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Abstract 

Objective. Muscle activation patterns in the muscle-to-force null space may provide an opportunity 
for motor augmentation by allowing to control additional end-effectors simultaneously to natural 
limbs. Here we tested the feasibility of muscular null space control for augmentation by assessing 
simultaneous control of natural and extra degrees of freedom (DoFs). Approach. We instructed eight 
participants to control translation and rotation of a virtual 3D end-effector by simultaneous generation of 
isometric force at the hand and null space activity extracted in real-time from the electromyographic signals 
recorded from 15 shoulder and arm muscles. First, we identified the null space components that each 
participant could control more naturally by voluntary co-contraction. Then, participants performed 
several blocks of a reaching and holding task. They displaced an ellipsoidal cursor to reach one of nine targets 
by generating force, and simultaneously rotated the cursor to match the target orientation by activating null 
space components. We developed a information-theoretic metric, inspired by Fitts’ law, to assess individual 
null space control ability. We introduced an index of difficulty (ID) as the sum of a spatial ID for target 
reaching and a temporal ID for target holding. Main Results. On average, participants could reach the targets 
in most trials already in the first block (72%) and they improved with practice (93% in the final block) but 
holding performance remained lower (43% in the final block). Remarkably, there was a high inter-
individual variability in performance, and the ID computed in a simulation with different spatial and 
temporal task conditions allowed to estimate those for which each individual participants could perform best. 
Significance. Muscular null space control is feasible and may be used to control additional virtual or robotics 
end-effectors. However, decoding of motor commands must be optimized according to individual null space 
control ability. 

Keywords: electromyography, muscle-to-force null space, human augmentation, myoelectric control, virtual reality, reaching, 
Fitts' law 

1. Introduction

Electromyographic (EMG) signals have been used for many 
years to control upper and lower limb prostheses [1–6], 

rehabilitation robotic devices [7–11], and virtual end-effectors 
[12–15]. Myoelectric control of a prosthetic limb by an 
amputee, as a replacement of the missing limb, relies either on 
the detection of movement intention by EMG pattern 
recognition [16,17] or on the direct control of one or multiple 
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degrees of freedom using EMG signals recorded from many 
different muscles [4,18,19]. EMG signals have long been used 
for the control of robotic devices such as exoskeletons [20]. 
Differently from prostheses, exoskeletons can assist both able-
bodied and disabled people, enhancing existing abilities [21] 
or substituting missing ones [22], and can be used for 
rehabilitation after orthopedic or neurological injuries [23–
25]. Myoelectric control is also a powerful tool to investigate 
basic principles of human motor control [12–14]. By using 
EMG signals to control a cursor in a virtual environment, it is 
possible to alter the mapping between motor commands and 
end-effector motion and to study how the central nervous 
system adapts to such perturbations. For example, a linear 
mapping of EMG signals onto isometric end-point forces 
applied to a simulated mass can be altered (“virtual surgery”) 
such that new muscle synergies are required to compensate the 
perturbation [12]. Thus, to date, myoelectric control has been 
used mostly either to control an external device or to assist the 
movement of a natural limb. 

Myoelectric control, however, could also be used to control 
an external device concurrently with the motion of the natural 
limbs, possibly augmenting human motor capabilities. At the 
basis of augmentation lies the concept of motor task null 
space. Due to the redundancy of the musculoskeletal and 
neural systems, i.e. the presence of a higher number of active 
units (muscles and neurons) than the end-effector degrees of 
freedom involved in a task, many combinations of joint 
angles, muscle patterns and neural signals do not generate 
task-relevant movements or forces [26]. Such combinations 
lie in the kinematic, muscular and neural null space 
respectively. A few different approaches for augmentation 
based on these concepts have been recently investigated. Abdi 
and collaborators [27] developed three-handed manipulation 
in a virtual environment, using the motion of a foot to control 
the third hand in a simple task rather than muscle activity. 
Similarly, a third robotic thumb controlled using a toe [28] and 
a sixth finger controlled through kinematic null space of upper 
limbs [29,30] have been developed and tested. Salvietti and 
collaborators [31] also demonstrated that it is possible to 
control a supernumerary robotic finger using EMG signals 
from frontalis muscles,  while Parietti and Asada [32] 
controlled an extra robotic leg using EMG signals from torso 
muscles. In most cases, however, kinematic or muscular 
signals used for controlling additional DoFs have been 
recorded from body parts not directly involved in the task 
performed concurrently with the DoFs of the natural limbs. In 
many real-life conditions, however, such body parts may be 
involved in the task and thus may not be available to control 
extra DoFs. Finally, concerning neural null space, a non-
invasive brain-machine interface has been used to control a 
third arm for multitasking [33], but not all participants were 
able to achieve multitasking. 

Here we propose a novel approach to motor augmentation 
based on the concept of task-intrinsic muscular null space. 
Musclular null space is the vector space of all muscle 
activation patterns that do not generate net joint torques. It 
includes, for example, the co-contraction of two antagonistic 
muscles, which counterbalance the effect of each other. In 
many real-life motor tasks, muscular null space is associated 
to the control of end-effector impedance, especially in 
presence of unstable interactions with the environment [34–
36]. Thus, muscular null space has been successfully used for 
tele-impedance application, i.e. the control of the impedance 
of robotic devices through human impedance [37,38]. 
However, muscular null space can also be used to control extra 
DoFs. A recent study has demonstrated that muscular null 
space can be controlled voluntarily to modulate the stiffness 
of a virtual end-effector during the generation of 
multidirectional isometric forces [39]. Takagi and 
collaborators [40] have also recently shown that it is possible 
to regulate cocontraction of two antagonist muscles to control 
the vertical position of a 2D cursor while simulaneously 
controlling the horizontal position with reciprocal activation. 
More recently, Bräcklein and collaborators [41] have 
successfully tested an approach in which beta band activity in 
the neural drive to the tibialis anterior muscle, which does not 
directly affect the force generated by the muscle, was 
modulated to control a cursor in a 2D environment. However, 
no study to date has investigated the possibility of using null 
space signals extracted from many muscles to directly control 
extra DoFs while simultaneously performing a task in 3D 
environment involving multiple DoFs controlled by the same 
muscles (i.e. using the “task-intrinsic” null space), thus 
augmenting human motor abilities. This approach differs both 
from the use of task-extrinsic null space, i.e. from body part 
not directly involved in the task, and from tele-impedance 
control. 

In this study, we aimed at testing the feasibility of task-
intrinsic muscular null space control for motor augmentation 
by assessing the performance of participants in the 
simultaneous control of natural and extra DoFs. Moreover, we 
aimed at assessing whether and how fast null space control 
ability improves with practice. We designed an experimental 
protocol in which participants had to displace a cursor in a 3D 
virtual environment to reach 8 targets by generating isometric 
force and simultaneously to control an extra degree of 
freedom, i.e. the rotation around one axis of the cursor, which 
had a ellipsoidal shape, through null space activation in arm 
and/or shoulder muscles. Moreover, participants were 
instructed to hold the cursor at the target for a given time 
interval. Thus, our protocol required the simultaneous control 
of natural and extra DoFs to perform both a spatial and a 
temporal task. 

