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1. INTRODUCTION

One of the important aspects in the process of program construction is the choice
and the treatment of the basic data structures. Algebraic specification methods
provide techniques for data abstraction and the validation and analysis of data
structures. The basic idea of the algebraic approach [Wirsing 1990] is to describe
data structures by just giving the names of the different sets of data and the names
of the basic functions and their characteristic properties. Therefore, algebraic spec-
ifications provide a powerful method for the specification of software systems in an
abstract way and independently of its effective implementation. For the description
of large data structures and complex systems, we can use parameterized specifica-
tions [Padawitz 1988] which allow one to compose specifications in a modular way
and to build larger specifications from smaller ones. Often algebraic specifications
are built with conditional equations. Semantically, the motivation for this is the
existence of initial models; operationally, the motivation is the ability to use term
rewriting techniques for computing and automatic prototyping.

The completeness and ground confluence properties are very important for build-
ing algebraic specifications in a correct and modular way. Ground confluence is
particularly useful to guarantee the refutational completeness of inductive theorem
proving, which implies that every conjecture that is not valid in the initial model
will be detected in finite time. This property is very important since practice shows
that code is usually buggy, and therefore many properties which are expected to
hold, in fact do not.

Completeness means that any ground (i.e., variable-free) term should return a
result built upon constructor symbols. Many techniques have been developed for
checking this property for non-conditional specifications [Guttag and Horning 1978;
Huet and Hullot 1982; Dershowitz 1983; Thiel 1984; Kounalis 1985; Comon 1986;
Jouannaud and Kounalis 1989; Lazrek et al. 1990; Kapur et al. 1991; Kapur 1994]
and conditional specifications [Bouhoula 1996; Bouhoula and Jouannaud 2001].
Ground confluence guarantees the property of uniqueness in computation with
ground terms. Several works have proposed sufficiency criteria for confluence of
conditional systems [Küchlin 1985; Dershowitz et al. 1987; Kaplan 1987; Gram-
lich and Wirth 1996]. However, little work has been carried out on checking ground
confluence. This is mostly due to the fact that the problem is much harder. Indeed,
ground confluence is undecidable [Kapur et al. 1990] even for equational theories
with only unary function symbols. Plaisted has proposed a semantic confluence
test [Plaisted 1985], but he has not shown how his test can be automatized. Com-
pletion techniques are used in [Ganzinger 1987; Fribourg 1989]. It is generally ac-
cepted that such techniques may be very inefficient since the completion procedure
often diverges even for very small specifications. Other methods were developed
in [Göbel 1987; Kounalis and Rusinowitch 1991; Becker 1993; 1996] which do not
rely on the completion framework. The key idea of these methods is to compute all
critical pairs between axioms, and then to check each critical pair w.r.t. a sufficient
criterion for ground confluence. The main drawback of these methods is that they
generate a lot of critical pairs and that the ground confluence criteria are very hard
to automate.

The key idea of our method comes from the observation that completeness and
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ground confluence are interdependent. Indeed, to prove completeness for a con-
ditional specification SP , we need SP to be ground confluent [Bouhoula 1996],
and to prove that SP is ground confluent using semantic techniques as in [Plaisted
1985], we need SP to be complete. This observation motivates us to develop a
new procedure for simultaneously checking completeness and ground confluence
for specifications with free/non-free constructors and parameterized specifications.
Our procedure computes a pattern tree for every defined symbol, and identifies a
set of rules whose inductive validity has to be checked. The leaves of the tree give a
partition of the possible arguments for defined functions. If all the leaves are ground
reducible and non-ambiguous, and if the identified rules are inductively valid, then
we conclude that the given specification is complete and ground confluent. If the
specification is not complete neither ground confluent, then our procedure will out-
put the set of patterns on whose ground instances a function is not defined and it
can easily detect the rules that break ground confluence.

As opposed to previous works, our procedure does not rely on completion tech-
niques, and does not require the computation of critical pairs of the axioms. The
method has been implemented in the prover SPIKE [Bouhoula et al. 1995; Bouhoula
and Rusinowitch 1995; Bouhoula 1997]. We have tested this system on several ex-
amples which have highlighted the simplicity and the efficiency of our approach
compared to related techniques.

The organization of this paper is as follows: In Section 2, we briefly introduce
basic concepts about term rewriting and order-sorted algebras. In Section 3, we
give the formal definitions of completeness and ground confluence. We present in
Section 4 the ingredients needed to compute an induction schema for a given spec-
ification which are necessary for the computation of pattern trees. In Sections 5
and 6, we describe our inference system for simultaneously checking completeness
and ground confluence for specifications with free constructors. Then, we show the
soundness and the completeness of our procedure. In Section 7 and Section 8, we
extend our inference system in order to check the completeness and ground conflu-
ence of specifications with non-free constructors and parameterized specifications,
respectively. We present in Section 9 some computer experiments.

2. BASIC CONCEPTS

We assume that the reader is familiar with the basic concepts of term rewriting [Der-
showitz and Jouannaud 1990], order-sorted algebras [Goguen and Meseguer 1988;
Smolka et al. 1987] and mathematical logic. Notions and notations not defined here
are standard.

2.1 Order-Sorted Signature

An order-sorted signature Σ consists of a set S of sort symbols, a partial ordering
≤ on S, a countable set Xs of variables for each sort symbol s ∈ S, a set F of
function symbols disjoint from X = ⊎s∈SXs, such that each function symbol is
equipped with an arity n ∈ IN, n input sorts s1, . . . , sn, and an output sort s. Let
Fs1×...×sn→s denote the set of function symbols of output sort s, whose n successive
inputs belong to the sorts s1, . . . , sn (a function symbol can have more than one
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function declaration):

F =
⋃

n

⋃

s1,...,sn,s∈S

Fs1×...×sn→s

An order-sorted term T of sort s ∈ S is either a variable of sort t where t ≤ s or
f(U1, . . . , Un) where f ∈ Ft1×...×tn→t, t ≤ s and ∀i ∈ [1..n], Ui is a term of sort ti.
We use small letters s, t for sorts, and capitals L, R, S, T, U, V, W for terms. The
set of order-sorted terms will be denoted by T (F ,X ).

Terms are identified with finite labelled trees as usual. Positions are strings of
positive integers. Λ is the empty string (root position) and |p| stands for the length
of the string p. We use Pos(U) for the set of positions in U , FPos(U) for its
set of non-variable positions, and VPos(U) for its set of variable positions. The
depth (resp. non-variable depth) of a term T is the maximum length of a position
p ∈ Pos(T ) (resp. p ∈ FPos(T )).

The subterm of M at position p is denoted by M |p, and we write M � M |p if
p 6= Λ. The result of replacing M |p with N at position p in M is denoted by M [N ]p.
This is also used to indicate that N is a subterm of M , in which case p may be
omitted. We use Var(M) for the set of variables of M . Variable-free terms are
called ground. By T (F) we denote the set of ground terms. A term M is linear
if every variable in Var(M) occurs exactly once in M . We assume that each sort
contains a ground term. Given an order-sorted term T such that Var(T ) ⊆ x, an
environment Γ = {x : s} assigns a unique sort to every variable of x.

Order-sorted substitutions are written as {x1 7→ M1, . . . , xn 7→ Mn} where Mi

and xi are different terms of the same sort. If ∀i ∈ [1..n] Mi is a variable and
∀i, j ∈ [1..n] Mi 6= Mj , the substitution is a renaming. We use small Greek letters
for substitutions and postfix notation for their application.

A term T is subsumed by a term S if T = Sσ for some substitution σ. We
also say that S is more general than T . Subsumption is a quasi-ordering on terms
denoted by •≥, whose strict part is well-founded, and whose equivalence,

•
=, called

conversion, is given by the renaming of variables. This ordering is extended to
substitutions by letting σ •≥ τ if σ = τθ for some θ. We say that two terms S and
T unify if there exists a substitution σ such that Sσ = Tσ. The set of unifiers of
two given terms S, T possesses a unique (up to conversion) minimal unifier with
respect to subsumption, called the most general unifier of S and T , and denoted
by mgu(S, T ). We say that a term S matches a term T with a substitution σ if
Sσ = T .

A sort s is a least sort, if s ∈ S and all sorts t ∈ S, t 6< s. We say that a signature Σ
is regular if each term has a unique least sort. Regularity guarantees that syntactic
unification does not yield infinitely many most general unifiers [Schmidt-Schauß
1989]. Throughout this paper, we assume that Σ is regular.

We denote by U the list (or vector) (U1, . . . , Un). Given two vectors U and U ′ of
equal length over the respective sets E and E′, and a binary relation ∗ over E×E′,
we use the notation U ∗U ′ as an abbreviation for the vector (U1 ∗U ′

1, . . . , Un ∗U ′
n).

