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Fang-Lue Zhang, Member, IEEE, Jue Wang, Senior Member, IEEE,

Han Zhao, Ralph R. Martin, Member, IEEE, Shi-Min Hu, Member, IEEE

Abstract—A major difference between amateur and professional video lies in the quality of camera paths. Previous work on video stabilization has

considered how to improve amateur video by smoothing the camera path. In this paper, we show that additional changes to the camera path can

further improve video aesthetics. Our new optimization method achieves multiple simultaneous goals: (i) stabilizing video content over short time

scales, (ii) ensuring simple and consistent camera paths over longer time scales, and (iii) improving scene composition by automatically removing

distractions, a common occurrence in amateur video. Our approach uses an L1 camera path optimization framework, extended to handle multiple

constraints. Two-passes of optimization are used to address both low-level and high-level constraints on the camera path. Experimental and user

study results show that our approach outputs video which is perceptually better than the input, or the results of using stabilization only.
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1 INTRODUCTION

Consumer camera hardware has developed rapidly, and the built-

in cameras on recent mobile devices are capable of capturing high

resolution video with high frame rates; this previously required

high-end professional cameras. However, a significant gap remains

between many amateur videos and professional ones, in the quality

of the camera paths achieved (i.e. how the camera is moved and

zoomed to capture the scene). The camera path of a professional

video is usually carefully planned beforehand, and precisely ex-

ecuted with the support of hardware such as dollies and tracks.

In contrast, many amateur videos are taken spontaneously without

planning, and without hardware support. Most amateurs lack the

skills to carefully design a camera path for a specific scene.

Furthermore, even with planning, unexpected, unwanted events

can occur within the scene.

Such amateur camera paths can detract from the output video.

Firstly, hand shake can cause video content to jitter, making

it hard to watch, a problem that has been extensively studied:

various video stabilization approaches have been proposed [1],

[2], [3]. Secondly, the camera path may contain motions over

longer timescales that are undesirable these are often caused by

low-frequency body motions of the cameraman such as walking.

However, current stabilization techniques generally preserve low-

frequency motions, as these may correspond to actions such as

panning: see Gleicher and Liu [4]. Finally, amateur camera paths

often exhibit sub-optimal scene composition. For instance, the

main subject of the video may drift off-center as the camera

moves. It is also not uncommon for unwanted objects to enter

the scene unnoticed by the videographer, but causing a distraction
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to the viewer, e.g. an irrelevant dog may run by in the background

when filming a child playing.

While video stabilization has been extensively studied, little work

has considered how to resolve a wider range of issues by re-

planning the camera path, especially in terms of improving scene

composition and removing distractions. Furthermore, such issues

have been considered in isolation. In this paper, we give an inte-

grated solution for resolving all these issues simultaneously, using

a novel camera path optimization approach which incorporates

multiple constraints. Our system automatically detects distractions

that draw the viewers’ attention from the main objects in the

video, allowing distractions to be eliminated. To improve motion

quality, we segment the camera path into coherent pieces and fit

a high quality motion element of the kind used in professional

video to each segment. We significantly extend the original L1

optimization framework in [2] to incorporate these additional

constraints as well as stabilization.

Performing this task requires consideration of the camera path

at different levels. Distraction removal and content stabilization

can be addressed locally by examining sequences of consecutive

frames. Optimizing the complete set of motion segments requires

a global analysis of all camera motions. We thus use a two-

pass optimization approach which handles constraints at different

levels. We first apply low-level optimization to perform content

stabilization, and distraction detection and removal, yielding a

modified camera path. We then further analyze this modified path,

dividing it into segments and fitting a motion model to each

segment. Finally, we incorporate all constraints and the fitted

models in a further optimization pass. This produces a final,

steady, high quality camera path which avoids distractions and

improves scene composition, at the same time as maximizing final

scene coverage.

We have conducted a user study to analyze the perceptual quality

of our results, by comparing them to (i) the input video, (ii) the

results of a stabilization approach, and (iii) the results of a reduced

version of our approach which omits the second optimization
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Fig. 1. Algorithm overview.

pass. This study showed that our method significantly improves

the aesthetic quality of video, and produces better results with

higher quality camera paths than either stabilization or low-level

optimization alone.

2 RELATED WORK

We now briefly review related methods concerning appearance

enhancement and camera path improvement.

Appearance enhancement. Video enhancement methods mainly

focus on manipulating existing visual content in the video, without

paying attention to the camera motion. Algorithms have been

proposed for several tasks. Wexler et al. [5] and Stengel et

al. [6] give a video completion method to remove undesirable

objects in video by texture synthesis, but do not suggest how

to detect distracting objects to remove. Many low-level methods

exist, such as the one in [7] [8], which refines blurry frames of

input video using a patch-based method, but they cannot improve

video quality in terms of composition, unlike our method. Other

work on video stylization [9] and abstraction [10] also provide

enhanced appearance, but such methods just keep the structure of

the original video, and do not improve the planning of the video.

Video stabilization. A second category of techniques focuses

solely on camera path recovery and re-planning for visual quality

improvement; our work belongs to this category. Video stabiliza-

tion concerns removal of high-frequency motions typical of hand-

held cameras, and has been extensively studied. Early approaches

used temporal filters to smooth the 2D motion recovered from the

trajectories of feature points [11]; inpainting is often needed to fill

unrecorded content due to changes in the camera path [12]. Robust

feature tracking can improve stabilization results [13]. Recent ap-

proaches, such as subspace stabilization [1], L1-optimization [2],

and bundled camera path optimization [3] can handle complex

cases involving significant scene parallax and rolling shutter

effects. However, these methods solely smooth the camera path

to remove high-frequency camera jitter. They do not consider

removing undesirable lower-frequency motion components of the

original camera path such as up-and-down motions caused by the

cameraman walking.