To quantify subjects’ performances and to understand how 
the task could be optimized to match individual control ability, 
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we used a novel index of difficulty (ID), an information-
theoretic metric inspired by Fitts’ law. Although Fitts’ law 
general validity has been frequently questioned in the past, 
Gori and collaborators [42] have proposed an information-
theoretic model of the human motor system for pointing tasks, 
where the ID is the information about the selection of a target 
transmitted through a noisy channel. To date, many researches 
in human motor control have used measured derived from the 
Fitts’ law to evaluate performance in different tasks [43–45]. 
However, the possibility of considering the time as a “target” 
itself, i.e. the application of the Fitts’ law to temporal control, 
has been rarely studied [46]. To address this issue, we 
introduced an ID defined as the sum of a spatial term, related 
to difficulty in selecting a target by reaching it (i.e. quantifying 
spatial control ability), and a temporal term, releated to the 
difficulty in holding the target for a given time interval (i.e. 
quantifying temporal control ability). 

2. Materials and Methods

2.1 Participants 

Eight naïve right-handed participants (mean ± SD age: 27.5 
± 7.8 years, age range: 20–45, 2 females) participated in the 
experiments after giving written informed consent. All 
procedures have been conducted in accordance with the 
principles embodied in the Declaration of Helsinki, comply 
with national regulations, and have been approved by the local 
ethics committee. All participants had normal or corrected to 
normal vision and did not report any known neurological 
disorder or upper right limb injuries. 

2.2 Setup 

The setup used for this work is similar to that used in 
previous studies [12,39,47]. Participants sat on a gaming chair 
in front of a desktop (Fig. 1A), with the right hand inserted in 
an orthosis rigidly connected to a 6-axis force transducer 
(Delta F/T Sensor, ATI Industrial Automation, Apex, NC, 
USA). Arm and forearm formed a 90° angle, and the chair was 
positioned so that the hand was at level of the solar plexus. Car 
belts immobilized the participant’s torso and shoulders. 
Shutter glasses (GeForce 3D Vision 2, NVIDIA Corporation, 
Santa Clara, CA, USA), allowed to view stereoscopically a 
three-dimensional scene displayed on a horizontal mirror, 
placed over the participant’s hand, reflecting the image 
visualized at 120 Hz (60 Hz for each eye) on a monitor. The 
scene included a virtual desktop and a cursor (spherical or 
ellipsoidal) whose position matched the position of the center 
of the palm when no force was exerted. Real-time feedback of 
the exerted force was provided as the displacement of the 
cursor. Cursor motion in three-dimensional space was 
simulated as an adaptive mass-spring-damper system, subject 
to the force applied by the participant on the orthosis. The 
spring constant was set such that the force applied to maintain 

the cursor stationary at the target was equal to a specific 
fraction of the magnitude of the participant’s maximum 
voluntary force (MVF, see below). The mass was adjusted 
adaptively in the range 15–140 g as a sigmoidal function of 
the rate of change in the magnitude of the recorded force, to 
maintain fast responses to changes in force while reducing the 
effect of noise with stationary force [12]. 

Surface EMG activity was recorded from fifteen muscles 
acting on the shoulder and elbow: brachioradialis (BracRad), 
biceps brachii long heads (BicLong) and short head 
(BicShort), pectoralis major (PectMaj), anterior deltoid 
(DeltA), middle deltoid (DeltM), posterior deltoid (DeltP), 
triceps brachii lateral head (TriLat) and long head (TriLong), 
infraspinatus (InfraSp), teres major (TerMaj), latissimus dorsi 
(LatDorsi), lower trapezius (TrapLow), middle trapezius 
(TrapMid), and upper trapezius (TrapSup). The signal was 
acquired at 1000 Hz with active wireless bipolar surface 
electrodes (Trigno System, Delsys Inc., Natick, MA, USA), 
bandpass filtered (20 – 450 Hz), and amplified with a 1000 
gain. Participants’ skin, in correspondence to the target 
muscles, was cleansed with alcohol and electrodes were 
placed based on recommendations from SENIAM [48] and by 
palpating muscles to locate the muscle belly and orienting the 
electrodes along the main direction of the muscle fibers. 

Experiment control, data acquisition, and data analysis 
were performed with custom-written software in MATLAB® 
(MathWorks Inc., Natick, MA) and Java®. 

2.3 Experimental protocol 

After an initial familiarization with the experimental setup, 
participants performed 18 blocks with different task 
conditions. In the first block (MVF estimation), they were 
instructed to exert their MVF directed towards their chest on 
the horizontal plane (-y, with y away from the chest along the 
anteroposterior axis). The maximum of the force recorded in 
this block was used to normalize target distance in the 
following blocks. 

In the second block (force control, FC), participants were 
instructed to move, both accurately and quickly, a spherical 
cursor from the rest position to a target (Fig. 1B), located in 
one of twenty spatial positions around the rest positions, by 
applying isometric forces on the orthoses. At the beginning of 
each trial (rest phase) participants were asked to relax their 
right arm muscles to maintain the cursor inside a transparent 
sphere at the centre of the scene, i.e. the rest position, for 1 s. 
Then, a transparent sphere appeared in one of the twenty target 
positions (target go event), placed on the vertices of a 
dodecahedron inscribed into a sphere, centred in the rest 
position, and whose radius was either 15% or 25% the MVF. 
Participants were asked to reach the target and remain within 
the target sphere (see Fig. 1A), whose radius exceeded that of 
the cursor by 2% the MVF, for 0.5 s (holding phase). When 
the cursor was within the target tolerance, the target changed 
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color (from gray to yellow). Each target was presented three 
times, such that each participant performed a total of 120 trials 
(20 targets × 2 radii × 3 repetitions). The time limit for trial 
completion was of 4 s. EMG and force data collected from the 
target go event until the first time the cursor entered the target 
(dynamic phase) were used to estimate a subject-specific 
matrix that approximates the mapping of EMG activations 
onto isometric force (see below EMG-to-force matrix) and its 
null space. The maximum amplitude of each EMG signal 
(low-pass filtered with second-order Butterworth; 1 Hz cutoff) 
collected during the same phase was used to normalize EMGs 
during the rest of the experiment. After this block, there was a 
5 min pause to process the data. 

In the third block (null space modulation, NSM), 
participants performed a cursor stabilization task that required 
voluntarily modulation of muscular co-contraction. The EMG 
data collected in this condition was used to estimate the null 
space patterns that each participant generated more naturally. 
Participants had to maintain the cursor inside a target placed 
at the rest position, whose radius exceeded that of the cursor 
by 6% of the MVF, for 1 s while a simulated sinusoidal force 
perturbed the motion of the cursor [39]. To reduce this 
oscillation, participants were instructed to co-contract their 
right arm and shoulder muscles. The time limit for trial 
completion was 15 s, with 5 s of pause between trials. As for 
the FC block, visual feedback of the cursor being within target 
tolerance was provided by changing the color of the target. 
EMG data collected during the holding phase were used to 
calculate the null space directions to be used for the control 
the extra degree of freedom (see “Extra Degree of Freedom 
control” section). 