When E and E′ are sets of formulae, U ∗ U ′ will instead denote the formula
(U1 ∗ U ′

1 ∧ . . . ∧ Un ∗ U ′
n).
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2.2 Axioms

We assume that the signature comes in two parts, a set of constructors C, and a
set of defined symbols D along with a rewrite ordering ≻, that is, an ordering on
terms which is well-founded, and monotonic with respect to contexts and substi-
tutions [Dershowitz 1987]. We use T (C,X ) and T (D,X ) for the respective sets of
terms. s, U will denote, respectively, lists or products of sorts and terms.

2.2.1 Constructors. The axioms for constructors are rewrite rules of the form:

x : s⇒ c(S)→ T

where c ∈ Cs→s, c(S) is a linear constructor term of sort s, T is a constructor term
of sort s, x = Var(S), and c(S) ≻ T . We denote by RC this set of rewrite rules.

2.2.2 Defined Symbols. Given f ∈ Ds→s, the axioms defining f are order-sorted
conditional rewrite rules of the form: x : s ∧ V = W ⇒ f(L) → R satisfying a
reductivity condition [Dershowitz and Okada 1990]:

(i) x = Var(L) and f(L) and R are of the same sort,
(ii) f(L) ≻ R

(iii) ∀V∈ V , ∀W∈ W : f(L) (≻ ∪�) V, W .
We call unconditional a rewrite rule of the form x : s⇒ L→ R, and denote by RD

the set of rules for defined symbols.
To each non-left linear rule P ⇒ L → R, we associate its linearized 1 version

P ′∧P ′′ ⇒ L′ → R′, such that L′ is linear, L = L′σ for some renaming σ, R = R′σ,
P = P ′σ, and x = y ∈ P ′′ ∀x, y ∈ Var(L′) such that xσ = yσ.

Given a rule P ⇒ L→ R, L is called the left-hand side of the rule.

2.3 Order-Sorted Rewriting

We now proceed with the operational semantics, that is, the definition of rewriting
order-sorted terms with rules in R = RC ∪ RD. First, we need to define how
substitutions operate on order-sorted terms:

Definition 2.1. Given an order-sorted term (S, {x : s}) where S is a term over the
environment (S, {x : s}), the order-sorted substitution σ = {x1 7→ (t1, Γ1), . . . , xn 7→
(tn, Γn)}, is admissible if (ti, Γi) have the sort si for all i ∈ [1..n], and Γ =

⋃
i∈[1..n] Γi

is an environment. The instantiation of (S, {x : s}) by σ is defined as the order-
sorted term (S{x 7→ t}, Γ). 3

Rewriting with respect to R is order-sorted rewriting as used in OBJ [Futatsugi
et al. 1985]:

Definition 2.2. (S, Γ)−→p

L→R if U :s∧V =W
(T, Γ) if

(i) L matches (S|p, Γ) with substitution σ, for all i ∈ [1..n] : Uiσ have the sort
si, and V σ ↓R Wσ,

(ii) T = S[Rσ]p.
We will often abuse the notations by writing S−→R T , therefore assuming the
environment in which a term is rewritten. A term S is irreducible (i.e., not reducible)
by R if there is no T such that S−→R T . A substitution σ is irreducible by R if

1This shows that left-linearity is not a real restriction when dealing with conditional rules.
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xσ is irreducible by R for every variable x of its domain. We also use −→∗
R,

−→+
R and ←→∗

R for, respectively, the reflexive, transitive, the transitive, and the
reflexive, symmetric, transitive closures of a rewrite relation −→R, V ↓R W for
V −→∗

R U ∗
R←−W for some U , and S↓R for a normal form of S via the rewrite

system R. 3

Since the rules in R are reductive, −→R is terminating and therefore rewriting
with R is decidable.

3. COMPLETENESS AND GROUND CONFLUENCE

When for all possible arguments the result of a defined operator can be expressed
with constructors only, we say that this operator is completely defined w.r.t. the
constructors.

Definition 3.1. Let R be a rewrite system. The operator f ∈ D is completely
defined w.r.t. C iff for all T1, . . . , Tn in T (C), there exists T in T (C) such that
f(T1, . . . , Tn) →+

R T . We say that R is complete iff each defined operator f ∈ D is
completely defined. 3

Ground confluence guarantees the property of uniqueness in computation with
ground terms.

Definition 3.2. Let R be a rewrite system. We say that R is ground confluent
iff for any ground terms U, V, W ∈ T (F), if V ∗

R←− U −→∗
R W , then V ↓R W . 3

The specifications given in Fig. 1 and Fig. 2 are complete and ground confluent
as proved in Examples 9.1 and 7.4. Now, if we remove the rule x < 0 → False

from Fig. 1, then the specification NAT will be incomplete, since, for example,
the term 0 < 0 can not be reduced to a constructor term. If we reformulate the
rule even(x + (y + y)) → even(x) as even(x + (y + y)) → even(x + y), then
the specification NAT will not be ground confluent, since, for example, False ∗

R←
even(0 + (s(0) + s(0)))→∗

R True, and False and True are in normal form.

4. COMPUTATION OF INDUCTION SCHEMAS

Now, we will give the ingredients needed to compute an induction schema for a
given specification.

Definition 4.1. A term (T, Γ) is ground reducible (resp. ground irreducible) if Tγ

is reducible (resp. irreducible) for every irreducible admissible ground substitution
γ. 3

Definition 4.2. A sort s is free if every ground constructor term of sort s is
irreducible. A Cartesian product of sorts is free if its components are. 3

In the example of Fig. 1, (s(x), {x : Nat}) is ground irreducible, (x < y, {x :
Nat, y : Nat}) is ground reducible, and Nat is a free sort.

Note that a sort s is free iff every term inhabiting s is ground irreducible. Freeness
makes induction easy on free sorts. On the other hand, non-free sorts can be
decomposed into free ones.
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specification: NAT
sorts Nat, Bool;
constructors:

0 : → Nat;
s : Nat → Nat;
True : → Bool;
False : → Bool;
defined functions:

+ : Nat Nat → Nat;
∗ : Nat Nat → Nat;
< : Nat Nat → Bool;

even : Nat → Bool;
odd : Nat → Bool;
axioms:

(1) 0+x → x;
(2) x+0 → x;
(3) s(x)+y → s(x+y);
(4) x+s(y) → s(x+y);
(5) (x+y)+z → x+(y+z);
(6) 0 ∗ x → 0;
(7) s(x) ∗ y → (x ∗ y)+y;
(8) x ∗ 0 → 0;
(9) x<0 → False;
(10) 0<s(x) → True;
(11) s(x)<s(y) → x<y;
(12) even(0) → True ;
(13) even(s(0)) → False ;
(14) even(s(s(x))) → even(x) ;
(15) even(x)=True ⇒ odd(x) → False ;
(16) even(s(x))=True ⇒ odd(x) → True ;
(17) even(x+x) → True ;
(18) even(s(x+x)) → False ;
(19) even(x+(y+y)) → even(x) ;
(20) odd(s(s(x))) → odd(x) ;
(21) odd(x+x) → False ;
(22) odd(s(x+x)) → True ;
(23) odd(x)=True ∧ odd(y)=True ⇒ odd(x+y) → False ;
(24) even(x)=True ∧ even(y)=True ⇒ even(x+y) → True ;
(25) odd(x)=True ∧ odd(y)=False ⇒ odd(x+y) → True ;
(26) even(x)=True ∧ even(y)=False ⇒ even(x+y) → False ;
(27) even(x ∗ s(s(y))) → even(x ∗ y) ;

(28) even(x)=True ⇒ even(x ∗ y) → True ;
(29) odd(x)=True ∧ odd(y)=True ⇒ even(x ∗ y) → False ;

Fig. 1. A specification of natural numbers

Definition 4.3. Given a sort s, a set S of free subsorts of s is a cover sort of s

if every irreducible ground constructor term T inhabiting s inhabits a unique sort
in S. 3

Our uniqueness assumption is motivated by efficiency reasons. In the example
of Fig. 2, Int has no cover sort, while in the example of Fig. 1, Nat has itself as
a trivial cover sort. In Fig. 6, {Zero, Neg, Pos} is a cover sort of Int. Cover sorts
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specification: INTEGERS
sorts Int, Bool;
constructors:

0 : → Int;
s : Int → Int;
p : Int → Int;
True : → Bool;
False: → Bool;
defined functions:

− : Int → Int;
+ : Int Int → Int;
∗ : Int Int → Int;
< : Int Int → Bool;

axioms:

(a) p(s(x)) → x;
(b) s(p(x)) → x;
(c) - 0 → 0;
(d) - s(x) → p(- x);
(e) - p(x) → s(- x);
(f) 0+x → x;
(g) x+0 → x;
(h) s(x)+y → s(x+y);
(i) p(x)+y → p(x+y);
(j) (x+y)+z → x+(y+z);
(k) 0 ∗ x → 0;
(l) s(x) ∗ y → (x ∗ y)+y;
(m) p(x) ∗ y → (x ∗ y)+ (-y);
(n) (x ∗ y) ∗ z → x ∗ (y ∗ z);
(o) (x+y) ∗ z → (x ∗ z) + (y ∗ z);
(p) x + (y ∗ z) → (x+y) ∗ (x+z);
(q) 0<0 → False;
(r) 0<x=True ⇒ 0<s(x) → True;
(s) 0<x=False ⇒ 0<p(x) → False;
(t) s(x)<y → x<p(y);
(u) p(x)<y → x<s(y);

Fig. 2. A specification of integers

allow us to have constructor symbols which are free in some subset of a cover sort,
and defined in the complement. For example, s is free on Zero ∪ Pos and defined
on Neg.