Re-cinematography. To improve the camera path beyond low-

pass filtering, Gleicher et al. [4] fit camera motion models of

the kinds used in professional cinematography to camera paths

extracted from amateur video. Liu et al. explicitly reconstruct

and optimization the camera path in the 3D space. Our goals

are similar in terms of path optimization, but their approach is

not flexible enough to allow other additional constraints, such

as avoiding distracting objects. Grundmann et al. [2] use an

L1-optimization framework to compute a smoothed camera path

composed of steady segments with smooth in-between transitions.

Their focus is still on stabilization. They do not analyze the visual

content and quality of the resulting paths, which is our main

concern. Preserving visually salient content in the original video

has been given limited consideration in previous stabilization

methods [4], [14], and these approaches do not consider distraction

detection and removal, a further goal of our method.

Video aesthetics. We aim not just to stabilize the video, but also to

improve its aesthetic qualities by removing distractions and unde-

sirable low-frequency motions. Salient object detection is a basic

step for many object-level aesthetics improvement approaches,

pioneered by the work of Itti et al. [15]. Image saliency methods

use either heuristic methods [16], [17] or learned models [18]

to predict the objects in an input image that can potentially draw

viewers’ attention. One of the representative methods is developed

by Cheng et al. [19]. These methods are extended to videos

by incorporating additional features such as motion, flickering,

optical flow and spatio-temporal interest points [20][21]. However

they only focus on detecting visually important regions, but do not

evaluate their aesthetics. In other work on aesthetic improvement

of video, Luo et al. [22] proposed an aesthetic quality measure

for images and video based on spatial composition. Yeh et

al. [23] proposed an evaluation method for temporal aesthetic

quality that considers the directions, magnitudes and positions of

object motions in video. These methods, however, only measure

visual quality, without providing methods for improving it. Xiang

and Kankanhalli [24] optimized visual quality by improving the

motion of the foreground object by re-projecting the good motions

to frames with low motion quality. This method just focuses

on foreground objects and does not give good camera paths for

dynamic scenes. Berthouzoz et al. [25] provided tools for placing

cuts and transitions at appropriate positions in interview videos.

These methods require stabilized videos, and aim to preserve as

much content possible. In contrast, our method selects content

to avoid distractions. More recently, Arev et al. [26] presented a

system to generate a single video of a scene from multiple videos

captured by different cameras. Our method aims to improve the

visual quality of a single input video.

3 OVERVIEW

The improvements to the output video should help to keep the

viewer’s attention on the main subject which the videographer

intended to capture. In addition to removing unwanted distrac-

tions, and stabilizing the video, the camera path should thus follow



3

some basic rules of cinematography—for example, camera motion

should generally be monotonic, and not oscillate unexpectedly.

Also, a simple camera motion should be used for each separate

segment of the video.

We use a sequence of transformation matrices to encode the

changes between each adjacent pair of frames in a video as a

proxy for the camera motion. The camera motion can then be

described by a sequence of parameters which are the elements

of these transformation matrices. Elementary cinematographic

camera operations such as pushing in and pulling out, panning,

tilting, and staying correspond to segments with zero, constant

or smoothly changing values of these parameters (see Fig. 1).

The overall objective is to optimize the path represented as a

matrix sequence so that it comprises simple segments of the above

kind while satisfying additional constraints, particularly to avoid

distractions.

As it is easier to analyze and segment a stabilized camera path

rather than the original unstable input video, we use a two-

pass optimization framework, as shown in Fig. 1. The aim of

the first pass is to find an initial camera path which avoids any

distractions, and at the same time is stabilized with respect to

high frequency jitter. The aim of the second pass is to then ensure

that each motion segment has a simple model, while respecting

any constraints generated during the first pass. In detail, we firstly

detect any objects which may distract users, and determine hard

constraints to ensure that the output frames avoid these objects,

while being contained entirely within the input frames. An L1-

optimization framework is then used to generate an initial path

in which the parameters representing the camera path are simple

functions of time. In the high-level pass, the zoom, rotation angle

and translation are then analysed to split the camera path into

segments, and a piecewise linear model is fitted to each of these

quantities, after eliminating any unnatural motions over short time

scales, such as the camera moving up immediately followed by

moving down. Finally, L1-optimization gives the output frames,

again using the same hard constraints.

4 DISTRACTION DETECTION

4.1 Principles

Distractions are objects that attract the viewer’s attention away

from the main subject. To remove them from the output, we

must first detect them. Distractions typically have the following

properties:

High saliency The visual saliency of distractions is usually

significantly higher than that of their surroundings (which is why

they are noticeable). Video saliency is related to both appearance

and motion. As in still images, regions with high color or texture

contrast to adjacent regions have high appearance saliency. More

importantly, objects whose motions differ significantly from those

of nearby regions have high motion saliency. Both kinds of

saliency are significant when determining if a region contains a

distraction: a moving object with low appearance saliency is less

noticeable.

Off-center location and short duration Amateurs typically try to

keep the main object near the center of each frame when shooting a

video, whereas distractions often appear near edges. Furthermore,

they often are only present for a short time. They may arise either

due to camera motion, or the distraction’s own motion.

We automatically detect distractions in an input video by using

these properties. To determine the presence of distractions by

tracking local regions in video, we use temporal super-pixels

(TSP) [27], which provide good spatial localisation and have good

temporal stability. For each TSP in each frame, we compute its

local appearance contrast and motion contrast relative to adjacent

regions to produce a time-dependent saliency value. Distractions

are identified by considering region saliency, spatial location, and

temporal duration, as we now explain.

4.2 Computing video saliency

A TSP is a set of contiguous video pixels with similar color and

motion parameters and can be found using the method in [27];

TSPs do not overlap. We define the set of all TSPs in the video as

Φ. The i-th TSP is denoted Φi = Φ
s
i ,Φ

s+1

i , . . . ,Φs+n�1

i , where

s is the first frame in which this TSP appears, and n is the number

of frames for which it lasts. Φ
j
i comprises the pixels that the i-th

TSP covers in frame j.