In the fourth block (isometric reaching with ellipsoidal 
force control, EFC), participants performed an isometric 
reaching task with an ellipsoidal, rather than spherical as in 

the FC block, cursor and targets. There were eight targets (3 
repetitions), placed on the x-y plane at 20% of MVF from the 
origin, with a tolerance of 2% of MVF, and equally distributed 
with a 45° angular distance one from the other (0° = +x 
direction, with x mediolateral axis pointing to the right). This 
block provided a baseline reference for the following 12 
blocks. 

In blocks 5th to 16th (null space control, NSC), participants 
were instructed to both translate and rotate the ellipsoidal 
cursor (around the intermediate axis of the ellipsoid which was 
rotated such that it was parallel to the longitudinal axis of the 
forearm) to match the position and orientation of the target 
(Fig. 1C). Translation was achieved by exerting force and 
rotation by generating muscle patterns with a component 
aligned to specific null space directions, selected using the 
data collected in the NSM block according to the procedure 
described below (section “Extra Degree of Freedom control”). 
Each block was composed of three repetition of trials with 
nine targets (Fig. 1D) in different x-y positions – the same 
eight as in the EFC block plus one in the rest position – and 
with the same orientation corresponding to a 60° rotation of 
the ellipsoidal cursor from the rest orientation and a tolerance 
of 7.2° (4% of 180°). The target orientation  could be achieved 
with a null space activation norm of 20% of the maximum 
norm recorded during NSM block (“maximum voluntary co-
contraction”, MVCC). The translation tolerance was also of 
4% of MVF. Participants were instructed to hold the cursor at 
the target for 1 s. In this case, the target changed color only 
when the cursor was within spatial and angular tolerances 
simultaneously. The nine targets were presented in a pseudo-
random sequence (cycle). The time limit for trial completion 
was of 4 s. At the end of each cycle, the score for that cycle 
was visualized. 

Figure 1. Experimental setup and protocol. (A) Experimental setup: a 3D virtual scene is projected stereoscopically on an 
horizontal mirror occuding participant’s hand, which is attached through an orthoisis at a force fransducer (below the 
desktop, not visible); wireless sensors are used to collect EMG activity from shoulder and arm muscles. (B) Illustration of 
the task during force control blocks (the blue cursor moves in the direction of the arrow). (C) Illustration of the task during 
null space control blocks (the dashed line represent the rotation axis). (D) Target arrangement. (E) Experimental protocol 
schematic (MVF = maximum voluntary force, FC = force control, NSM = null space modulation, EFC = ellipsoidal force 
control, NSC = null space control). 
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Finally, the 17th block was a null space control block 
without visual feedback (hidden NSC) and the 18th block an 
additional EFC block. A schematic of the experimental 
protocol is presented in Fig. 1E. 

2.3.1 EMG-to-force mapping 
Isometric generation of submaximal force allowed to use a 

linear approximation of the relation between the shoulder and 
elbow muscles activations and the force exterted at the hand: 

𝒇 = 𝑯𝒎, 

where f is the tridimensional force vector, m is the 15-
dimesional muscle activation vector, and H is the EMG-to-
force matrix that maps muscles activations onto force. The 
matrix H was estimated using multiple linear regressions of 
each force component, low-pass filtered (second-order 
Butterworth; 1 Hz cutoff), with EMG signals recorded during 
the dynamic phase of the first force control block, low-pass 
filtered (as the force) and normalized to the maximum EMG 
activity recorded during the force control block targets at 25% 
of the MVF distance. The matrix H was also used to compute 
the null space matrix N, i.e. an orthonormal basis spanning the 
subspace of vectors 𝒏 that are mapped by the H matrix onto 
the null force vector: 

0 = 𝑯𝒏. 

2.3.2 Extra Degree of Freedom control 
To characterize the subject-specific directions in the EMG 

null space to be used for the control of the extra DoF, each 
participant performed a NSM block. This procedure allowed 
to identify  the directions that each participant could control 
more naturally and the dimensionality of this subspace. We 
then selected the directions in the null space with the largest 
amplitude modulation during the NSM block and used the 
projection of the instantaneous muscle activity vector onto 
those directions as the signal to control the extra DoF. 

The ideal control variable for null space control should be 
as small as possible during generation of pure force and have 
the largest range during voluntary modulation of co-
contraction. We investigated three different null space control 
variables that could be suitable for our task. We tested them 
on the data previously collected in a task in which participants 
had to stabilize a cursor by null space activation [39]. Data 
were collected from eight participants performing five blocks: 
a force control block (baseline) and four additional blocks. Of 
these four blocks, the first was a NSM block similar to the one 
described above, while the other three blocks (force control 
with perturbation, that here we define “perturbation blocks”) 
required the participant to reach targets using force control and 
to reduce the oscillation of the cursor induced by a sinusoidal 
perturbing force by null space activation. In fact, the norm of 

the null space activation controlled the stiffness of a virtual 
spring determining the magnitude of the cursor oscillations. 
The intensity of the sinusoidal perturbation (and therefore of 
the magnitude of null space activation required to maintain the 
cursor within the target) increased from the first to the third 
block.  

We tested the following the null space control variables 
(labelled 𝑓 ): 

 the norm of the projection of the null space activation
vector 𝒏 = 𝑵 𝒎, onto the first 𝑛𝑐 principal components
that explain 80% of data variation in the NSM block after
subtraction of the mean vector of null space activation in
that block 𝒏𝒄𝒄:

𝑓 = ‖𝑽𝒄𝒄(: , 𝑛𝑐) [𝒏 − 𝒏𝒄𝒄]‖, 

where 𝑽𝒄𝒄(: , 𝑛𝑐)  represents the transpose of the first nc 
columns of the matrix of the principal components of the null 
space activation vectors collected in the NSM block; 

 the norm of the projection of the null space activation
vector 𝒏 onto the first 𝑛𝑐 principal components that
explain 80% of variance of NSM block after subtraction
of the mean vector of null space activation in baseline FC
block 𝒏𝒃𝒍, taken as a reference of residual, involuntary
null space activation:

𝑓 = ‖𝑽𝒄𝒄(: , 𝑛𝑐) [𝒏 − 𝒏𝒃𝒍]‖; 

 the norm of the projection of the null space activation
vector 𝒏 onto the mean null space activation vector in
baseline FC block 𝒏𝒃𝒍:

𝑓 = ‖𝒏𝒃𝒍 𝒏‖. 

After calculating all the projection matrices required for 
computing the three control variables, we assessed the mean 
value of each variable across the force control block and all 
the three perturbation blocks for each subject. The different 
control variables were compared using one-way ANOVA (see 
“Statistical Analysis” for details). Also the difference between 
the mean value of each variable across all the three 
perturbation blocks and the force control mean value was 
computed to find the method with the largest activation range. 

In the NSM block, the perturbation was generated as a 
sinusoidal force (with different frequencies along different 
axes) acting on a mass attached to a position (controlled by 
force) through a spring with an elastic constant that was 
adjusted in real time according to the norm of the null space 
activation vector through a logistic function [39]: 
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𝑘(𝑛) =
𝑘

𝑒 (‖𝒏‖ ‖𝒏𝟎‖) + 1
, 

Where ‖𝒏‖ is the norm of the null space activation vector, 
𝑘 = 9500 𝑁/𝑚  is the spring constant, 𝑟  is a variation 
rate parameter, and ‖𝒏𝟎‖ is the value of the null space norm 

such that 𝑘(𝑛) = . The value of ‖𝑛 ‖ was set equal to 2.5 

times the minimum norm (‖𝒏𝒎𝒊𝒏‖) of the mean null space 
activation during the static phases of FC block, while 𝑟  was 
calculated using the formula: 

𝑟 =  − log

𝑘
𝑦 − 1

𝑥 − 1
, 

Where (𝑥 , 𝑦 ) = (‖𝒏𝒎𝒊𝒏‖, 500). 