Definition 4.4. We call structural scheme of free sort s, denoted by SC(s), the
set of terms c(x1, . . . , xn) such that c is a constructor function with codomain s,
and arity n, and x1, . . . , xn are distinct variables. Note that {x1, . . . , xn} is empty
if c is a constant symbol. 3

For the example of Fig. 1, SC(Nat) = {0, s(x)}.

Definition 4.5. The set IndPos(f,R) of induction positions of f ∈ D is the set
of non-root positions p such that there exists in R a rewrite rule of left-hand side
f(L), such that for each Li ∈ L : Li ∈ T (C,X ), and p is a position in f(L) of a
non-variable subterm.
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Given R, the set of induction variables of a term T , written IndVar(T,R), is
the subset of Var(T ) whose elements inhabit a free sort s and occur in a subterm
of T of the form f(S), such that for each Si ∈ S : Si ∈ T (C,X ), at an induction
position of f . 3

In the example of Fig. 1, +, ∗ <, even, odd have the respective sets of induction
positions {1, 2}, {1, 2}, {1, 2}, {1, 1.1}, {1, 1.1}. In the Example of Fig. 6, x is an
induction variable of (p(x), {x : Pos}).

5. HOW TO CHECK COMPLETENESS AND GROUND CONFLUENCE

The main idea behind our test for completeness and ground confluence is to compute
a pattern tree for every defined operator f : s1 × . . .× sn → s in D. A pattern tree
for f is a tree whose nodes are labelled by patterns, whose root is labelled by the
initial pattern (f(x1, . . . , xn), {x1 : s1, . . . , xn : sn}) where n is the arity of f and
x1, . . . , xn are distinct variables, and such that the successors of any internal node
labelled by the pattern (f(T ), Γ) are obtained by either covering the sort or the
set of values (i.e., ground constructor terms) of an induction variable in f(T ). The
restriction of induction variables allows us to build a pattern tree which captures
the structure of the axioms. To compute pattern trees, we use the following notions.

Definition 5.1. A pattern 2 is an order-sorted term (f(T ), Γ) such that f ∈ D
and Ti ∈ T (C,X ) for every Ti ∈ T . 3

A formula ϕ is a deductive theorem of R if it is valid in any model of R. This
will be denoted by R |= ϕ. A formula ϕ is an inductive theorem (or an inductive
conjecture) of R if it is valid in the initial model of R. This will be denoted by
R |=Ind ϕ.

Definition 5.2. A term (T, Γ) is strongly reducible if
(i) T is reducible, or
(ii) the formula P1σ1 ∨ . . . ∨ Pnσn is an inductive theorem of R, where {Pi ⇒

Li → Ri}i∈[1..n] is the set of linearized rules in R such that each Li matches T with
the substitution σi. 3

If R is ground convergent (i.e. is ground confluent and terminates), then every
strongly reducible term is ground reducible.

In Fig. 1, the pattern (odd(x), {x : Nat}) is strongly reducible since the left-hand
sides of the axioms (15) and (16) match odd(x) and even(x) = True∨even(s(x)) =
True is an inductive theorem. However, the pattern (even(x), {x : Nat}) is not
strongly reducible since there is no axiom whose left-hand side matches even(x). In
Fig. 2, the pattern (0 < s(x), {x : Int}) is not strongly reducible since x : Int∧ 0 <

x = True is not an inductive theorem.

Definition 5.3. A formula ϕ = U = V ⇒ L1 = R1 ∨ . . .∨Ln = Rn is a joinable-
inductive theorem of R (or a joinable-inductive conjecture or inductively joinable
w.r.t. R) iff for each ground substitution σ, if Uσ ↓R V σ, then there exists i ∈ [1..n]
such that Liσ ↓R Riσ. 3

2The environment Γ will be omitted if the specification is many sorted.
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Of course, the two notions of joinable-inductive and inductive conjectures coincide
if R is ground confluent. However, they can differ otherwise. Consider for instance
R = {c→ a, c→ b}. The conjecture a = b is an inductive theorem (since a←→∗

R b)
but it is not joinable inductive theorem (as a and b are in normal form w.r.t. R).
On the other hand, the conjecture a = b⇒ f(x) = c is a joinable inductive theorem
but not an inductive theorem (for the same reasons).

In [Bouhoula and Jacquemard 2007], we have developed a new method for check-
ing inductive joinability for non-confluent equational specifications made of con-
ditional and constrained rewrite rules. The constraints are interpreted over con-
structor terms, and may express syntactic equality, disequality, ordering and also
membership to a fixed tree language. Constrained equational axioms between cons-
tructor terms are supported and can be used in order to specify complex data struc-
tures like sets, sorted lists, trees and powerlists. Membership constraints permit
in particular to express problems of verification of trace properties for systems and
communication protocols.

We have shown (see Theorem 1 and Theorem 2 in [Bouhoula and Jacquemard
2007]) that our inference system is sound and allows to refute false conjectures,
even if the axioms are not complete and not ground confluent.

A restricted version of this method has been implemented in the prover SPIKE and
allows to check inductive joinability for non-confluent and unconstrained conditional
specifications with free constructors.

Definition 5.4. A term (T, Γ) is non-ambiguous if for all rules P ⇒ L→ R and
P ′ ⇒ L′ → R′ in R such that T = Lσ = L′σ′, the formula Pσ∧P ′σ′ ⇒ Rσ = R′σ′

is a joinable-inductive theorem of R 3

Let R be the following rewriting system:

f(x) → 0

f(x) → g(x)

g(0) → 0

g(x) = 0⇒ g(s(x)) → 0

f(x) is non-ambiguous since there are only two rules in R whose left-hand sides
match f(x) and g(x) = 0 is a joinable-inductive theorem.

In Fig. 1, the pattern (odd(x), {x : Nat}) is non-ambiguous, since

even(x) = True ∧ even(s(x)) = True⇒ True = False

is a joinable-inductive theorem. If we reformulate the rule x + 0→ x as x + 0→ 0,
then the pattern (s(0)+0, ∅) will be ambiguous since s(0+0) = 0 is not a joinable-
inductive theorem.

Definition 5.5. If the left-hand side L of a rule P ⇒ L→ R unifies, via a most
general unifier σ, with a non-variable subterm S at position u in a left-hand side
L′ of a rule P ′ ⇒ L′ → R′, then the conditional equation

Pσ ∧ P ′σ ⇒ L′σ[Rσ]u = R′σ

is called a critical pair of the two rules, where L′σ[Rσ]u is obtained by replacing S

in L′ by R and applying σ.
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Let R and R′ be two rewrite systems, we denote by CP(R,R′) the set of critical
pairs between a rule in R and a rule in R′.

A critical pair P ⇒ L = R is trivial if L is identical to R. 3

The conditional equation even(x+ x) = True⇒ False = False is a critical pair
of the rules (15) and (21). This critical pair is trivial.

6. SPECIFICATIONS WITH FREE CONSTRUCTORS

Our procedure for checking the completeness and ground confluence of R is pre-
sented in Fig. 3 as a set of inference rules operating on (P , MP, AP , UR, NP),
where P is a set of patterns labelling the leaves of the tree constructed so far,MP
is its set of strongly irreducible (i.e., not strongly reducible) leaves, AP is its set
of ambiguous leaves, UR is the set of rules in R whose left-hand sides match the
leaves of the tree, and NP is the set of patterns for which we still must compute
their pattern trees.

Success applies when the sets P ,MP , AP and NP are empty and all the rules
in R−UR are inductive theorems of UR. We can then conclude that R is complete
and ground confluent (see Theorem 6.2). Ground Confluence applies when the
sets P , AP and NP are empty and all the rules in R−UR are inductive theorems
of UR. We can then conclude that R is ground confluent (see Theorem 6.2).
Missing Patterns applies when the sets P and NP are empty, butMP is not. In
this case, R is not complete (see Theorem 6.2), the user is prompted to complete
the specification at the patterns in MP. Ambiguous Patterns applies when
the sets P and NP are empty, but AP is not. Then, R is not ground confluent
(see Theorem 6.2), the user is prompted to correct the specification to make the
patterns in AP non-ambiguous. Non-Valid Rules applies when the sets P ,MP ,
AP and NP are empty, but some rules in R− UR are not an inductive theorems
of UR. In this case, R is not ground confluent (see Theorem 6.2), the user is
prompted to correct the specification to make the rules in R − UR inductively
valid. Decompose Variable applies when a pattern (T [x], {x : s} ∪ Γ) has an
induction variable x. Then, it instantiates x by terms in a structural scheme of
s. Checking Leaf applies when a leaf (T, Γ) is found such that Decompose

Variable can not be applied. A strategy of efficient use of the inference system
CGC is given in Fig. 4. Of course, the following theorems are not depending on this
strategy. In the following, we say CGC succeeds if the rule Success applies.