For each TSP, we compute its saliency for each frame in which it

exists, as its saliency may change over its lifespan. For example,

a dog sitting near the main subject in a video can be static for a

while before starting to move around. The viewer’s attention may

not be distracted at first, but may be drawn away when the dog

starts moving.

Saliency is determined by local appearance contrast and motion

contrast. We use the RContrast [19] saliency detection method to

compute the appearance saliency value SC(Φ
j
k) for Φ

j
k, the region

covered by TSP Φk in frame j. We use this method as it is suited

to calculating saliency for small regions.

For motion saliency, we compare the mean optical flow in Φ
j
k to

that of nearby regions:

SM (Φj
k) = |F (Φj

k)�
1

L

X

Φ
j

l
2N

j

k

F (Φj
l )|, (1)

where

F (Φj
k) =

1

N

N
X

p2Φ
j

k

f j
p .

and f j
p is the optical flow vector of pixel p in frame j, computed

using Sun et al.’s approach [28]. Nk(t) is the neighborhood region

set which contains all TSP regions whose centroids are closer to

the centroid of Φk(t)) than a threshold τ (set to 0.3 in normalized

coordinates in our implementation).

Combining these two terms, the video saliency of a region is:

S(Φk(j)) = SC(Φk(j)) + αSM (Φk(j)), (2)

where α controls the relative importance of visual and motion

saliency. We consider the latter to be more important, so set

α = 0.75. Finally, saliency values are normalized to [0, 1] relative

to the maximum saliency for each frame. Various saliency maps

calculated by our method are shown in Fig. 2(b).
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Fig. 2. Video saliency maps for selected frames: distractions are shown as

green masks.

4.3 Distraction labeling

After computing saliency values for each TSP in each frame, we

now label regions with high saliency values and which lie close to

the frame border as potential distractions DP :

DP (Φi(j)) = (S(Φi(j)) � T ) \ (P (Φi(j)) 2 Ω) , (3)

where T is a threshold, and Ω is the border area of each frame out-

side the rectangle w�, h�, w+, h+. In our implementation, we set

T = 0.4, and {w�, h�, w+, h+} = {0.2w, 0.1h, 0.8w, 0.9h},

where w, h are the width and height of the frame.

We next count how many times a TSP is labeled as a potential

distraction during its lifespan, and determine the length of its

lifetime. If the following conditions are all met, we treat its whole

lifespan as a distraction:

• the proportion of its frames in which it is labelled as a

distraction is greater than τ ,

• its first or last frame lies within the border region Ωt,

• its duration is shorter than a threshold D.

Our implementation sets τ = 0.5 and D = 3 seconds. To avoid

missing neighboring TSPs which belong to the same distracting

objects, we propagate distraction labels to neighboring TSPs

with similar motion vector and mean color. Examples are shown

in Fig. 2(c). To exclude these distractions in the output video, we

add constraints controlling cropping to the motion path.

Implementation details We use publicly available source code1

for TSP extraction, using the default parameters, while optical

flows are calculated using the method in [28]. We downsample

the video to 320 ⇥ 240 when finding distractions, to accelerate

computation. After finding the locations of the distractions, they

are up-sampled and used to process the full-resolution video.

1. http://people.csail.mit.edu/jchang7/

Frames

h11

h12

h13

h23

h21

h22

Frames

h11

h12

h13

h23

h21

h22

Frame 42

Frame 66

Frames

h11

h12

h13

h23

h21

h22

Frames

h11

h12

h13

h23

h21

h22

Frame 15

Frame 183

Fig. 3. Feature selection for motion estimation. Successfully tracked feature

points are shown on the frames. Feature points with higher saliency values

are shown in red, and are not used in motion estimation. Estimated motion

transformation parameters using the method in [2] are shown beside the

frames: (top) using all feature points, (bottom) without the blue feature points.

5 CAMERA PATH OPTIMIZATION

Given the constraints to remove the distractions, we can now

generate a desired camera path in terms of the transformation

matrix sequence relating adjacent frames. The overall objective

is to find a set of update matrices relating pairs of adjacent

frames. By finding suitable smoothly varying parameters for these

matrices, the output video will have a smooth path made of

elementary segments, like one used in cinematography.

Our computations are performed in the 2D image plane. The

output window has fixed dimensions Wc = {0, 0, w, h} in each

frame; pixels from the original frames are used to fill this window.

We optimize the transformation matrices relating each original

frame in this plane, so that after transformation, the content shown

in Wc varies smoothly and monotonically over the medium term,

and satisfies the constraints needed to avoid distractions.

5.1 Original path estimation

Before optimizing the camera path, we must first recover the origi-

nal scene’s motion parameters. We adopt the discretized piecewise

linear camera motion representation that has been extensively used

in previous approaches [2], [4]. Specifically, an input video is

a sequence of images {I0, . . . , In}. An affine transform matrix

Ht+1 relates each successive pair of frames via It+1 = Ht+1It.
A proxy for the camera path can thus be represented by the

sequence of matrices H1, . . . , Hn. These transformations can be

concatenated so that:

It = Ht . . . H1I0. (4)

To efficiently estimate Ht for each frame pair, we detect sparse

Harris corner feature points and track them using an implementa-

tion2 of the Kanade-Lucas-Tomasi feature tracker [29].

A common approach to estimating Ht uses RANSAC to exclude

unreliable feature points: see for example [2]. This approach works

well for static scenes, but often fails when large moving objects

present in the scene. In such cases, a large number of feature

points may belong to dynamic foreground objects and cannot

be completely removed by RANSAC. The remaining foreground

feature points may cause serious problems when estimating the

2. http://www.ces.clemson.edu/stb/klt/
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camera motion model, as shown in Fig. 3 and the supplementary

material.

Our approach uses the saliency detection results already computed

to avoid this problem. Feature points whose motion saliency values

are higher than a threshold belong to dynamic objects, and so

are directly excluded before applying the RANSAC process. This

improves the robustness and accuracy of Ht estimation. As Fig. 3

shows, using all tracked feature points including ones from the

moving foreground person results in noisy motion parameters.