Mean-subtracted holding phase data were used for 
computing the principal components. We obtained a 𝑽𝒄𝒄 
matrix of dimensions 12 x 12 whose columns were the 
principal components of the data. The null space was 12-
dimensional because the muscle space was 15-dimensional 
and the task space 3-dimensional. Then, we selected the first 
nc components that explained 80% of the total variation of the 
data (mean value of components ± SD among participants: 2.1 
± 0.8, range 1-3). 

Many different functions can be used for mapping the null 
space control variable onto the control signal for the extra 
DoF. We chose a logistic function, as the one used in the null 
space modulation block, because it is positive defined, and 
participants could then reach the rest position simply by 
relaxing their muscles. Moreover, it has a smooth and continue 
derivative, so that there is no need for thresholding, as it would 
have been necessary for example with a linear function. 

Therefore, the control law that mapped null space 
activation onto cursor rotation angle was defined as: 

𝜃(𝑓 ) =
,

, (3) 

where 𝜃 is the angle of rotation, 𝜃  is the maximum 
angle of rotation, set to 145°, 𝑟 is the variation rate, 𝑓  is the 
control variable and 𝑓 ,  is the value of the control value for 

which 𝜃(𝑓 ) = . 

The value of 𝑓 ,  was computed using 𝑛 equal to 25% of 
the MVCC. The 𝑟  value was calculated using the formula: 

𝑟 =  − log

𝜃
𝑦 − 1

𝑥 − 1
, 

where (𝑥 , 𝑦 ) = (𝑓 (𝒏𝒎𝒊𝒏), 0.1°). 

2.4 Data Analysis 

All collected data were visually inspected and trials in 
which EMG artefacts were detected were discarded. The 
discarded trials were 13.1 ± 7.6 (mean ± SD over participants) 
over a total of 536 trials performed by each participant. Trials 
in the NSC blocks with the target in the central position (i.e. 
requiring onlu cursor rotation) were not included in the 
analysis. 

2.4.1 Task performance 
Task performance was evaluated both as the fraction of trial 

per block in which participants reached the target (reaching 
success rate), and as the fraction of trial per block in which 
participants held the cursor in the target for the required time 
(holding success rate). 

Mean holding time and mean angular error per block were 
also calculated. In each trial, holding time was defined as the 
longest time interval in which the cursor remained inside the 
target (maximum value 1 s, the required holding time). The 
angular error was defined as the mean of the absolute value 
of the difference of the cursor rotation angle and the target 
rotation angle over the interval in which the cursor positional 
error in space was under the threshold of 6% of MVF. 

2.4.2 Velocity peaks and movement strategies 
Two different velocities of the cursor were calculated: the 

tangential velocity of the cursor spatial position (therefore 
related to the force), and the angular velocity of the cursor 
rotation angle (therefore related to the muscle null space 
activation). 

The two velocities were computed numerically for each 
trial, after applying a 2nd order Butterworth filter (3 Hz low-
pass cutoff frequency) to the cursor position (measured as a 
fraction of MVF) and to the cursor rotation angle. The 
movement onset was defined as the first sample after the end 
of the rest phase (i.e. when the target appeared on the screen) 
at which the cursor velocity was higher than a threshold equal 
to three times the mean velocity recorded in the 0.5 s before 
the ‘target go’ event, which is generally equal to zero due to 
the participant being at rest, but could be greater than zero due 
to oscillations or noise. The peak velocity was defined as the 
first maximum after the movement onset. 

Movement onset and velocity peaks were analyzed to 
assess if different participants used different movement 
strategies. For example, if a participant displaced the cursor 
first and then rotated it (using muscle null space activation), 
or vice versa, or if they moved and rotated the cursor 
simultaneously, or if there was no specific relation between 
the two movement components. 

2.4.3 Performance analysis 
In addition to success rates, we used information theory to 

assess individual control ability. We considered the 
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information about the instructed target and time interval that 
is transmitted by each participants when performing a 
reaching and holding movement. To generalize the assessment 
of individual ability beyond the performance achieved by each 
participant with the specific parameters of the experimental 
protocol (e.g. the target size or the required holding time) we 
estimated, through a simulation, the information that would 
have been transmitted with different target sizes and holding 
times. 

The information transmitted accomplishing a reaching task 
may be quantified by an index of difficulty, as introduced by 
Fitts [49]. The Fitts’ law states that movement time 𝑀𝑇 in a 
reaching task is linearly related to an index of difficulty 𝐼𝐷: 

𝑀𝑇 = 𝑎 ∙ 𝐼𝐷 + 𝑏. 

The Fitts’ ID, for a target of width W and distance D from 
the origin, in the Shannon-MacKenzie formulation [50], is 
equal to: 

𝐼𝐷 = 𝑙𝑜𝑔
𝐷

𝑊
+ 1 .

While Fitts’ law validity has been questioned because of its 
unclear theoretical foundations [51,52], Gori and 
collaborators [42] derived this law with a simple model of the 
human performance of an aiming task as a communication 
process. In this model, the source of the message is the target 
the individual intends to reach (“aiming is choosing”). In the 
original formulation of Fitts, aiming at a target of width 𝑊 at 
distance 𝐷 is equivalent to selecting one of 𝑛 linearly arranged 
targets of width 𝑊 such that 𝐷 = 𝑛𝑊 (Fig. 2A). If the targets 
can be selected with the same probability, the entropy of the 
target distribution, i.e. the entropy of the source, is equal to the 
ID. The message is then sent through a noisy channel, 
representing the execution of the reaching movement with 
physiological noise in the neural and the musculoskeletal 
systems. If the noise results in a distribution of the arrival 
position with an amplitude less than 𝑊 2⁄ , aiming at the center 
of the target allows to always hit the selected target and thus 
transmitting the message without error. Then, the ID 
quantifies the information that can be transmitted in an aiming 
task with negligible error rate, equal to the source entropy for 
errorless transmission. Apart from its theoretical framework, 
Fitts’ law has been shown to be a robust empirical relation 
between movement time and the spatial parameters of a task 
as long as no temporal constraints are set, or if these 
constraints are relaxed in such a way that they do not influence 
too much the task itself [53–55]. 

Since in our task subjects were required to reach the spatial 
location (xyz coordinates) of the target and to align the cursor 
to the target orientation, we can define two distinct indices of 
difficulty for each one of the two components of the reaching 

movements (translation and rotation). For the 3D 
displacement of the cursor position, considering that the 
tolerance is always the same for the three axis, a displacement 
ID can be defined as: 

𝐼𝐷 = 𝑙𝑜𝑔
𝐷

𝑊
+ 1 = 𝑙𝑜𝑔

𝐷

2𝑅
+ 1 ,

where 𝐷 is the target distance in % of MVF, and 𝑅 is the 
target radius also in % of MVF. 