The height of the pattern tree is bounded. This result is shown by the following
lemma:

Lemma 6.1. The pattern trees computed by the inference system CGC are finite.

Proof. Let f ∈ D, the set of rules in R which have the function symbol f at the
top is finite. This means that the set IndPos(f) is finite too. As a consequence the
set IndVar(T,R) decreases during the construction of the tree since consecutive
grafts in the same branch of the tree are made at deeper and deeper positions.
Consequently, the height of the pattern tree is bounded.

We can now address the soundness of our inference system:

Theorem 6.2 (Soundness). Let R be a reductive conditional rewriting system.
If CGC succeeds then R is complete and ground confluent. If the rule Ground
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Initialization:
(∅, ∅, ∅, ∅,

[

f∈D

{f(x)})

Checking New Function:
(∅, MP, AP , UR, NP ∪ {T})

({T}, MP, AP , UR, NP)

Decompose Variable:
(P ∪ {(T [x]p, {x : s} ∪ Γ)}, MP, AP , UR, NP)

(P ∪
[

i∈I

{T [Si]p}, MP, AP, UR, NP)

if x ∈ IndVar(T, R)

where {Si}i∈I is a structural scheme of s

Checking Leaf:
(P ∪ {T}, MP, AP , UR, NP)

(P, MP ∪MP ′, AP ∪ AP ′, UR∪ UR′, NP)

if IndVar(T, R) = ∅

where

8
>><

>>:

MP ′ = if T is strongly reducible then ∅ else {T}
AP ′ = if T is ambiguous then {T} else ∅
UR′ is the set of rules in R

whose left-hand sides matche T

Success:
(∅, ∅, ∅, UR, ∅)

R is complete and ground confluent

if UR |=Ind (R− UR)

Ground Confluence:
(∅, MP, ∅, UR, ∅)

R is ground confluent

if UR |=Ind (R− UR)

Missing Patterns:
(∅, MP, AP , UR, ∅)

MP
% R is not complete

ifMP 6= ∅

Ambiguous Patterns:
(∅, MP, AP , UR, ∅)

AP
% R is not ground confluent

if AP 6= ∅

Non-Valid Rules:
(∅, ∅, ∅, UR, ∅)

NVR
% R is not ground confluent

if NVR ⊆ (R− UR) and UR 6|=Ind NVR

Fig. 3. CGC: Rules for completeness and ground confluence of R
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CGC(P, MP, AP, UR, NP) =
begin

Initialisation;
while NP 6= ∅ do

Checking New Function;
while ∃T ∈ P such that IndVar(T,R) 6= ∅

do Decompose Variable enddo;
while P 6= ∅ do Checking Leaf enddo

enddo;
ifMP = ∅ and AP = ∅ and UR |=Ind (R− UR)

then R is complete and ground confluent
else

if AP = ∅ and UR |=Ind (R− UR)
then R is ground confluent
else

begin

ifMP 6= ∅ then R is not complete;
if (AP 6= ∅) or (MP = ∅ and AP = ∅ and UR 6|=Ind (R− UR))

then R is not ground confluent
end

end.

Fig. 4. A strategy of use of the inference system CGC

Confluence applies, then R is ground confluent. If the rule Missing Patterns

applies, then R is not complete. If one of the rules Ambiguous Patterns and
Non-Valid Rules applies, then R is not ground confluent.

Proof. The proof is given in the Appendix.

If the rewrite rules in R are unconditional then we have the following result:

Theorem 6.3. Let R be a reductive unconditional rewriting system. If all the
leaves of the pattern trees are strongly reducible, then R is complete.

Proof. Let us show that R is complete. Let T ∈ T (F) and T ′ be the normal
form of T with respect to R. If T ′ is a constructor term, we are done. Otherwise,
T ′ must contain a subterm T ′′ of the form g(T ) where g ∈ D and for all i ∈ [1..n],
Ti ∈ T (C). Since the leaves of the pattern trees exhaust all cases by construction,
this subterm must be an instance of a leaf S: Sσ = T ′′, where σ is a ground
substitution over T (C). Since the rewrite rules in R are unconditional, then S must
be strongly reducible by case (i) of Definition 5.2. It follows that S is reducible
and therefore T ′′ is also reducible. This contradicts the fact that T ′ is in normal
form.

Our inference system is also complete.

Theorem 6.4 (Completeness). Let R be a reductive conditional rewriting sys-
tem. Assume an oracle for deciding (joinable) inductive conjectures. If R is com-
plete and ground confluent, then CGC will succeed.

Proof. If R is complete and ground confluent, then after the application of
the rule Initialization and the saturation of the application of the rules Check-
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S,P

ε εε

0

P SNeg Zero PosSP

Int

Fig. 5. A normal form automaton

ing New Function, Decompose Variable and Checking Leaf we must ob-
tain MP = ∅ (otherwise, by Theorem 6.2, we conclude that R is not complete),
AP = ∅ (otherwise, by Theorem 6.2, we conclude that R is not ground confluent)
and UR |=Ind (R − UR) (otherwise, by Theorem 6.2, we conclude that R is not
ground confluent). Hence Success applies.

7. SPECIFICATIONS WITH NON-FREE CONSTRUCTORS

Our procedure for checking completeness and ground confluence uses a notion of
completeness of the specification of constructors.

7.1 Complete Specifications of Constructors

Constructor symbols may be free for some sorts, and completely defined in all other
cases. For example, s is free on Zero ∪ Pos and defined on Neg.

Definition 7.1. A constructor c is free at sort s if c(x) is ground irreducible in
the environment {x : s}.

A constructor c is defined at sort s if c(x) is ground reducible in the environment
{x : s}.

A constructor c is complete at sort s if there exists a cover sort S of s such that
c is free at all sorts in some subset of S and defined at all sorts in its complement.

A specification of constructors is complete if each constructor is complete. 3

We can easily transform a given specification of constructors into a complete
one provided that the rewrite rules for constructors are unconditional and left-
linear (see [Bouhoula and Jouannaud 2001]). We start first by computing the tree
automaton recognizing the set of irreducible ground terms (see for example the
tree automaton given in Fig. 5 which recognizes the set of irreducible ground terms
of the specification given in Fig. 2). Then, we transform each ε-transition into a
subsort relation, and we transform each transition between sorts into a signature
declaration (see Fig. 6).
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specification: INTEGERS
sorts: Zero, Pos, Neg, Int, Bool;
subsorts: Zero, Neg, Pos < Int;
constructors:

0 : → Int;
0 : → Zero;
s : Int → Int;
s : Zero → Pos;
s : Pos → Pos;
p : Int → Int;
p : Zero → Neg;
p : Neg → Neg;
True : → Bool;
False : → Bool;
axioms:

x: Int ⇒ p(s(x)) → x;
x: Int ⇒ s(p(x)) → x;

Fig. 6. A complete specification of constructors

7.2 Inference Rules

Now, we will define a new inference system CGC′ from CGC by adding the rules Non-

Valid Critical Pairs and Decompose Sort, and reformulating the rules Check-

ing Leaf, Success, Ground Confluence and Non-Valid Rules (see Fig. 7).
Decompose Sort applies when a pattern (T, {x : s}∪Γ) is not strongly reducible

and has a variable ranging over a non-free sort. Non-Valid Critical Pairs applies
when the sets P , AP and NP are empty, but some critical pairs between a rule in
UR and a rule in RC are not joinable-inductive theorems of UR∪RC . In this case,
the user is prompted to correct the specification to make these critical pairs valid.
A strategy of use of the inference system CGC′ is given in Fig. 8.

We can now address the soundness of our inference system CGC′:

Theorem 7.2 (Soundness). Let (C,RC) be a complete specification of con-
structors and R be a reductive conditional rewriting system. Assume that RC is
ground confluent 3. If the rule Success applies, then R is complete and ground
confluent. If the rule Ground Confluence applies, then R is ground confluent.
If the rule Missing Patterns applies, then R is not complete. If one of the rules
Ambiguous Patterns, Non-Valid Rules or Non-Valid Critical Pairs applies,
then R is not ground confluent.

