a). The only way to

reach ipaq5 and ipaq6 was by taking a sharp right below

ipaq7, outside its FOV. Because no camera ever witnessed

this sharp right, and because straight trajectories are slightly

favored by our dynamics model, the recovered configura-

tion did not exhibit the turn. Adding ipaq9 (Figure 4(b))

provided enough information to recover the turn. This is

because ipaqs7,9, and 5 form a triangle, and the angle 5-7-9

becomes constrained.

In contrast to the velocity extrapolation idea discussed

earlier, our dynamics model allows curved trajectories. Fig-

ure 5 shows that our method works even when people take

a sharp turn when entering the FOV of ipaq3. Using veloc-

ity extrapolation, the distance between ipaq7 and ipaq3 was

found to be 518 cm, whereas in reality, it was only 423 cm.

Our method estimated this distance to be 415 cm.

9. Conclusion

We have shown how to calibrate and track with a network of

non-overlapping cameras. Our solution is framed as a joint

MAP estimation over trajectories and camera pose parame-

5



(a)

(b)

(c)

Figure 3: (a) The trajectory for the first experiment. Axes

are labeled in centimeters. The coordinate system is fixed

on ipaq7. (b) After 22 iterations. (c) Convergence after

about 50 iterations.

(a)

(b)

Figure 4: (a) A Wall forces people to take a sharp turn out-

side the FOV of ipaq7. This turn is never witnessed by any

camera, so the algorithm does not deduce its existence. (b)

Although ipaq9 doesn’t observe the turn directly, its pres-

ence provides enough information to determine that ipaq7

and 6 cannot be below ipaq7.

Figure 5: Recovering curved trajectories.

6



ters. The prior on the trajectory is a linear Gaussian Markov

chain. This rather general model of dynamics accounts for

both non-linear paths and speed changes even when the tar-

get is not visible. Information about the target’s dynamics

allows the system to reason about the behavior of the target

when it is not visible.

We demonstrated our system with a network of battery-

operated cameras that are easy to deploy. To ease the burden

on the data-association algorithm, we have made provisions

for operating on short trajectory segments instead of one

long trajectory.

In the future, we plan to adopt a switching linear dynam-

ics model to account for different regimes such as running,

walking, stopping, taking a sharp turn, etc.

A. Finding the peak

This section derives the Newton-Raphson steps required to

solve (7).

Denote by
√

Σν the Cholesky factor of the covariance

Σν of the driving noise in the dynamics model1. We will

also need the Cholesky factor G of Λ
−1
x , the inverse co-

variance of the entire trajectory. The tth row of the G is:

[G]t =
[

0 · · · ,
√

ΣνA, −√
Σν , 0 · · ·

]

(8)

where [G]t is padded with zero to align its non-zero com-

ponents with xt and xt+1. G is easily derived from the

quadratic form inside p(x) defined in equation (2).

To maximize (7), rewrite it as

(x∗, µ∗) = arg min
x,µ

r(x, µ)Tr(x, µ),

with

r(µ, x) =













ry

rx

rµ













=



















σ−1
y

(

R
i(Cxt − pi) − yi

t

)

...

Gx

σ−1
µ (µ1 − µ0)



















.

r(µ, x) is partitioned into three sections, corresponding to

the different terms in (7). Each measurement (t, i) ∈ Z
introduces an element into ry .

To optimize a non-linear least squares cost function such

as rTr, Newton-Raphson requires the Jacobian J of r.

Newton-Raphson maps an iterate χ(t) = [µ(t);x(t)] to the

next iterate by solving a linear least-squares problem:

χ(t+1) = χ(t) − arg min
δ

‖Jδ − r‖2. (9)

1The Cholesky factor of a positive definite matrix A is an upper trian-

gular matrix C such that A = CTC.

The process of computing r, J, and applying equation (9) is

repeated until until χ converges to a fixed point.

For completeness, we derive J here. It is block struc-

tured and very sparse:

J = ∇r(µ, x) =













Jµ Jµx

0 Jx

σ−1
µ I 0 0













.

The left block column of J corresponds to differentiating r

with respect to µ, and its right block column corresponds to

differentiation with respect to x. Like r, J is also partitioned

vertically.

If the zth measurement in ry came from camera i, the

derivative of ry with respect to parameters pi and θi of this

camera introduces a block row into Jµ at location (z, i).

[Jµ]
z,i

= −σ−1
y

[

R
i,

(

(Cxt − pi)T ⊗ I
)

d vec(R)
dθ

]

,

where we have used the identity vec (XY) = (YT ⊗
I) vec (X) [14], where ⊗ is the Kronecker product, vec (·)
stacks elements of a matrix into a column, and I is the 2×2
identity matrix.