Using the restricted set of features provides a much more stable

result with better parameter estimates.

Note that this method is not limited to videos captured by static

cameras: it also works for some dynamic scenes captured by

moving cameras such as the example shown on the right in Fig. 3.

In this case, the TSPs belonging to the moving object have larger

motion saliency according to Eqn. (1). This is because they have

a different motion direction and speed relative to the background

TSPs nearby, while the background TSPs have a relatively co-

herent motion with respect to their neighbors. Unfortunately, this

simple strategy does not always work. When the foreground object

is very large nd its parts have similar motion (e.g. a large bus drives

past in front of the camera), the saliency of the TSPs belonging to

the moving foreground will be lower. The method will then fail to

estimate the correct camera motion, as the background feature

points will be excluded due to their high saliency. High-level

semantic scene understanding is probably necessary to correctly

handle cases of this kind.

5.2 Two-pass optimization

Our expectations for the improved camera path are twofold. At

a low level, we expect the new path to be smooth and stable;

it should also avoid distractions while keeping the main objects

in the frame. At a high level, we expect the camera motion to

comprise a series of smooth, monotonic movements like those

performed by a professional videographer, such as pull out, push

in, panning, etc. [30], [31]. We use a two-pass optimization

framework to meet these expectations at both levels.

We first apply L1 optimization to achieve our low-level goals, in-

cluding stabilization and scene recomposition. A similar approach

has already been used for stabilization [2], and we extend it to

include multiple objectives.

Without imposing higher level constraints, the new camera path

generated by this pass often contains visually contradictory ele-

ments. Consider Fig. 4. To avoid the distracting white pole on

the right, the optimized path includes a counterclockwise rotation

followed immediately by a clockwise rotation (Fig. 4(b)), which

looks poor. Our second optimization pass produces a final camera

path that avoids such oscillations, giving a path composed of more

natural and professional-looking motion segments.

5.2.1 Low-level optimization

For the low-level pass, from the original video, we want to

produce a camera path composed of a series segments that avoid

distractions while keeping as much significant content as possible.

The objective of this stage is thus a smooth path with the hard

constraints that the distractions should lie outside the output

window Wc, and soft constraints that as much original content

should be retained as possible. Given the original camera path

{Ht} based on a full affine transformation model, we seek to

find an update transformation sequence {P t}. In the result, each

original video frame is now transformed by the updated proxy

camera path {H 0t} = {P tHt} and cropped to the cropping

window. The video content remaining satisfies various constraints,

as illustrated in Fig. 5.

Following the approach in [2], to achieve a smooth and stable path,

we aim to minimize the first, second and third order derivatives

of the resulting sequence {H 0t}, which can be measured using

residual motion 4t:

4t
1 = P t+1Ht+1 �Ht,

4t
2 = 4t+1

1 �4t
1,

4t
3 = 4t+1

2 �4t
2.

(5)

We also wish to completely avoid TSPs that are marked as

distractions. We treat these as hard constraints: in frame t, after

applying the update transform P t, the position of a distracting

TSP should lie outside the cropping window Wc. For speed, we

enforce this using the bounding box of each TSP rather than the

TSP itself. Because distracting TSPs are usually located near the

frame border, if the corners of the bounding box are all outside

Wc after transformation, we may assume the whole box will be

outside Wc. We thus only need to record these points as Ck for

the k-th distracting TSP.

The L1 optimization framework expresses all constraints concern-

ing inclusion and exclusion of points pt as inequalities of the form:

(xmin, ymin)
T  P tpt  (xmax, ymax)

T .

If a constraint is one-sided, bounds may be infinite: e.g. if the x-

value should be smaller than zero, then x min is set to negative

infinity. Consider the distracting TSPs in the left-bottom region of

Fig. 5 as an example. To ensure those located closer to the vertical

boundary of the cropped frame (shown in orange), are removed,

we must ensure that the x coordinates of all 4 corners of their

bounding boxes satisfy C 0

k(x) = (P tCk)(x) < 0. Similarly,

those that are closer to the horizontal boundary (shown in green)

must satisfy C 0

k(y) < 0. The constraints for other distracting

TSPs in other regions can be set in a similar way. Compared to

restricting both C 0

k(x) < 0 and C 0

k(y) < 0 in this case, our one-

variable constraint is looser, thus allowing more original content

to be preserved in the final video.

The other constraint is inclusion of the main target object in the

final video. Following [2], to make sure the cropping window lives

inside the original video frames, we constrain the transformed

corners of the original frames to lie outside the cropping window.

For instance, the top-left corner cttl of frame t must satisfy P tcttl 
(0, 0)T .

Assuming that the most salient non-distraction region is likely to

be the main subject of the video, we wish to ensure that it appears

in the cropping window. We thus add inequality constraints for the

corners of its bounding box bti:

(0, 0)T  P tbti  (w, h)T .

Given that the cropping window Wc is fixed, the content coverage

of the final video is controlled largely by the scaling terms in P ts.
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(a) Original sequence (c) High-level optimized(b) Low-level optimized

Fig. 4. Two-pass optimization. The pink curves show rotation of the scene relative to the first frame, in the original sequence, after low-level optimization, and

after high-level optimization.

w

h

Cropped frame

Original frame

Fig. 5. Removing distracting TSPs by setting constraints in the L1 optimization

framework. For orange TSPs, x coordinates are constrained; for green TSPs,

the y coordinates are constrained.

To maximize coverage in the output video, extra terms are added

to the optimization objective based on the distances between the

updated frame corners and the original ones. For each corner cti,
we introduce two slack variables to be minimized, σt

ix,σ
t
iy via the

inequalities:

P tcti � cti  (σt
ix,σ

t
iy)

T

or, depending on the location of the corner,

P tcti � cti � (σt
ix,σ

t
iy)

T .

Finally, slack variables are introduced as the bounds of the residual

motion values in Eqn. (5):

� St
i < 4t

i < St
i , (6)

where St
i and 4t

i are both matrices containing the same number

of entries as the transformation matrix Ht.