Recent research has shown a dependence of the movement 
time on the target angle for 2D and 3D tasks [56,57]. 
According to our data, the dependence resembles a linear 
combination of a sine term and a cosine term. Therefore, a 
better definition of the ID is: 

𝐼𝐷 = 𝑙𝑜𝑔
𝐷

2𝑅
+ 1 + 𝑐 ∙ sin(𝛼) + 𝑑 ∙ cos(𝛼),

where 𝛼 is the direction angle of the target on the x-y plane. 
The two coefficient c and d were calculated by fitting 
movement times vs 𝐼𝐷  in the two EFC control blocks. 

For the cursor rotation, a rotation ID can be defined as: 

𝐼𝐷 = 𝑙𝑜𝑔
𝐷

𝑊
+ 1 = 𝑙𝑜𝑔

𝜃

2∆𝜃
+ 1 ,

where 𝜃 is the rotation angle and ∆𝜃 is the rotation angle 
tolerance (Fig. 2B). The total spatial ID can then be defined 
as the sum of the displacement and rotation indices: 

𝐼𝐷 = 𝐼𝐷 + 𝐼𝐷 . 

The application of this ID formulation to our experimental 
protocol raises three issues. First, Fitts’ law has been 
formulated for an aiming task in which the participant is not 
required to hold the end-effector at the target location for a 
specific time interval, but rather to simply hit the target. 
However, when considering the control an end-effector with 
myoelectic signals, it may be necessary to provide also a 
temporal command in addition to a spatial one. Being 
myoelectric control typically noisier than the natural limb 
control, it would be then useful to quantify also the target 
holding performance. Second, the Fitts’ law does not consider 
the actual error rate in the reaching task, assuming that it is 
low enough to be neglected. This second issue has been 
addressed by estimating an effective target width for which the 
error rate is below a given small (but arbitrary) threshold 
[45,58,59]. However, individual ability in aiming at a target 
can be rigorously quantified using a communication model 
with transmission errors [42]. Third, to properly assess the 
individual ability to control the position and orientation of the 
cursor, we should have used targets of different size and 
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different holding time requirements. Indeed, speed-accuracy 
trade-off functions derived by systematically varying the 
required accuracy have been used to assess individual skill in 
manual tasks [60,61]. However, an additional factor in our 
experimental design would have required a large number of 
trials making the assessment too long and fatiguing. We 
therefore opted for an approximate but faster assessment of the 
dependence of the individual cursor control ability on the 
specific task parameters by simulating off-line the 
performance that would have been achieved with different 
parameters.   

Concerning the first issue, we followed the model of a 
communication system to derive also a temporal ID. Making 
a parallel with the spatial case, in which we have n targets of 
width 𝑊 in a length 𝐷, we can consider a time interval of 
duration 𝑇, which can be divided in 𝑛 consecutive temporal 
targets of duration ∆𝑡. In this way, in addition to selecting a 
spatial target by reaching it, it is possible to select one of the 
temporal targets by holding at the spatial target until the 
specific time is elapsed. In addition to considering that 
“aiming is choosing” (Fig. 2A and B) [42], which means that 
an individual can choose one target from a set of many by 
aiming at it, we consider that “waiting is choosing” (Fig. 2C), 
which means that an individual can choose a “temporal target” 
from a set of many by waiting for a given time interval before 
moving. Following this reasoning, an expression for a 
temporal index of difficulty can be derived as: 

𝐼𝐷 = 𝑙𝑜𝑔
𝑇

∆𝑡
+ 1 ,

where 𝑇 is the duration of the considered time interval, 
while ∆𝑡 is the duration of the time sub-intervals, defining the 
required temporal accuracy. 

Concerning the second issue, it is possible to calculate the 
effective size of the target that would satisfy the assumption 
of negligible error rate (Welford 1968, 1960). Assuming the 
trial endpoint distribution to be normal, its entropy is equal to 

log 𝜎√2𝜋𝑒. The quantity √2𝜋𝑒 is equal to about 4.133, which 
means ~ ± 2𝜎, that is the 96% of the area of the distribution. 
Therefore, if success rate is equal to 96%, the effective width 
𝑊  of a target and its experimental width coincide. Otherwise, 
if the standard deviation of the endpoint distribution 𝜎  is 
known, the effective width can be calculated using the 
formula: 

𝑊 = 4.133𝜎 , 

while if it is not known, the formula using the error rate 𝜀 
can be applied: 

𝑊 =
𝑊

2.066

𝑧(1 − 𝜀 2⁄ )
 if 𝜀 > 0.0049%

𝑊 ∙ 0.5089  otherwise,

, 

where 𝑧 is the standard score of a distribution with mean = 
0 and SD = 1. 

Nevertheless, this approach has been criticized because it is 
based on questionable assumptions as the normal distribution 
of the endpoints and the coincidence that, with 4% of error 
rate, the information of a rectangular distribution of width 𝑊  
is equal to the one of a normal distribution [42]. 

Therefore, Gori and collaborators have proposed a new 
index of difficulty that takes into account the error rate. It can 
be derived using a compound channel with two states (a good 
state and a bad state), as the Shannon-MacKenzie ID 
multiplied by the success rate (1 − 𝜀): 

𝐼𝐷(𝜀) = (1 − 𝜀) ∙ 𝑙𝑜𝑔
𝐷

𝑊
+ 1 .

In our case, we considered the reaching error rate 𝜀  (or the 
success rate (1 − 𝜀 )) related to the identification of the target 
in space, i.e. to the spatial ID, while the holding error rate 𝜀  
(or the success rate (1 − 𝜀 )) to the identification of the time 
interval, i.e. to the temporal ID. Therefore, the corrected ID 
can be defined as: 

𝐼𝐷(𝜀 , 𝜀 ) = (1 − 𝜀 ) ∙ 𝐼𝐷 + (1 − 𝜀 ) ∙ 𝐼𝐷 . 

Concerning the third issue, in our experimental protocol we 
used only one target size (corresponding to a cursor translation 
accuracy of 4% MVF), one cursor rotation tolerance 
(corresponding to 4% of the MVCC). Moreover, the temporal 
accuracy required for the holding time (the ∆𝑡 parameter) was 
not explicitly defined: partipants were required to keep cursor 

Figure 2. Spatial and temporal ID definitions. Schematic 
representation of target patterns, according to the 
Shannon-MacKenzie formulation of the ID, for the three 
indices: (A) displacement, (B) rotation, and (C) time. 
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in position inside targets for a time 𝑇 = 1 𝑠. However, since 
we wanted to assess the individual ability in displacing and 
orienting the cursor and in holding the target regardless of 
specific task parameters, we used the  data collected in one 
condition to simulate the performance that participants would 
have achieved in different conditions. Thus, we computed the 
reaching performance with targets of different sizes (6% to 3 
% of MVF and corresponding % of MVCC, with a step of 
0.5%), and the performance for holding the target for the 
required time with differenent temporal tolerances (1 s ± 0.1 s 
to 1 s ± 0.9 s with a step of 0.1 s, and 1 s ± 0.999 s, this last 
being equivalent to just spatial reaching). 