Differentiating the zth element of ry with respect to the

observed trajectory element xt introduces a block into Jµx

at location (z, t):

[Jµx]
z,t

= σ−1
y R

i
C,

where i is the number of the camera that made the zth ob-

servation.

Differentiating rx with respect to µ yields 0. Differenti-

ating it with respect to x yields Jx = G.

rµ is only a function of the parameters of the first sensor.

Its derivative with respect to µ1 is σ−1
µ I, where I is the 3×3

identity matrix.

References

[1] N. Ayache and O. Faugeras. Maintaining representa-

tions of the environment of a mobile robot. IEEE Tran.

Robot. Automat., 5(6):804–819, 1989.

[2] A. Azarbayejani and A. Pentland. Recursive estima-

tion of motion, structure, and focal length. PAMI, June

1995.

[3] D. Beymer, P. McLauchlan, B. Coifman, and J. Ma-

lik. A real-time computer vision system for measuring

traffic parameters. In CVPR, 1997.

7



[4] B. Bose and E. Grimson. Ground plane rectification

by tracking moving objects. In Joint IEEE Interna-

tional Workshop on Visual Surveillance and Perfor-

mance Evaluation of Tracking and Surveillance, Oc-

tober 2003.

[5] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less

low cost outdoor localization for very small devices.

Technical Report Technical report 00-729, University

of Southern California, Computer science department,

April 2000.

[6] J. A. Castellanos, J. M. M. Montiel, J. Neira, and

J. D. Tards. The SPmap: A probabilistic framework

for simultaneous localization and map building. IEEE

Trans. Robot. Automat., 15:948–953, October 1999.

[7] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Struc-

ture from motion causally integrated over time. PAMI,

24(4):523–535, April 2002.

[8] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun. Struc-

ture from motion without correspondence. In CVPR,

June 2000.

[9] L. Doherty, K. S. J. Pister, and L. El Ghaoui. Convex

position estimation in wireless sensor networks. In

INFOCOM, volume 3, pages 1655 –1663, 2001.

[10] R. B. Fisher. Self-organization of randomly placed

sensors. In ECCV, volume 4, pages 146–160, 2002.

[11] O. Javed, Z. Rasheed, O. Alatas, and M. Shah.

KNIGHTTM : A real time surveillance system for

multiple overlapping and non-overlapping cameras. In

International Conference on Multimedia and Expo,

July 2003.

[12] S. Khan and M. Shah. Consistent labeling of tracked

objects in multiple cameras with overlapping fields of

view. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 25(10), October 2003.

[13] Philip F. McLauchlan. A batch/recursive algorithm for

3D scene reconstruction. Conf. Computer Vision and

Pattern Recognition, 2:738–743, 2000.

[14] T.P. Minka. Old and new matrix algebra use-

ful for statistics. Technical report, Media Lab,

http://www.media.mit.edu/˜tpminka/papers/matrix.html,

2001.

[15] H. Pasula, S. J. Russell, M. Ostland, and Y. Ritov.

Tracking many objects with many sensors. In IJCAI,

pages 1160–1171, 1999.

[16] A. Rahimi. Coordinate ascent cannot recover trajecto-

ries and calibration parameters in a sparse sensor net-

work. Technical report, MIT CSAIL, September 2003.

[17] C. Savarese, J. Rabay, and K. Langendoen. Robust

positioning algorithms for distributed ad-hoc wireless

sensor networks. In USENIX Technical Annual Con-

ference, June 2002.

[18] R. Smith, M. Self, and P. Cheeseman. Estimating un-

certain spatial relationships in robotics. In Uncertain-

ity in Artificial Intelligence, 1988.

[19] C. Stauffer and K. Tieu. Automated multi-camera pla-

nar tracking correspondence modeling. In CVPR, vol-

ume 1, June 2003.

[20] G. P. Stein, R. Romano, and L. Lee. Monitoring activ-

ities from multiple video streams: Establishing a com-

mon coordinate frame. Technical Report AIM-1655,

MIT AI Lab, 1999.

[21] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgib-

bon. Bundle adjustment – a modern synthesis. In

W. Triggs, A. Zisserman, and R. Szeliski, editors, Vi-

sion Algorithms: Theory and Practice, LNCS, pages

298–375. Springer Verlag, 2000.

[22] R. Zabih V. Kettnaker. Counting people from multiple

cameras. In ICMCS, volume 2, pages 267–271, 1999.

8