The overall optimization objective is to minimize a weighted sum

of the slack variables contained in {St
i ,σ

t
i}, constrained by the

above inequalities:

E = argmin
s

WT s subject to P 0, . . . , P t, (7)

where s represents the vector formed by the slack variables in

{St
i ,σ

t
i}, and W contains the weights for each slack variable. As

in [2], we set the weights for slack variables of parameters related

to scaling and rotation to 50 times those of translation parameters

because an equal amount of change to the former parameters will

cause much larger variations than changes to the latter. The default

weights for σ
t
i are equal to those of the translation parameters.

This problem can be effectively solved using linear programming.

Finding the minimum value for the weighted sum of the slack

variables gives the optimal P t.

5.2.2 High-level path refinement

Low-level optimization is performed directly in the space of

transformation parameters when determining P t. Since the mo-

tion components are not determined by a single parameter, the

camera path produced by the initial optimization can only satisfy

low-level constraints on the original path, but cannot guarantee

high perceptual quality. The second pass of optimization further

refines the camera path so that it is composed of commonly

used cinematographic camera motions such as panning, zooming,

push-in and pull-out. At the same time, we remove unreasonable

combinations of motion segments, such as panning one way and

then immediately panning the opposite way. To do this, we first

analyse the initially optimized camera transformation matrix se-

quence by decomposing it into its motion components of scaling,

rotation and translation. In the motion component space (see e.g.

Fig. 6), we can clearly see any undesirable motion segments such
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Connecting undesirable motion pairs

Fig. 6. Camera paths shown as motion parameter functions. Low-level optimization of the original path (a) yields the modified path (b). Key points in this path

are detected and filtered. The remaining key points divide the path into segments. A simple motion model is fitted to each segment (c), and used as a reference

in the high-level optimization pass, together with constraints, to produce the final result (d).

as moving left then immediately right. We detect segments (as

explained later) and fitting a new motion curve representing a

simple motion to each, combining contradictory adjacent segments

where necessary, to give an output based on simple smooth

movements. Unfortunately, doing so does not always satisfy the

constraints previously determined, concerning inclusion of the

cropping window in the source, and avoiding distractions. We

overcome this problem by using the desired path to guide another

optimization pass to provide the final camera path.

A full affine transform H :

H =

0

@

h11 h12 h13

h21 h22 h23

0 0 1

1

A , (8)

may be decomposed into scaling, rotation, translation and skew-

ing. Although skewing will be very small after low-level opti-

mization between frames, we still model it for accuracy. The

components are:

Mx =
q

h2
11 + h2

12, My =
h11h22 � h12h21

Mx

,

Tx = h13, Ty = h23,

θ = atan(h12/h11),

S =
h11h21 + h12h22

h11h22 � h12h21

,

where Mx and My are scaling coefficients in x and y directions,

(Tx, Ty) is the translation, θ is the rotation angle, and S is

the skew. Using Eqn. (4), we can compute the accumulated

transform H 00t from frame 0 to frame t as follows. Firstly

we apply the update matrix P t from Eqn. (7) to all tracked

feature points, then estimate H 00t between frame 0 and frame t
using the method in Section 5.1. We then decompose H 00t into

rotation, translation and scaling components. These component

values Mx(t), My(t), θ(t), Tx(t), Ty(t), S(t), are varying

functions of time, as shown in the example in Fig. 6. After the

first optimization pass, shearing is close to zero, so we do not

consider it further.

We now explain certain steps in further detail:

Resolving motion conflict The low-level optimization produces

high quality motion segments, but can produce aesthetically unde-

sirable results: consecutive segments can have opposing motions,

e.g. zoom-in immediately followed by zoom-out, or panning left

immediately followed by panning right. To eliminate such cases,

for each motion component function f , we first remove noise

using a low-pass filter. We then find the key points where the

first order derivatives change sign, or become zero, or stop being

zero, which indicate the changes of the motion status. We merge

the neighboring key points in all motion component function if

they are too close in time (set to 6 frames in our experiments), see

the top row of Fig. 6(b). We record all key points extracted from

different motion descriptors in a single chronological sequence.

To eliminate consecutive opposing motions, we first identify key

points that connect such pairs of motions. As shown in Fig. 6(b),

since two opposing motions tend to cancel out each other, the

overall motion change after such a pair of motion segments is

close to zero. Thus, on the derivative curve 4f(x), the sum of the

values should be zero for such segments. We thus use a box filter

on the derivative curve to detect them:

F (x) = B(x) ⇤ 4f(x),

where
B(x) =

⇢

1 �r  x  r,

0 otherwise;
(9)

r controls the temporal span of the filter (r = 15 frames by

default). If F (x0) = 0 and the values of f(x) are not all

zero, any key points closer than r are removed. We replace the

function between the neighboring key points on either side by a

linear segment connecting them on each curve. We then iteratively

perform this filtering process until no further key points can be

removed. Fig. 6(b) shows examples of key points removed due

to opposing motions. The remaining key point set is denoted

Q = {qk}, k = 1, . . . ,m.

Fitting the motion model We wish to represent the output

video using a set of standard camera motions commonly used in

cinematography: (i) zoom-in and zoom-out, simultaneous scaling

in x and y, (ii) push-in and pull-out, combinations of scaling

and translation in one direction, (iii) panning and tilting, which

can be approximated as horizontal and vertical translations, but

if the main scene is not parallel to the picture plane, there will

also be scaling. To achieve smooth motion between each pair of

adjacent key points, we fit a piecewise linear model to the motion

component functions taking qk as the split points. Formally, taking

the curve θ(t) as an example, denoting the segment between qk
and qk+1 (qk 2 Q) as Lk, we fit a linear function aLkxk + bLk

when xk 2 Lk, which is continuous with the adjacent function at

the intersection point qk.