As a first step, we estimated the mean movement time 
(defined as the time interval between the “target go” event and 
the end of the holding phase) from simulations with different 
target and holding time tolerances for each participant. Then, 
we linearly fitted movement times versus total ID to verify that 
a linear relation still holds when the temporal ID is added. 

Finally, an additional measure of performance that can be 
obtained from the Fitts’ law is the throughput, defined as the 
ratio between the ID and the movement time. The average 
movement times for each block and target were taken, and the 
mean across targets was computed. We then estimated the 
throughput considering only the reaching phase, because the 
holding phase has a fixed information rate. Whenever a target 
was not reached in a block, we set the throughput for that 
target to zero. 

2.4.4 Statistical Analysis 
Statistical analysis was performed using MATLAB. 

Anderson-Darling test (function adtest) was used to check the 
normality of the distribution of datasets from the simulation of 
the different extra DoF control laws. One-way ANOVA test 
(with multiple comparison with Tukey's honestly significant 
difference criterion as post-hoc) between datasets composed 
by the same control methods from all the participants was 
performed to investigate differences between control methods. 
Similarly, Kruskal-Wallis one-way ANOVA, after Anderson-
Darling test, was used to compare reaching and holding 
success rates, and the R2 of reconstruction of the three force 
control blocks (one FC and two EFC blocks). 

For the NSC blocks, the dependence of reaching and 
holding success on cycle and target was assessed by fitting a 
generalized linear mixed model (function fitglme), with the 
cycle (3 cycles per block) and target (8 peripheral targets) as 
fixed effects and participant as random effect. Similarly, the 
dependence of angular deviation and holding time, on cycle 
and target was assessed by fitting a linear mixed model 
(function fitlme). Additionally, a generalized linear model 
function fitglm) and a linear model (function fitlm) was fitted 
to the response variables for each participant separately. 

Pearson correlation coefficient between force and extra 
DoF peak velocity times was calculated to assess the 

correlation between the two velocity peak times across blocks, 
and Kruskal-Wallis one-way ANOVA, after Anderson-
Darling test, was used to evaluate differences between the 
dataset distributions. 

3. Results

3.1 Selection of null space control variables 

We performed a simulation on data collected during 
combined force and muscular null space activity generation 
[39] to select the variable to be used for the control of an extra
DoF. We calculated the mean values for three candidate
control variables, which differed for the null space
components of the projection of the muscle patterns selected
and for the mean muscle pattern used for subtraction. The
mean values were calculated during four blocks in which
participants generated only force (Force Control, Fig. 3) or
force combined with increasing levels of co-contraction
(Perturbation Blocks 1-3). After verifying the normality of the
distribution of the values of each control variable (p > 0.05,
Anderson-Darling test), we performed a one-way ANOVA on
the value of the control variable in each block with the method
used to compute the control variable as factor. It gave a p-
value < 0.05 for all blocks except the one with combined force
and co-contraction control with the lowest level of required
co-contraction (Perturbation 1 block). Post-hoc comparisons
revealed that, for pure force control, the first method, using the
projection onto the null space principal components
explaining 80% of NSM block data variance after subtracting
the mean NSM block activation vector, presented significantly
higher involuntary activation with respect to the other ones (p
< 0.001 for both comparisons), making it unsuitable for our
task. For Perturbation 1 block, there were no significant
differences between the methods (p = 0.33). However, with
higher levels of co-contraction (Perturbation 2 and 3 blocks)
the second method had a higher level of the control variable
with respect to the first (p = 0.03 and 0.02, respectively) but
not with respect to the third (p = 0.29 and 0.19, respectively).
Nonetheless, the one-way ANOVA performed on the
activation differences between perturbation blocks and force
control block, with control variable as factor, showed a
significant effect of control variable type for all block (p <
0.001 for all blocks), with post-hoc comparisons revealing
higher activation ranges for the second method (p < 0.05 for
all blocks). According to these results, the second method,
using the projection onto the principal components extracted
during NSM block after subtracting the baseline mean null
space activation vector, was selected as the best choice to
control the extra DoF.

3.2 Force control performance 
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After selecting the method to compute the null space 
control variable, we recruited eight participants to assess their 
ability to control simultaneously natural and extra DoF. We 
first assessed baseline performance in FC. During this block, 
participants displaced the cursor toward the targets along 
approximately straight paths, reached the target successfully 
in 92 ± 6 % (mean ± SD across participants) of the trials, and 
remained in the target for the required time in 63 ± 19 % of 
the trials (see Table 1 for individual data). Thus, while 
reaching the target was easily accomplished by our 
participants, holding was more challenging. Moreover, 
holding performance varied considerably across participants, 
as indicated by its large standard deviation. Similar 
performances were observed during the initial EFC block, for 
which the success rates for reaching and holding were, 
respectively, 88 ± 25 % and 67 ± 31 %. No significant 
differences were found between FC and EFC blocks for both 
reaching and holding performance (p = 0.24 and 0.56, 
respectively, Kruskal-Wallis one-way ANOVA). Therefore, 
the shape (spherical or ellipsoidal) of cursor and targets did 
not affect force control performance. 

The mean R2 across participants of the three-dimensional 
force reconstruction during the FC block, was 0.76 ± 0.11 (see 

Table 1 for individual data). During the initial EFC block, the 
mean horizontal (rather than three-dimensional, as targets 
were all planar in this block) force reconstruction R2 was 0.78 
± 0.13, and no significant differences were found with respect 
to the initial FC (p = 0.46, Kruskal-Wallis one-way ANOVA). 
These results support the robustness of the EMG-to-force 
mapping, which was used for calculating the EMG null space 
and therefore the variable used to control the extra DoF. 

Participant 
Reaching 
success rate 

Holding 
success 
rate 

Force 
reconstructio
n R2 

1 0.92 0.59 0.85 
2 0.88 0.42 0.52 
3 0.96 0.51 0.74 
4 0.96 0.78 0.75 
5 0.89 0.46 0.79 
6 0.97 0.72 0.84 
7 0.83 0.56 0.70 
8 0.99 0.98 0.89 

Table 1: individual performance and quality of force 
reconstruction by EMG-to-force linear mapping for the FC 
block. 

Figure 3. Mean activation of the simulated control variable for three different methods. Bars indicate the mean values of the 
control variable computed according to the different methods without voluntary co-contraction (Force Control block) and 
with increasing levels of co-contratcion (Pertubation blocks). Vertical error lines represent standard deviation across 
participants. Horizontal lines with asterisks indicate significant differences through Tukey’s honestly significant difference 
criterion.The first method (dark green) uses the norm of the projection of the null space activation vector onto the first 
principal components explaining 80% of data variation in the NSM block (after subtraction of the mean vector of null space 
activation in that block). The second method (light green) is based on the norm of the projection of the null space activation 
vector onto the first set of principal components that explain 80% of variance of NSM block (after subtraction of the mean 
vector of null space activation in baseline FC block, taken as a reference of residual, involuntary null space activation), 
Finally, the third method uses the norm of the projection of the null space activation vector onto the mean null space 
activation vector in baseline FC block. The second method clearly shows the lower involuntary activation during force 
control and the widest activation range. 
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3.3 Simultaneous force and null space control 
performance 

In NSC blocks, participants performed trials with eight 
ellipsoidal targets, positioned at a distance and with an 
orientation corresponding to 20% of MVF and 20% of MVCC 
respectively. Additional trials with the target at the rest 
position and orientation corresponding to 20% of MVCC, i.e., 
requiring only cursor rotation, were not included in the 
analysis. 