Proof. To show that R is ground confluent, it is sufficient to show that UR∪RC

is ground confluent since the rules in RD−UR are inductive theorems of UR∪RC .
Since AP is empty (i.e., all the leaves of the pattern trees are non-ambiguous and
do not contain any induction variable and the sorts of the variables in the leaves
are free) and all the rules in UR are of the form P ⇒ f(T )→ R where f ∈ D and
Ti ∈ T (C,X ) for each Ti ∈ T , then all critical pairs between rules in UR are trivial

3We will show in Section 7.3 that we can avoid the test of the ground confluence of RC .
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Decompose Sort:
(P ∪ {(T [x], {x : s} ∪ Γ)}, MP, AP, UR, NP)

(P ∪
[

i∈I

{(T [x], {x : si} ∪ Γ)}, MP, AP, UR, NP)

if s is non-free

where {si}i∈I is a cover sort of s

Checking Leaf:
(P ∪ {

T ′

z }| {

(T, {x1 : s1, . . . , xn : sn})}, MP, AP, UR, NP)

(P, MP ∪MP′, AP ∪AP ′, UR ∪ UR′, NP)

if


IndVar(T ′, R) = ∅
s1, . . . , sn are free

where

8
>><

>>:

MP ′ = if T ′ is strongly reducible then ∅ else {T ′}
AP ′ = if T ′ is ambiguous then {T ′} else ∅
UR′ is the set of rules in R

whose left-hand sides matche T ′

Success:
(∅, ∅, ∅, UR, ∅)

R is complete and ground confluent

if


UR ∪RC |=Ind (RD − UR)
CP(UR,RC) are inductively joinable w.r.t. UR ∪RC

Ground Confluence:
(∅, MP, ∅, UR, ∅)

R is ground confluent

if


UR ∪RC |=Ind (RD − UR)
CP(UR,RC) are inductively joinable w.r.t. UR ∪RC

Non-Valid Rules:
(∅, ∅, ∅, UR, ∅)

NVR

if NVR ⊆ (RD − UR) and UR∪RC 6|=Ind NVR

Non-Valid Critical Pairs:
(∅, MP, ∅, UR, ∅)

CP(UR,RC)

if CP(UR,RC) are not inductively joinable w.r.t. UR ∪RC

Fig. 7. CGC′: Rules for completeness and ground confluence of R

or joinable-inductive theorems. On the other hand, all critical pairs between a rule
in UR and a rule in RC are joinable-inductive theorems of UR∪RC . Therefore, we
conclude that UR is ground confluent since RC is ground confluent by assumption.

The remainder of the proof is similar to the proof of Theorem 6.2.

The inference system CGC′ is also complete.

Theorem 7.3 (Completeness). Let R be a reductive conditional rewriting sys-
tem. Assume an oracle for deciding (joinable) inductive conjectures. If R is com-
plete and ground confluent, then CGC′ will succeed.

Proof. The proof is similar to the proof of Theorem 6.4.
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CGC′(P, MP, AP, UR, NP) =
begin

Initialisation;
while NP 6= ∅ do

Checking New Function;
while ∃(T, {x : s} ∪ Γ) ∈ P such that (x is an induction variable) or (s is non-free)

do

if x is an induction variable then Decompose Variable;
if s is non-free then Decompose Sort

enddo;
while P 6= ∅ do Checking Leaf enddo

enddo;
% We assume that RC is ground confluent
CP ← CP(UR,RC);
ifMP = ∅ and AP = ∅ and UR ∪RC |=Ind (RD − UR)

and CP are inductively-joinable w.r.t. UR∪RC

then R is complete and ground confluent
else

if AP = ∅ and UR∪RC |=Ind (RD − UR)
and CP are inductively-joinable w.r.t. UR ∪RC

then R is ground confluent
else

begin

ifMP 6= ∅ then R is not complete;
if (AP 6= ∅) or (CP are not inductively joinable w.r.t. UR∪RC) or

(MP = ∅ and AP = ∅ and CP are inductively-joinable w.r.t. UR ∪RC

and UR ∪RC 6|=Ind (RD − UR))
then R is not ground confluent

end

end.

Fig. 8. A strategy of use of the inference system CGC′

Example 7.4. Let SP be the specification obtained by adding to the specification
given in Fig. 2, the complete specification of constructors given in Fig. 6. Let us
prove that SP is complete and ground confluent. We start by the computation of
pattern trees of defined functions −, +, ∗, < (see for example the pattern tree
of < given in Fig. 9). All the leaves of the trees are strongly reducible and non-
ambiguous. On the other hand, rules j, n, o and p are inductive theorems w.r.t.
UR = R − {j, n, o, p}, and we can easily check that all critical pairs between a
rule in UR and a rule in RC are joinable-inductive theorems of UR∪RC . Then, by
Theorem 7.2, we conclude that R is complete and ground confluent. Note that the
patterns (0 < p(z), {z : Neg}) and (0 < s(z), {z : Pos}) are strongly reducible since
we have R |=Ind z : Neg ⇒ 0 < z = False and R |=Ind z : Pos⇒ 0 < z = True.

7.3 How to Avoid the Computation of Critical Pairs

In order to check ground confluence with the inference system CGC′, we must com-
pute all critical pairs between a rule in UR and a rule in RC . The number of
generated critical pairs is very small in practice. However, we can avoid the com-
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(x < y, {x : Int, y : Int})

(x < y, {x : Neg, y : Int})

/|\
······

OK

(x < y, {x : Zero, y : Int})

(0 < y, {y : Int})

(0 < y, {y : Neg})

(0 < P (0), ∅)

OK

(0 < P (z), {z : Neg})

OK

(0 < y, {y : Zero})

OK

(0 < y, {y : Pos})

(0 < S(0), ∅)

OK

(0 < S(z), {z : Pos})

OK

(x < y, {x : Pos, y : Int})

/|\
······

OK

Fig. 9. The pattern tree of <

putation of critical pairs as well as the test of the ground confluence of RC , by
transforming the specification with non-free constructors into an order-sorted spec-
ification where every function symbol is either a free constructor or a completely
defined function. Indeed, in Section 7.1, we have transformed the automaton which
describes the set of ground terms in normal form into new subsort relations and
signature declarations, but we have not modified the axioms.

Now, we will also transform the axioms, as in [Comon 1989], by considering the
new subsorts. See for example the specification 4 given in Fig. 10 which is obtained
from the specification given in Fig. 2 (we will simply specify the functions −, +, ∗).
Now, we can apply the inference system CGC to the obtained specification, and we
conclude that the new specification is complete and ground confluent.

8. PARAMETERIZED SPECIFICATIONS

Parameterization is very important for building up larger data types and software
systems from generic specifications in a highly reusable way.

Definition 8.1. A parameterized specification is a pair PS = (P ,B) with P ⊆ B.
We call P = (FP , EP) the parameter specification, and B = (FB, EB) the body
specification, where EP is the set of parameter constraints consisting of equational
clauses over FP , and EB−EP is the set of axioms of the parameterized specification.
We assume that the axioms in EB − EP are reductive rewrite rules over FB. 3

An actualization of the parameter theory EP is a model A of EP . In order to
be able to integrate an actualization A of the parameter theory into the rewrite
process, we describe A by its so-called diagram [Ehrig and Mahr 1985]. For this
reason we enrich the signatures by adding new constants a for each element a of the
carrier set A of A. Let N (A) be the set of new constants and let F(A) = F∪N (A).
The diagram D(A) of A is the set of rules f(a1, . . . , an) → a such that f ∈ FP ;
ai, a ∈ A and fA(a1, . . . , an) = a. We denote by EB(A) the set EB ∪ D(A).

4When the sort of a variable is not mentioned, it must be understood that it has the greatest sort
of its connected component.
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specification: INTEGERS
sorts: Zero, Pos, Neg, Int;
subsorts: Zero, Neg, Pos < Int;
constructors:

0′ : → Zero;
s′ : Zero → Pos;
s′ : Pos → Pos;
p′ : Zero → Neg;
p′ : Neg → Neg;
defined functions:

0 : → Int;
s : Int → Int;
p : Int → Int;
− : Int → Int;

+ : Int Int → Int;
∗ : Int Int → Int;

axioms:

0 → 0′;

x:Zero ⇒ p(x) → p′(x);
x:Neg ⇒ p(x) → p′(x);
x:Zero ⇒ p(s′(x)) → x;
x:Pos ⇒ p(s′(x)) → x;
x:Zero ⇒ s(x) → s′(x);
x:Pos ⇒ s(x) → s′(x);
x:Zero ⇒ s(p′(x)) → x;
x:Neg ⇒ s(p′(x)) → x;
- 0′ → 0′;
x:Zero ⇒ - s′(x) → p(- x);
x:Pos ⇒ - s′(x) → p(- x);
x:Zero ⇒ - p′(x) → s(- x);
x:Neg ⇒ - p′(x) → s(- x);
0′+x → x;
x+0′ → x;
x:Zero ⇒ s′(x)+y → s(x+y);
x:Pos ⇒ s′(x)+y → s(x+y);
x:Zero ⇒ p′(x)+y → p(x+y);
x:Neg ⇒ p′(x)+y → p(x+y);
0′ ∗ x → 0;
x:Zero ⇒ s′(x) ∗ y → (x ∗ y) + y;
x:Pos ⇒ s′(x) ∗ y → (x ∗ y) + y;
x:Zero ⇒ p′(x) ∗ y → (x ∗ y) + (-y);
x:Neg ⇒ p′(x) ∗ y → (x ∗ y) + (-y);
s(p(x)) → x;
p(s(x)) → x;
s(x)+y → s(x+y);
p(x)+y → p(x+y);
(x+y)+z → x+(y+z);

Fig. 10. A new specification of Integers
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parameter specification: TOSET
sorts Elem, Bool;
functions:

True : → Bool;
False : → Bool;
< : Elem Elem → Bool;

constraints:

True = False ⇒;
x < x = False;
x < y = True ∨ x < y = False;
x < y = False ∨ y < x = False;
x < y = False ∨ y < z = False ∨ x < z = True;
end

Fig. 11. The parameter specification TOSET

specification: SORTING[T::TOSET]
sorts List;
constructors:

Nil : → List;
cons : Elem List → List;
defined functions:

insert : Elem List → List;
isort : List → List;
sorted : List → Bool;
axioms:

insert(x,Nil) → Cons(x,Nil);
y < x=False ⇒ insert(x,Cons(y,z)) → Cons(x,Cons(y,z));
y < x=True ⇒ insert(x,Cons(y,z)) → Cons(y,insert(x,z));
isort(Nil) → Nil ;
isort(Cons(x,l)) → insert(x,isort(l));
sorted(Nil) → True;
sorted(Cons(x,Nil)) → True;
y < x=True ⇒ sorted(Cons(x,Cons(y,z))) → False;
y < x=False ⇒ sorted(Cons(x,Cons(y,z))) → sorted(Cons(y,z));
sorted(insert(x,y)) → sorted(y);
sorted(isort(x)) → True;
end

Fig. 12. The parameterized specification SORTING

Example 8.2. Fig. 11 and Fig. 12 give an example of a parameterized specifica-
tion. Note that the constraint ’True = False ⇒’ is semantically equivalent to the
inequality ’True 6= False’. To prove the termination of EB − EP , we can use the
lexicographic path ordering ≺ (see for instance [Dershowitz 1987]) with the following
precedence on functions:

False ≺ True ≺ < ≺ Nil ≺ Cons ≺ sorted ≺ insert ≺ isort

We can easily check that the specification NAT (resp. INTEGERS) given in Fig. 1
(resp. Fig. 2) is an instance of the parameter specification TOSET, since all the
parameter constraints given in Fig. 11 are inductive theorems of the specification
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NAT (resp. INTEGERS).

Definition 8.3. Let PS = (P ,B) be a parameterized specification. Assume that
FB−FP is partitioned into two disjoint sets FD∪FC , with FC the set of constructor
symbols, and FD the set of defined symbols. We say that PS is complete iff each
defined symbol f ∈ FB −FC is completely defined.

A function symbol f ∈ FB − FC is completely defined iff for each model A of EP
and each term T of the form f(T1, . . . , Tn) where for all 1 ≤ i ≤ n, Ti ∈ T (FC(A)),
there exists T ′ ∈ T (FC(A)) such that f(T1, . . . , Tn)→+

(EB−EP)∪D(A) T ′. 3

Definition 8.4. Let PS = (P ,B) be a parameterized specification. We say that
PS is ground confluent iff for each model A of EP and for each ground terms
U, V, W ∈ T (F(A)):
if V

(EB−EP )∪D(A)

∗←− U −→∗
(EB−EP )∪D(A)

W , then V ↓(EB−EP)∪D(A) W . 3

The inference system CGC′ can be easily adapted, as expected, to allow us to
check the completeness and the ground confluence of (EB − EP)∪D(A) for every
model A of EP .

First of all, we need sufficient conditions to guarantee the well-foundedness of
→(EB−EP)∪D(A). Let us first introduce the following notions. To distinguish between
the rewrite steps that result from the system EB − EP and those resulting from

D(A) we write EB−EP
(EB−EP)∪D(A) (resp. D(A)

(EB−EP)∪D(A)) to indicate
that the rule inducing the rewrite step is an element from EB − EP (resp. D(A)).

The following lemma which can be easily proved is fundamental in order to prove
that the rewrite relation →(EB−EP)∪D(A) is terminating for every model A of EP .

Lemma 8.5. Assume that EB−EP is left-linear 5, reductive and no symbol from
FP occurs on the left-hand side of any rewrite rule from EB−EP . Let T ∈ T (F(A)),
if there exists T ′ and T ′′ such that

T
D(A)

(EB−EP)∪D(A) T ′ EB−EP
(EB−EP)∪D(A) T ′′

then there exists T ′′′ such that

T EB−EP
(EB−EP)∪D(A) T ′′′ D(A)

∗

(EB−EP)∪D(A) T ′′

As a consequence of the interchangeability lemma we get the well-foundedness of
→(EB−EP)∪D(A).

Theorem 8.6. If EB−EP is left-linear, reductive and no symbol from FP occurs
on the left-hand side of any rewrite rule from EB − EP , then the rewrite relation
→(EB−EP)∪D(A) is terminating for every algebra A in AlgΩP ,EP .

We can now address the soundness of our inference system:

Theorem 8.7 (Soundness). Let PS = (P ,B) be a parameterized specification.
Assume that EB −EP is left-linear, reductive and no symbol from FP occurs on the
left-hand side of any rewrite rule from EB−EP . If CGC′ succeeds then PS is complete
and ground confluent. If the rule Ground Confluence applies, then PS is ground
confluent. If the rule Missing Patterns applies, then PS is not complete. If one

5If EB − EP is not left-linear, then we can consider the linearized version of EB − EP .
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of the rules Ambiguous Patterns, Non-Valid Rules or Non-Valid Critical

Pairs applies, then PS is not ground confluent.

Proof. Let A be a model of EP . Since no symbol from FP occurs on the left-
hand side of any rule from EB − EP , then no critical pair between a rewrite rule
from EB−EP and a rewrite rule from D(A) can exist for any model A of EP . Now,
by Theorem 8.6, we deduce that →(EB−EP)∪D(A) is terminating and therefore by
following the same reasoning used in the proof of Theorem 6.2, we conclude that
(EB − EP)∪D(A) is ground confluent and complete.

The remainder of the proof is similar to the proof of Theorem 6.2.

The inference system CGC′ is also complete for parameterized specifications.

Theorem 8.8 (Completeness). Let PS = (P ,B) be a parameterized specifi-
cation. Assume that EB−EP is left-linear, reductive and no symbol from FP occurs
on the left-hand side of any rewrite rule from EB−EP . Assume further an oracle for
deciding (joinable) inductive conjectures. If PS is complete and ground confluent,
then CGC′ will succeed.

Proof. The proof is similar to the proof of Theorem 6.4.

Pattern tree of +:

x1 + x2

0 + x2

0 + 0 -Ok-

0 + s(x1) -Ok-

s(x3) + x2

s(x3) + 0 -Ok-

s(x3) + s(x1) -Ok-

--Press Enter to go on.--

Pattern tree of *:

x1 * x2

0 * x2

0 * 0 -Ok-

0 * s(x1) -Ok-

s(x3) * x2

s(x3) * 0 -Ok-

s(x3) * s(x1) -Ok-

--Press Enter to go on.--

Fig. 13. Proving the Completeness and the Ground Confluence of Nat
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Pattern tree of <:

x1 < x2

0 < x2

0 < 0 -Ok-

0 < s(x1) -Ok-

s(x3) < x2

s(x3) < 0 -Ok-

s(x3) < s(x1) -Ok-

--Press Enter to go on.--

Pattern tree of even:

even(x1)

even(0) -Ok-

even(s(x2))

even(s(0)) -Ok-

even(s(s(x1))) -Ok-

--Press Enter to go on.--

Pattern tree of odd:

odd(x1)

odd(0) -Ok-

odd(s(0)) -Ok-

odd(s(s(x1))) -Ok-

False if even(s(s(x1)))=True

True if even(s(s(s(x1))))=True

--Press Enter to go on.--

(1) All the leaves of the trees are strongly reducible and non-ambiguous.

(2) The following rules are proved

to be inductively valid w.r.t the remainder of the axioms:

(x1 + x2) + x3 = x1 + (x2 + x3) ;

even(x1 + x1) = True ;

even(s(x1 + x1)) = False ;

even(x1 + (x2 + x2)) = even(x1) ;

odd(s(s(x1))) = odd(x1) ;

odd(x1 + x1) = False ;

odd(s(x1 + x1)) = True ;

odd(x1) = True, odd(x2) = True => odd(x1 + x2) = False ;

even(x1) = True, even(x2) = True => even(x1 + x2) = True ;

odd(x1) = True, odd(x2) = False => odd(x1 + x2) = True ;

even(x1) = True, even(x2) = False => even(x1 + x2) = False ;

even(x1 * s(s(x2))) = even(x1 * x2) ;

even(x1) = True => even(x1 * x2) = True ;

odd(x1) = True, odd(x2) = True => even(x1 * x2) = False

From (1) and (2) it follows that the axioms are complete and ground confluent.