Our overall objective is to solve the following minimisation

problem:

min
Pm

k=1
k aLkxk + bLk � θ(xk) k

such that aLkqk + bLk = aLk+1qk + bLk+1 .

(10)
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High-level optimized

Low-level optimized

Keep

Transition-Y

Fig. 7. A video in which the camera follows the main object. Main object

position detection ensures we retain all important key points.

We must further constrain the fitting problem to ensure that Mx(t)
and My(t) are identical, to avoid distortion. To do so, we just

replace the objective of each frame by:

k aLkxk + bLk �Mx(xk) k + k aLkxk + bLk �My(xk) k .

The resulting model is denoted f 0 and an example is illustrated in

Fig. 6(c).

Final optimization This model now contains high quality motion

segments, but cannot be directly used as the final camera path

for two reasons. Firstly, as the camera path has been modified,

it may no longer exclude distractions from all frames, nor can

it guarantee that the cropping frame remains within the original

video. Secondly, only first order continuity is enforced between

motion segments, but higher order continuity is desirable. To

address these issues, using the above model as a reference, we

perform L1 optimization again. We again include all the hard

constraints from the initial optimization pass, but change the

optimization objective to be that the final camera path is close

to the desired smoothed path.

Specifically, the transformation matrix H 0t from frame 0 to frame

t is calculated from the fitted parameter curves in Eqn. (10). Let

the final camera motion from frame 0 to frame t be H 00t. To make

H 00t similar to H 0t, we introduce a new set of slack variables

St
R which bounds the differences of the matrix elements relating

them:

�St
R < H 00t

R �H 0t < St
R,

where

H 00t
R = P t

RH
00t � P 0

R,

and P t
R is the update matrix to be computed for each frame.

We add the new slack variables in SR
t to the slack variable set

in Eqn. (7) to form a new vector sh, and use it in the new

optimization objective:

E = argmin
sh

WT
h sh subject to P 0, . . . , P t, (11)

where Wh includes the weights W in Eqn. (5) and the weights

for the new slack variables. The weights for parameters related to

scaling, rotation and translation for the new slack variables are set

in the same way as the corresponding original slack variables in

the low-level optimization pass. Linear programming is again used

to produce the parameters of the final update transform PRs, as

shown in Fig. 6(d). This lead to a new frame update transformation

matrix sequence used to transform all frames to the cropping

window Wc, giving the final output video.

Special case—subject tracking The high-level optimization is

designed to remove oscillatory motion segments. However, not all

such motions are undesirable, especially if the camera is trying

to follow the main subject. Consider the example in Fig. 7. The

camera moves down and then immediately up to follow the fast

moving biker, which is an appropriate camera path in this case.

To ensure that such cases are handled properly in videos with fast

moving backgrounds, we further check whether the most salient

objects stay near the frame center. If the average background

optical flow magnitude over a 20-frame window is larger than

10 pixels for some frames, we keep any key points belonging to

such frames to avoid the background motion being smoothed out.

Results for this example can be seen in the supplementary video.

6 RESULTS

Our method transforms video inputs captured by amateur videog-

raphers into video outputs with high-quality camera paths and

fewer distractions, as we now show.

In our experiments, we tested the ability of the method to detect

various commonplace distractions and remove them from the final

video. We also considered how well our two-level optimization

avoids unnatural camera paths which might otherwise be caused

by avoiding distractions or low-level stabilization. We further

carried out a user study to assess whether our method can improve

the visual quality of amateur video, and whether its results are

better than those provided by stabilization alone.

6.1 Performance

We implemented our method in C in a single thread on a PC

with a 2.5 GHz 8-core Xeon CPU and 16 GB memory. On

average, distraction detection takes 3.5 s per frame, including 3.1

s for TSP extraction and 0.025 s for optical flow computation.

Each optimization pass takes 0.1–0.2 s per frame, depending on

the number of constraints. The speed of the algorithm could be

readily improved in various straightforward ways. Firstly, as the

TSP implementation is the bottleneck, a parallelized version could

make the whole algorithm significantly faster. Secondly, temporal

downsampling could be applied without significantly affecting the

output quality too—the locations of distractions do not have to

be accurately determined to exclude them from the video, and a

conservative bounding box could be used.

6.2 Experiments

Distraction detection We conducted an experiment to determine

how well our distraction detection method works. We downloaded

10 amateur videos from the Internet which were associated with

comments that they contained distracting or annoying objects or

people. To provide ground truth, we then manually labeled the

distractions, by sampling the video every 10 frames and manually

marking the distraction regions. After dividing the video into

TSPs, any in these marked regions were taken as ground truth

distractions. We then carried out distraction detection as described

in Section 4, using the default settings to automatically label the
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Input Distractions Results Input Distractions Results

(a) (b)

(c) (d)

Fig. 8. Automatically detected distractions (shown as green masks), and final output frames avoiding them. In (c) the orange regions are undetected distractions.

In (d) the red regions are incorrectly detected as distractions.

Precision Recall

Duration
Saliency

Duration
Saliency

Fig. 9. Variation of precision and recall with different parameter settings.

distractions. The number of false positive and false negative labels

on the TSPs gave a recall rate of 87% and precision rate of 75%.

Increasing the saliency threshold T and threshold time τ gave

a higher precision and a lower recall; variations in recall and

precision with different parameter settings are shown in Fig. 9.

In examples like Fig. 8(a), moving people are highly salient, but

are irrelevant to the main video content. Our method can success-

fully label them as distractions and avoid them in the final results.

False positives—regions incorrectly marked as distractions—are

mostly TSPs on the background, adjacent to real distractions (see

Fig. 8(d)). If the background is fairly constant, one interpretation

of the video is that parts of the background are moving along

with the foreground: this is indistinguishable from a smaller

foreground object moving against a static background. False

negatives—distractions which are not detected—are usually TSPs

which belong to objects moving slowly relative to the background

(seeFig. 8(c). False positives are reltively harmless, as they simply

cause a little overcropping. False negatives are more problematic

as they result in failure to remove some distractions. Thus, we set

default parameters to prefer high recall performance, ensuring that

we can effectively detect and avoid most distractions.