Differently from FC and EFC blocks, especially in the 
initial NSC blocks, cursor trajectories were highly variable 
over repetitions because of the interference between the 
natural and extra DoFs and the lack of coordination among 
them. Although participants directed the cursor quite 
accurately toward the targets, they were less accurate with the 
cursor rotation (i.e., the extra DoF), which was controlled by 
null space activation, and the rotation angle often overshoot 

the target angle and oscillated around it. This is clearly visible 
in both panels of Fig. 4, where in the first blocks the extra DoF 
often exceed the upper target threshold (dashed horizontal 
line). Interference between force and null-space control 
sometimes also led to an oscillation in the spatial position of 
the cursor, highlighting the difficulty in simultaneous control 
of the different DoFs, as it is visible in panel A of Fig. 4. With 
practice, however, all participants improved in their control of 
the extra DoF. For example, for all four participants illustrated 
in Fig. 4 initially (Block 5, darkest lines) the first peak velocity 
of cursor rotation (vertical lines, middle row) occurred often 
much later than the peak velocity of the cursor translation 
(vertical lines, bottom row), but it then occurred progressively 
earlier with practice (Blocks 8-16, lighter lines). 

Mean success rate across participants in target reaching and 
holding increased during the 12 NSC blocks. Reaching 
success rate progressed from 72 ± 26 % in the first block to 93 
± 11 % in the last block. Holding success rate was initially 

Figure 4. Examples of task performance during NSC blocks. (A) Example of cursor trajectories to different targets (1, 3 and 
5) for participant 6: for each target (column) the plot on top shows the trajectory in x-y plane, the middle plot shows the
evolution in time of the normalized null space control variable, and the plot on bottom the normalized force. To illustrate the
temporal evolution of trajectories the saturation of the colors decreases with block number: trajectories became straighter
over blocks. Vertical lines show the time of first velocity peak. (B) Example of trajectories in the x-y plane (top row) and
time evolution of null space control variable (middle row) and force (bottom row) to one target (8), for participants 2, 4, and
6 (columns). Trajectories in the x-y plane during EFC are also shown for comparison (dashed lines, top row).
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low, 12 ± 12 % in the first block, and achieved a maximum 
value of 43 ± 31% (Fig. 5A and B). The mean movement time 
across participants decreased over blocks, with a starting value 
of 2.79 ± 0.54 s and an ending value of 2.02 ± 0.54 s. The 
mean holding time across participants increased, achieving the 
highest mean value of 0.70 ± 0.29 s, while the mean angular 
error decreased below the required target threshold of 7.2° 
(6.69 ± 2.18° for the last block, minimum mean value 
achieved) (Fig. 5C and D). 

A generalized linear mixed model analysis, with cycle (i.e., 
a subdivision of a block, with three cycles per block) and 
target as fixed effects and participant as random effect, 
showed a significant dependence of both reaching and holding 
success rate on cycle (p < 0.001 for both variables, with a slope 
of 0.047 and 0.041, respectively), indicating a significant 
increase in average performance with practice. The effect of 

target was also significant for both reaching and holding (p = 
0.001 and 0.041, respectively), which means performances 
were not equal across targets. In fact, targets 4, 5 and 8 showed 
lower mean reaching success rate with respect to target 1, 
taken as reference (p = 0.006, 0.002 and 0.004 respectively), 
while target 6 presented higher holding success rate (p = 
0.022).  

Remarkably, there was substantial inter-individual 
variability in performance, especially for target holding, as 
indicated by the large standard deviation (Fig. 5A, B, C and 
D). For this reason, we also analyzed the data of individual 
participants separately, fitting them with a subject-specific 
generalized linear model with cycle and target as fixed effects. 
Individual performance curves are plotted in Fig. 5E and 5F. 
For reaching success rate, we found a significant effect of 
cycle only in participants 2, 3 and 6 (Table 2). This is because 

Figure 5. Simultaneous force and null space control performance. Reaching success rate, holding success rate, holding time 
and angular error (left column, mean across participants; right column, data from all participants). Shaded areas represent 
mean ± SD, and the gray dashed line in panel (H) represents target tolerance for angular error. 
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all the other participants, except participant 1, had high 
reaching success rate from the beginning of the experiment. 
Participant 1 was instead rather erratic, with a large variability 
in success rate from block to block, and always below 80%. 
For holding success rate, we found a significant effect of cycle 
for participants 2, 5, 6, 7 and 8 (Table 2). A significant target 
effect on reaching performance was found for participants 1, 
2, 3 and 4 and on holding performance for participants 4, 5, 6, 
7 and 8 (Table 3). These results indicate that, with practice, 
some participants improved their control skills in reaching or 
in holding while others did not, and that such skills were not 
equal across the different directions. 

Linear mixed models, with cycle and target as fixed effects 
and subjects as random effect, showed a significant 
dependence of holding time and angular error on cycle (p < 
0.001 for both variables, slope 0.009 and -0.12, respectively). 
Target effect was not significant for holding time (p = 0.09), 
while it was significant for angular error (p < 0.001). 

Holding time and angular error individual curves are 
plotted in Fig. 5G and 5H. Linear models fitted separately to 
each individual participant showed a significant cycle effect 
on holding time for all participants except participant 4, while 
for the angular error a significant cycle effect was found for 
all participants except participant 4 and 7 (Table 2). Both these 
participants had values close to their best values since the 
beginning of the experiment. Target effect on holding time 
was significant for all participants (while it was not the case 
when considering them together) and on angular error for all 
participants except participants 6 and 7 (Table 3). In sum, this 
analysis highlighted that, even when success rate does not 
increase significantly, improvements can be observed in 
continuous parameters such as holding time and angular error. 

Subject 
Reaching 
success 

rate 

Holding 
success 

rate 

Holding 
time 

Angular 
error 

1 0.26 0.17 < 0.001* < 0.001* 
2 < 0.001* 0.002* < 0.001* < 0.001* 
3 < 0.001* 0.94 < 0.001* < 0.001* 
4 0.14 0.17 0.20 0.10 
5 0.65 < 0.001* < 0.001* < 0.001* 
6 0.005* < 0.001* < 0.001* < 0.001* 
7 0.61 0.02* < 0.001* 0.09 
8 0.33 0.003* < 0.001* < 0.001* 

Table 2: p-values for the effect of cycle on success rate 
(reaching and holding), holding time and angular error. The 
asterisk indicates p < 0.05. 

Subject 
Reaching 
success 

rate 

Holding 
success 

rate 

Holding 
time 

Angular 
error 

1 < 0.001* 1 0.048* < 0.001* 
2 < 0.001* 0.574 < 0.001* < 0.001* 
3 0.013* 1 0.015* 0.029* 

4 0.029* 0.007* < 0.001* < 0.001* 
5 0.287 < 0.001* < 0.001* < 0.001* 
6 0.999 < 0.001* 0.001* 0.072 
7 0.726 0.005* 0.004* 0.379 
8 1 < 0.001* < 0.001* < 0.001* 

Table 3: p-values for the effect of target on  successful trials 
fraction (reaching and holding), holding time and angular 
error. The asterisk indicates p < 0.05. 