Fig. 14. Proving the Completeness and the Ground Confluence of Nat (Cont.)
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even(x1 + (x2 + (x1 + x2))) = True

even(x1 + (x2 + (x3 + (x1 + (x2 + x3))))) = True

even(x1 + (x2 + (x3 + (x4 + (x2 + (x3 + (x4 + x1))))))) = True

...
even(x1 + (x2 + (x3 + (x2 + x3)))) = even(x1)
even(x1 + (x2 + (x3 + (x4 + (x2 + (x3 + x4)))))) = even(x1)
even(x1 + (x2 + (x3 + (x4 + (x5 + (x2 + (x3 + (x4 + x5)))))))) = even(x1)

...
even(s(x1)) = True⇒ even(s((x1 ∗ s(s(x2))) + x2)) = False

even(s(x1)) = True⇒ even(x1 ∗ s(x2 + (x3 + (x2 + x3)))) = False

even(s(x1)) = True⇒ even((x1 ∗ s(x2 + (x3 + x3))) + x2) = False

..

.
even(s(x1)) = True⇒ odd(x1 + (x2 + (x3 + (x2 + x3)))) = True

even(s(x1)) = True⇒ odd(x1 + (x2 + (x3 + (x4 + (x3 + (x4 + x2)))))) = True

even(s(x1)) = True⇒ odd(x1 + (x2 + (x3 + (x4 + (x5 + (x2 + (x3 + (x4 + x5)))))))) = True

...

Fig. 15. Divergence of the Completion procedure

9. IMPLEMENTATION AND COMPUTER EXPERIMENTS

We have implemented our new technique in the SPIKE system. The program is
able to check both completeness and ground confluence for parameterized and non-
parameterized conditional specifications with free constructors.

The program starts by computing a pattern tree for every defined symbol, and
identifies a set of rules that we must check for validity. The leaves of the tree
give a partition of the possible arguments for defined functions. If all the leaves
are strongly reducible and non-ambiguous, and if the identified rules are induc-
tively valid, then we conclude that the given specification is complete and ground
confluent.

The root of a pattern tree is displayed first, and each level of the tree is indented to
ease the reading. There are two kinds of leaves: leaves which are strongly reducible
by case (i), and leaves which are strongly reducible by case (ii) (see Definition 5.2).
For the last case, we display for each leaf l: l[r1σ1]u1 if p1σ1, . . . , l[rnσn]un if pnσn

where ∀i ∈ [1..n] : pi ⇒ li → ri ∈ R and l|ui = liσi. With each leaf comes a
comment indicating whether it is strongly reducible and non-ambiguous.

Example 9.1. Fig. 13 and Fig. 14 show the transcript of a session with SPIKE
for proving the completeness6 and the ground confluence of the specification given
in Fig. 1.

Using completion techniques, we obtain an infinite set of critical pairs (see Fig. 15).
This example cannot be checked by the methods of [Göbel 1987; Becker 1993],

since they are designed for non-conditional specifications.
To prove the ground confluence of R using the methods of [Kounalis and Rusi-

nowitch 1991; Becker 1996], we need to compute more than 120 critical pairs ! In

6Note that odd(s(s(x))) is also strongly reducible by the rule (20).
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Pattern tree of insert:

insert(x1,x2)

insert(x1,Nil) -Ok-

insert(x1,Cons(x3,x4)) -Ok-

Cons(x1,Cons(x3,x4)) if x3 < x1=False

Cons(x3,insert(x1,x4)) if x3 < x1=True

--Press Enter to go on.--

Pattern tree of isort:

isort(x1)

isort(Nil) -Ok-

isort(Cons(x2,x3)) -Ok-

--Press Enter to go on.--

Pattern tree of sorted:

sorted(x1)

sorted(Nil) -Ok-

sorted(Cons(x2,x3))

sorted(Cons(x2,Nil)) -Ok-

sorted(Cons(x2,Cons(x1,x4))) -Ok-

False if x1 < x2=True

sorted(Cons(x1,x4)) if x1 < x2=False

--Press Enter to go on.--

(1) All the leaves of the trees are strongly reducible and non-ambiguous.

(2) The following rules are proved

to be inductively valid w.r.t the remainder of the axioms:

sorted(insert(x1,x2)) = sorted(x2) ;

sorted(isort(x1)) = True

From (1) and (2) it follows that the axioms are complete and ground confluent.

Fig. 16. Proving the Completeness and the Ground Confluence of SORTING

addition, the validity test of most critical pairs fails or it is very hard to achieve.
For example, the critical pair 7 between rules (7) and (27):

(30) even(s(x1) ∗ x2) = even((x1 ∗ s2(x2)) + s2(x2))

is not valid w.r.t. the sufficient criterion 8 for ground confluence given in [Kounalis
and Rusinowitch 1991]:

Indeed, let us consider the instance of equation (30) by the test set substitution

7In order to simplify notations we write sn(x) instead of s(. . . s
| {z }

n times

(x) . . .)

8Let C be a critical pair between two rules in R, then each instance of C by a test substitution
must be joinable by R∪ {C}.
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Pattern tree of insert:

insert(x1,x2)

insert(x1,Nil) -strongly irreducible and non-ambiguous-

insert(x1,Cons(x3,x4)) -strongly irreducible and non-ambiguous-

Cons(x3,insert(x1,x4)) if x3 < x1=True

--Press Enter to go on.--

If you add the following right-hand sides, I will be able to prove completeness:

insert(x1,Nil) -> ...

x3 < x1 = False => insert(x1,Cons(x3,x4)) -> ...

Do you want to add new rules <y/n> ? : y

A new rule: insert(x1,Nil) -> Cons(x1,Nil)

Other rule <y/n> ? : y

A new rule: x3 < x1 = False => insert(x1,Cons(x3,x4)) -> Cons(x1,Cons(x3,x4))

Other rule <y/n> ? : n

Pattern tree of insert:

insert(x1,x2)

insert(x1,Nil) -Ok-

insert(x1,Cons(x3,x4)) -Ok-

Cons(x3,insert(x1,x4)) if x3 < x1=True

Cons(x1,Cons(x3,x4)) if x3 < x1=False

--Press Enter to go on.--

...

(1) All the leaves of the trees are strongly reducible and non-ambiguous.

(2) The following rules are proved

to be inductively valid w.r.t the remainder of the axioms:

sorted(insert(x1,x2)) = sorted(x2) ;

sorted(isort(x1)) = True ;

From (1) and (2) it follows that the axioms are complete and ground confluent.

Fig. 17. Interaction with the user in order to recover a Complete Specification

{x1 7→ s3(x′
1), x2 7→ s3(x′

2)}:

(31) even(s4(x′
1) ∗ s3(x′

2)) = even((s3(x′
1) ∗ s5(x′

2)) + s5(x′
2))

The term even(s4(x′
1) ∗ s3(x′

2)) is simplified by the axiom (7) into even((s3(x′
1) ∗

s3(x′
2)) + s3(x′

2)). We obtain:

(32) even((s3(x′
1) ∗ s3(x′

2)) + s3(x′
2)) = even((s3(x′

1) ∗ s5(x′
2)) + s5(x′

2))

(32) is not joinable by R∪ {(30)} and therefore we fail to check the validity of the
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Pattern tree of insert:

insert(x1,x2)

insert(x1,Nil) -Ok-

insert(x1,Cons(x3,x4)) -strongly reducible and ambiguous-

Cons(x1,Cons(x3,x4)) if x3 < x1=False

Cons(x3,Cons(x1,x4)) if x3 < x1=False

Cons(x3,insert(x1,x4)) if x3 < x1=True

--Press Enter to go on.--

Pattern tree of isort:

isort(x1)

isort(Nil) -Ok-

isort(Cons(x2,x3)) -Ok-

--Press Enter to go on.--

Pattern tree of sorted:

sorted(x1)

sorted(Nil) -Ok-

sorted(Cons(x2,x3))

sorted(Cons(x2,Nil)) -Ok-

sorted(Cons(x2,Cons(x1,x4))) -strongly reducible and ambiguous-

False if x1 < x2=True

sorted(Cons(x2,x4)) if x1 < x2=True

sorted(Cons(x1,x4)) if x1 < x2=False

--Press Enter to go on.--

(1) All the leaves of the trees are strongly reducible.

(2) The following patterns are ambiguous:

insert(x1,Cons(x3,x4)) ;

sorted(Cons(x2,Cons(x1,x4)))

Please correct the specification to make this patterns non-ambiguous.

From (2) it follows that the axioms are not ground confluent.

Fig. 18. Detection of Ambiguous Patterns

critical pair (30) with the method of [Kounalis and Rusinowitch 1991].

Example 9.2. Fig. 16 shows the transcript of a session with SPIKE for proving
the completeness and the ground confluence of the parameterized specification given
in Fig. 11 and Fig. 12. Note that this example cannot be checked by the methods
of [Göbel 1987; Becker 1993; Kounalis and Rusinowitch 1991; Becker 1996], since
they are designed for non-parameterized specifications.

If the specification is not complete, then our program will output the set of
patterns on whose ground instances a function f ∈ D is not defined.
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Example 9.3. Let us remove the two first axioms from Fig. 12. Then, insert is
not completely defined. In Fig. 17, we describe a session with SPIKE to give an idea
about the interaction with the user in order to recover a complete specification.

With SPIKE, it is easy to detect ambiguous patterns 9.