Two-pass path optimization To test whether the high-level re-

finement pass improves the path as intended, we performed two-

pass optimization on the same 10 videos, including the constraints

to avoid distractions, and considered whether we effectively de-

creased the number of contradictory motions (see Section 5.2.2).

In the 10 videos, our method detected 34 contradictory motions

in various motion components. After optimization, only 5 con-

tradictory motions remained, and most were removed, as shown

in Fig. 10(a). The main reason that the others were not removed

is that, on the one hand there is a goal to keep as much content

as possible, and on the other, those motions are the only way

to satisfy the constraints determining distraction removal and

inclusion of the cropping window in the original frame. Such

cases typically have the frame edges close to the cropping window

edges. An example is shown in Fig. 10(b), where the successive

rotation up-and-down is detected, but the final optimization failed

to remove it because, for the middle frame, the upper edge of the

cropping window is already close to the original frame edge. In

the left frame, a salient object is also close to to the right edge of

the cropping window.

6.3 User study

To verify whether our algorithm has the desired effect of subjec-

tively improving the aesthetic quality of a video, we designed a

user study. Its objectives were to determine:

• whether our method can generate video result with better

aesthetic quality than simpler alternatives, such as stabi-

lization only and stabilization followed by cropping;

• whether distraction detection and removal can improve

visual quality;

• how the low-level and high-level path optimization steps

affect visual quality.

As a basis for comparison with stabilization alone, we chose two

widely-used commercial stabilization solutions: (1) the stabilizer

currently used in YouTube3, a refined version of the method

introduced in [2]; (2) the subspace stabilizer in Adobe After

Effects, which is based on Liu et al.’s work [1]. We also compare

with a straightforward sequential approach for achieving both

3. https://www.youtube.com/editor
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Low-level optimized High-level optimized

Remove

Transition-X

(a) High-level optimized

Low-level optimized

Rotation angle

Remove
Still conflict(b)

Fig. 10. Two-level optimization. (a) An undesirable path resulting from low-level optimization is successfully corrected in the final result. (b) Consecutive rotation

anticlockwise then clockwise is only partially corrected by high-level optimization.

Frame 32 Frame 32

Frame 36 Frame 36

(a)YouTube Stabilizer (c)Our result

Frame 32

Frame 36

(b)Subspace Stabilizer

Fig. 11. Comparing our method with video stabilization methods. (a)(b) The

results of the YouTube stabilizer and Subspace stabilizer in Adobe After Effects

[1] both contain a distraction object (highlighted by yellow arrows) that is

visually jittering. (c) Our approach naturally avoids this problem by removing

the distraction.

stable camera path and distraction removal: we first apply video

stabilization to smooth the camera path, then apply our distraction

detection and removal method to produce the final video.

For the study, we prepared six versions of each video considered:

a) the original video, b) stabilized video by YouTube, c) stabilized

video by Adobe After Effects stabilizer (AE), d) stabilization

followed by cropping for distraction removal, e) our intermediate

result just using low-level optimization, f) our final result after

high-level optimization. For each example and each participate,

we showed the five derived videos in a randomized order, and

asked the participant to compare each video to the original one

according to the following criteria:

1) stability of the video content,

2) if there are distracting objects in the result video,

3) quality of the camera motion,

4) the severeness of content loss due to cropping.

Subjects gave an integer score between �4 and +4 for each

question, �4 meaning much worse, and +4 meaning much better,

than the original. The only exception is for the last question on

severeness of content loss, we only allow negative scores since the

original videos contain the most amount of content.

Our study used 16 amateur videos downloaded from the Internet,

all of them contain some amount of distractions. They were shown

to 25 participants, 15 male and 10 female, age from 20 to 30.

TABLE 1

Average quality scores in the user study. For details about t-test applied to

the scores pairwise, please refer to the supplementary materials.

Low-level

only

Both

passes

YouTube

stabilizer

AE

stabilizer

Crop after

stabilized

Stability 2.06 2.94 2.13 1.89 2.43

Distraction 2.94 2.98 0.70 0.82 2.95

Camera action 1.64 2.39 1.93 1.90 1.92

Content −0.30 −0.33 −0.10 −0.26 −1.26

They included university students, engineers and designers. The

statistics of the study are shown in Table 1.

The quantitative results indicate that our method generates results

with higher aesthetic quality than stabilization alone: distraction

removal also improves the visual quality of the videos. We now

consider each criterion in detail.

Stability The stability results are consistent with the observation

that, to avoid distractions, our low-level optimization pass intro-

duces a little jitter: the results are not as stable as the YouTube’s

and After Affects stabilizer’s results. However, after the high-level

pass, the results become well stabilized, while also having the

benefits addressed in the other criteria. For example, consider

Fig. 11. Distractions remain after stabilization, and their unsteady

motion causes participants to rate this as an unsatisfactory stabi-

lization result. In contrast, our method avoids this distraction and

so produces a smoother-looking video.

Distraction removal Because the stabilizers do not perform

distraction detection, it can only avoid distractions serendipitously

when cropping the transformed frame. It is clear that our second

pass preserves the distraction removal performed by the first pass,

and its results are presumably considered less distracting because

of smoother overall motion—for example, there will be fewer

changes in content at the edges of the frame. A t-test shows that

the scores of low-level optimization and two-pass optimization do

not significantly differ. This is because they both remove the same

distractions.

Camera action The Low-level optimization and the two stabi-

lization methods receive relatively lower scores than our complete

system, because they do not focus on how to refine the camera
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[Gleicher et al. 2008]

Our result

Fig. 12. Comparison with Gleicher and Liu’s method [2008]. (Top) Three

frames from their result video, where the camera zooms out immediately after

zooming in, and does not remove distractions near the frame border (indicated

by the yellow arrow). (Bottom) Our result has a more natural camera path with

the distractions removed.

actions and just stabilize it. Furthermore, the score for low-

level optimization is slightly lower than that of both stabilizers

because it introduces complex motions to avoid distractions. In

comparison, our high-level optimization method produces simpler

motion and avoids contradictory motions, thus achieves the highest

score.