Example 9.4. Let us add the following rules:

y < x = False => insert(x,Cons(y,z)) = Cons(y,Cons(x,z))

y < x = True => sorted(Cons(x,Cons(y,z))) = sorted(Cons(x,z))

to the specification given in Fig. 12. Then the patterns insert(x1,Cons(x3,x4))

and sorted(Cons(x2,Cons(x1,x4))) are ambiguous. Therefore, the axioms are not
ground confluent (see Fig. 18).

With our system, it is also easy to detect the rules that break ground confluence.

...

(1) All the leaves of the trees are strongly reducible and non-ambiguous.

(2) At least one of the following rules is proved

to be not inductively valid w.r.t the remainder of the axioms:

sorted(x1) = False => sorted(insert(x2,x1)) = True ;

sorted(insert(x1,x2)) = sorted(x2) ;

sorted(isort(x1)) = True

From (1) and (2) it follows that the axioms are not ground confluent.

Fig. 19. Detection of the rules that break Ground Confluence

Example 9.5. Let us add the rule:

(r) sorted(y) = False => sorted(insert(x,y)) = True

to the specification given in Fig. 12. Then, all the leaves of the trees are strongly
reducible and non-ambiguous and the rule (r) is not an inductive conjecture 10

w.r.t. the remainder of the axioms. Therefore the axioms are not ground confluent
(see Fig. 19).

9Our inference system for checking joinable-inductive conjectures allows to refute false conjectures,
even if the axioms are not complete and not ground confluent (see Theorem 2 in [Bouhoula and
Jacquemard 2007]).
10All the leaves of the trees are non-ambiguous. It follows from Theorem 6.2 that the axioms whose
left-hand sides match the leaves of the trees are ground confluent. This property is necessary for
the refutation of false inductive conjectures (see [Bouhoula and Rusinowitch 1995]).
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10. CONCLUSION

We have presented a new procedure for simultaneously checking completeness and
ground confluence for specifications with free/non-free constructors and parameter-
ized specifications. As opposed to previous works for checking ground confluence,
our procedure does not rely on completion techniques and does not require the com-
putation of critical pairs of the axioms. Our technique has been implemented in
the prover SPIKE. Our system offers two main components: (i) a completeness and
ground confluence analyser that compute pattern trees of defined functions and may
generate some proof obligations; and (ii) a procedure to prove (joinable) inductive
conjectures which is used to discharge those proof obligations. Computer experi-
ments show that our method is more practical than related approaches. Indeed,
as shown in Example 9.1, our procedure allows us to check the ground confluence
of specifications where the classical completion techniques generate an infinite set
of critical pairs. Moreover, our proof of the ground confluence of the specification
given in Fig. 1 is completely automatic and does not require the computation of
critical pairs. However, the methods of [Göbel 1987; Kounalis and Rusinowitch
1991; Becker 1993; 1996] need to compute more than 120 critical pairs ! In addition,
the validity test of most critical pairs fail or it is very hard to achieve.

We plan to extend our technique to membership equational theories [Bouhoula
et al. 2000] as well as Associative/Commutative (AC) theories. The extension of
related approaches for AC theories can be very inefficient since they are based on
the computation of critical pairs, and therefore they need to compute the minimal
complete set of AC-unifiers that has a double-exponential cardinality in the worst
case [Kapur and Narendran 1992]. Unlike these approaches, our method should be
also efficient for AC theories since it does not use unification, but matching only.
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APPENDIX

Proof of Theorem 6.2

(i) Let us prove that if CGC succeeds then R is complete and ground confluent.
To show that R is ground confluent, it is sufficient to show that UR is ground
confluent since the rules in R− UR are inductive theorems of UR. Since AP
is empty (i.e., all the leaves of the pattern trees are non-ambiguous and do
not contain any induction variable) and all the rules in UR are of the form
P ⇒ f(T )→ R where f ∈ D and Ti ∈ T (C,X ) for each Ti ∈ T , then all critical
pairs between rules in UR are trivial or joinable-inductive theorems. Therefore,
we conclude that UR is ground confluent.
Now, let us show that R is complete. Let T ∈ T (F) and T ′ be the normal form
of T with respect to R. If T ′ is a constructor term, we are done.
Otherwise, T ′ must contain a subterm T ′′ of the form g(T ) where g ∈ D and
for all i ∈ [1..n], Ti ∈ T (C). Since the leaves of the pattern trees exhaust all
cases by construction, this subterm must be an instance of a leaf S: Sσ = T ′′,
where σ is a ground substitution over T (C).
Since S must be strongly reducible, there exists a non-empty sequence of con-
ditional rules in R: P1 ⇒ L1 → R1, . . ., Pn ⇒ Ln → Rn and a sequence of
positions u1, u2, . . . , un in S such that S|u1 = T1σ1, S|u2 = T2σ2, . . . , S|un =
Tnσn and P1σ1 ∨ P2σ2 ∨ . . . ∨ Pnσn is an inductive theorem of R.
Then, there exists k such that R |= Pkσk. Since R is ground confluent and
the rewrite relation→R is terminating, all equalities in Pkσk can be proved by
normalization, and therefore the rule Pk ⇒ Lk → Rk can be applied to simplify
T ′′. This contradicts the fact that T ′ is in normal form.

(ii) If the rule Ground Confluence applies, then by following the same reasoning
as in (i), we conclude that R is ground confluent.

(iii) If the rule Missing Patterns applies, then there exists a pattern T of the
form (f(T ), Γ) where f ∈ D and Ti ∈ T (C,X ) for every Ti ∈ T , such that T is
not strongly reducible and IndVar(T,R) = ∅.
Assume that f(T ) is not matched by any left-hand side of an axiom in R.
Let f(T )τ be a ground instance of f(T ) such that τ is built upon constructor
symbols. Since IndVar(T,R) = ∅, then f(T )τ is not matched by any left-hand
side of an axiom in R. So f(T )τ is irreducible at the root. On the other hand,
f(T )τ cannot be reduced to a non-root position, since the constructors are free.
Therefore we conclude that R is not complete.
Otherwise, f(T ) is matched by the left-hand sides of n linearized rules LR =
{Pi ⇒ Li → Ri}i∈[1..n] but the formula P1σ1 ∨ . . . ∨ Pnσn is not an inductive
theorem of R. Then, there exists a ground and irreducible substitution τ such
that R 6|= P1σ1τ ∨ . . .∨Pnσnτ . Let us show that f(T )τ is irreducible by R. The
term f(T )τ is irreducible at the root since R 6|= P1σ1τ ∨ . . . ∨ Pnσnτ . Assume
otherwise, that there exists a linearized rule in R − LR with left-hand side L

that applies to f(T )τ and f(T )τ = Lλ for a substitution λ. Note that every
non variable position of L is a non variable position of f(T ) since f(T ) does
not contain any induction variable. In particular f(T ) is not an instance of
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L. Since L is linear we can define a substitution by ρ(x) = f(T )|w for every
variable x that occurs at some position w of L. We have then f(T ) = Lρ, in
contradiction with the assumption that LR contains all the rules whose left-
hand sides match f(T ) . On the other hand, f(T )τ cannot be reduced to a
nonroot position, since the constructors are free. Therefore we conclude that
R is not complete.

(iv) Assume that the rule Ambiguous Patterns applies, then there exists a pat-
tern T of the form (f(T ), Γ) where f ∈ D and Ti ∈ T (C,X ) for every Ti ∈ T ,
such that T is ambiguous and IndVar(T,R) = ∅. Then there exist two rules
U = V ⇒ L → R and U ′ = V ′ ⇒ L′ → R′ in R such that f(T ) = Lσ = L′σ′,
and the formula Uσ = V σ ∧ U ′σ′ = V ′σ′ ⇒ Rσ = R′σ′ is not a joinable-
inductive theorem of R. Hence, there exists a ground substitution τ such
that: Uστ ↓R V στ , U ′σ′τ ↓R V ′σ′τ and Rστ 6↓R R′σ′τ . Then, we have
R′σ′τ ∗

R←− f(T )τ −→∗
R Rστ but Rστ 6↓R R′σ′τ . We conclude that R is not

ground confluent.

(v) Assume that the rule Non-Valid Rules applies, thenMP and AP are empty,
therefore UR is complete and ground confluent as shown in (i). On the other
hand, there exists a rule U = V ⇒ L → R in R − UR which is not an
inductive theorem of UR. Hence, there exists a ground substitution τ such
that: UR |= Uτ = V τ and Lτ 6↓UR Rτ . Since UR is ground confluent and the
rewrite relation −→UR is terminating, all equalities in Uτ = V τ can be proved
by normalization, and therefore the rule U = V ⇒ L → R can be applied to
simplify Lτ into Rτ . Now, let L′ (resp., R′) be the normal form of Lτ (resp.,
Rτ) via UR. Then, we have L′ ∗

UR←− Lτ −→
UR∪{U=V ⇒L→R}

Rτ −→∗
UR R′.

Since UR is complete, L′ and R′ are two constructor terms. On the other hand,
the constructors are free in R and Lτ 6↓UR Rτ . Hence, L′ 6↓R R′ and therefore,
R is not ground confluent.
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