Content retention and quality In terms of the severeness of

content loss, the results from cropping after stabilization received

the lowest score, indicating that more important content has

been cropped out by this method than others. This is because

both steps apply cropping independently. We will provide more

detailed comparison between our method and this simple strategy

in the next section. The scores for other four methods are close,

indicating no significant difference according to this criterion. We

have found that in extreme cases where distractions are too large,

our method could remove some other important content of the

video and make video frames to be blurry by excessive zooming

in. Such an example is shown in Fig. 14(b), where our final result

only achieved a low average score of �1.75. We will discuss how

to avoid excessive cropping in the next section.

Frames

Cropping (%)

80                     160                   240                   320                   420   

20

30

10

Frame 371

Cropping after Stabilization Our Method

Fig. 13. Comparing our approach with a simple cropping after stabilization

strategy, in terms of the percentage of cropped content on each frame. The

top row shows one frame with a large cropping difference.

(a) Distractions (b) No completion (c) Partial completed

Fig. 14. Using video completion can potentially avoid too much cropping.

7 DISCUSSION

7.1 Comparisons

Comparison to Gleicher and Liu’s Method Gleicher and Liu [4]

proposed a method to break a video into shorter segments with

static scenes and directed motions following the rules of cine-

matography. Their method is based on finding the four corners for

cropping windows in detected keyframes and controlling the path

between them. This makes it hard to satisfy per-frame constraints

(as needed to avoid distractions) except at the keyframes: see

Fig. 12. Compared to this work and other video stabilization

methods such as [2], [32], our output has improved aesthetic

quality for several reasons. Firstly, our results avoid distractions,

significantly improving visual quality in ways not considered by

simple stabilization. Secondly, our camera paths avoid contradic-

tory movements like zooming out immediately after zooming in:

see Fig. 12. We also ensure that simple camera paths are used.

Comparison to cropping after stabilization Applying video

stabilization and distraction cropping sequentially is a straightfor-

ward strategy to achieve both goals. However, the main issue of

this approach is excessive cropping, as cropping has been done in

both steps independently. In Fig. 13, we compare this strategy and

our approach by plotting the amount of content cropping for each

frame of the same input video, which suggests that our method can

keep more original video content by simultaneously addressing

both stabilization and distraction removal. In our experiments, we

have found that the removed regions by cropping after stabilization

strategy are usually 20%-50% larger using that of our method.

7.2 Avoiding Excessive Cropping

If a distracting object covers a large portion of a video frame, our

method can lead to excessive cropping, which is unacceptable to

most users when compared with the original video (an example

is shown in Fig. 14(b)). Furthermore, too much cropping will

also introduce blurry video frames that have low visual quality,

especially when the input video is already low-res. To avoid this

problem, our system can optionally apply hole filling techniques

to remove distractions. Specifically, if the system detects strong

zooming-in in the optimized camera path, i.e. the perimeter of the

final video is smaller than 60% of the perimeter of the original

video, it then applies the hole filling method proposed in [33] to

remove those distractions for which corresponding background

regions can be found in other frames. We then only need to

exclude remaining pixels classified as distractions that cannot be

completed. As shown in Fig. 14(c), by using partial background
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Fig. 15. Our system cannot produce good results in the case where the

distraction overlaps with the main object. (left) Original videos. (Right) Our

results. The distracting object is marked in green. The guitar and the distracting

pedestrian overlap for several frames, causing part of the guitar to be removed

by our method.

reconstruction inside the occlusion region, our system can keep

more video content and avoid excessive cropping.

In more extreme cases where hole filling also fails, we can relax

the hard constraints on distraction removal to allow distractions to

partially remain in the video, in order to avoid excessive cropping.

Further work is needed to determine a suitable user interface.

7.3 Other Discussions and Limitations

Our approach is based on the same camera path model and

optimization framework proposed in [2]. While this framework

is seemingly simpler and more restrictive than more recent ap-

proaches such as the mesh homography model [3], it has several

advantages over more complicated models in practice. First, it

is robust and can be applied on a wide variety of examples,

while more recent 3D or 2.5D approaches typically have more

assumptions on the scene structure, such as the applicability of

3D reconstruction or long-range feature tracking. Secondly, this

framework is computationally very efficient, while more compli-

cated models often come with much higher computational cost.

Finally, this framework is flexible enough to incorporate additional

constraints, which is much harder to do with more complicated

models. For all these reasons we choose this camera path repre-

sentation model as a basis of our algorithm. Our evaluation results

in Table 1 also show that based on this framework, our system

achieves similar, if not better quality of video stabilization than

more recent approaches that use more complex camera motion

models.

Our method has several other limitations. Firstly, we can only

avoid distractions which do not overlap the main objects. If we

cannot find a cropping window which can separate the main object

from distractions, our method will fail as the various constraints

will conflict, as shown in Fig. 15. Secondly, our method is also

limited by the global linear motion model it uses. As a recent

study has shown [3], a single global motion matrix is insufficient

for stabilizing certain types of video. In some cases, distractions

cannot be detected automatically or reliably; user assistance may

be needed to correctly identify the distractions. Fig. 8(c) shows

such an example, where the orange region was added by the user.

8 CONCLUSIONS

We have presented a method to improve the visual quality of

amateur video. We use a video distraction detection method and a

two-pass optimization framework to provide a camera path which

avoids distractions, and gives smooth and reasonable camera

actions. Experiments and a user study have shown that distractions

can be effectively detected, and removing them improves the

aesthetic quality of video. We also significantly improve the visual

quality by refining the output camera motion path. We hope

in future to improve the computational efficiency as discussed

in Section 6.1, and improve upon these results by using scene

reconstruction methods to allow us to perform high-level path

optimization and distraction avoidance in 3D space.
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