We then investigated the force control and the null space 
control performances separately, i.e., the success rate for 
reaching and holding considering only either the position or 
the rotation of the cursor (Fig. 6). The separate performances 
were better than the combined performance, which was 
provided as feedback to the participants during the experiment 
(as the change of color of the target when both position and 
orientation of the cursor were within the target tolerance). All 
participants achieved a 100% reaching success rate in at least 
one block for both force control and null space control 
separately (maximum mean ± SD across participants: 99.5 ± 
1.4 % and 98.9 ± 1.8 %, respectively). Holding success rate 
raised to 89 ± 12 % for force control, with 4 participants 
achieving 100%, and 60 ± 32 % for null space control. It was 
therefore the lack of coordination in displacing and rotating 
the cursor that significantly affected the global performance. 

A generalized linear mixed model analysis highlighted a 
significant dependence on cycle for both reaching and holding 
of both force and null space control performance (p < 0.001 
for all cases, slope of 0.09, 0.05, 0.05 and 0.04 for force 
reaching, force holding, null space reaching and null space 
holding respectively). Target effect was significant only for 
null space reaching (p < 0.001), while it was not for force 
reaching (p = 0.13), force holding (p = 0.15) and null space 
holding (p = 0.58). 

The analysis of the performances of each participant 
separately revealed different individual strategies, which were 
not evident when considering success rate for combined force 
and null space control. For example, participant 1 showed a 
significant cycle effect in all success rates except null space 
reaching, showing an improvement not visible with 
simultaneous control success rate. This participant, together 
with participant 2, was the only one with a significant 
improvement in force reaching, while in force holding 
participants 3, 6 and 7 also showed a significant improvement 
together with 1 and 2. In null space reaching only participants 
2 and 3 had a significant cycle effect; nonetheless, all 
participants except participant 4 had significant cycle effect in 
null space holding. It is worth noting that participant 4 
increased their performance in null space holding, but after 
nine blocks, performance started to decrease probably due to 
fatigue and/or distraction. 

In the final EFC block, after the NFC blocks, mean success 
rates across participants for reaching and holding were 
respectively 95 ± 12 and 77 ± 24 %. No significant differences 
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were found between initial and final EFC blocks, for both 
reaching and holding (p = 0.19 and 0.48, respectively, 
Kruskal-Wallis one-way ANOVA). This indicates that 
practicing simultaneous force and null space control did not 
affect force control alone. The mean horizontal force 
reconstruction R2 across participants during the final EFC 
block was 0.67 ± 0.23, and no significant differences were 
found with respect to the initial EFC block (p = 0.48, Kruskal-
Wallis one-way ANOVA). This suggests that null space 
control did not affect standard force control patterns even after 
prolonged practice. 

3.4 Peak velocity times and movement strategies 

We analyzed peak velocities to better characterize the 
different strategies of individual participants. Each participant 
showed a specific timing of the peak velocity for cursor 
displacement and for cursor rotation. Some participants first 
rotated the cursor and then displaced it, others first displaced 
the cursor and then rotated it, and others performed both 
movements simultaneously. Furthermore, peak velocity times 
were not constant over blocks, and they decreased or increased 
depending on the participant and on the specific target. As can 
be seen in Fig. 7, the high SD values of the peak velocity times 
in individual blocks indicate a large variability across targets. 

Kruskal-Wallis one-way ANOVA, with peak type as 
factor, was performed to compare translation and rotation 
peak velocity times of each participant. This revealed a 
significant difference between the translation and rotation 
peak velocity times for all participants (p = 0.002 for 

participant 4, p < 0.001 for participants 1, 3, 5, 7, and 8) except 
2 and 6 (p = 0.82 and 0.42 respectively), although participant 
6 had a high variability in rotation peak velocity times across 
targets. It is also worth noting that, among the participants 
with significant differences between the two times, only 
participant 4 had significantly earlier rotation velocity peak 
than displacement velocity peak. 

Translation and rotation peak velocity times showed a 
strong positive correlation across blocks for participants 2 and 
5 (Pearson correlation coefficient r = 0.87 and 0.83, 
respectively) considering all targets directions together, with 
both mean times decreasing over time (blocks). Moderate 
positive correlation was found for participants 1 and 6 (r = 
0.68 and 0.52, respectively), with both mean times also 
decreasing over time. Moderate negative correlation was 
instead found for participant 3 (r = -0.42), with both mean 
times decreasing up to block 10, after which the rotation peak 
time increased. Weak negative correlation was found for 
participant 4 (r = -0.23), while no significant correlation was 
found for participant 8 (r = 0.09), with a constant displacement 
peak velocity time and a decreasing rotation peak velocity 
time. 

3.5 Individual null space control ability 

Because of the high variability among the participants in 
the performance metrics that we analyzed, such as success rate 
and holding time, which depend on task conditions such as 
target and time tolerances, we wondered if it was possible to 
generalize the assessment of individual ability in the 

Figure 6. Separate force control and null space control performance. Reaching and holding success rates for force control 
(first row) and null space control (second row) are shown separately. The black dashed lines represent mean across 
participants. 
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simultaneous control of natural and extra DoF. To this aim, we 
used an information theory approach inspired by Fitts’ law, 
with an ID comprising a spatial term for the reaching phase 
and a temporal term for the holding phase. We estimated the 
performance with different target sizes and holding time 
tolerance with a simulation. 

For the reaching phase only, due to the variability in 
movement time for the different directions, the linear fit of the 
movement time itself as a function of the Shannon-MacKenzie 
ID resulted in a R2 of 0.26 ± 0.17 (mean ± SD among 
participants). The linear fit was significant for seven 
participants (p < 0.001 for participants 2 to 8, while p = 0.40 
for participant 1), which supports the validity of the Fitts’ 
model for reaching. The plot of the corrected spatial ID as a 
function of the target size (Fig. 8A) shows that the smallest 
target is not always the one that allows maximizing the 
transmitted information. While simulated performances 
appear to be similar for what concerns the largest possible 
target, decreasing target size does not always lead to an 
increase in the transmitted information, because the increase 
in the total available information associated with smaller 
targets is overcome by a decrease in success rate. This means 
that a specific target size can maximize information 
transmitted through reaching, and it is strictly dependent on 
participants’ ability. 

On average, the throughput, calculated as the ID divided by 
the movement time for reaching, increased during NSC blocks 
(Fig. 8B). This is expected, as the movement time for reaching 
also decreased among blocks. This result indicates that with 

practice participants moved faster while keeping good 
accuracy. 

When considering both the reaching and the holding phase, 
the linear fit of the simulated movement time as a function of 
combined ID resulted in a mean R2 of 0.56 ± 0.18, and all fits 
were significant (p < 0.001 for all participants). This means 
that a linear relation still holds when the ID also includes a 
temporal term. 

Introducing the additional temporal ID generally affects the 
target size at which a participant can transmit the maximum 
information, as can be seen in the example of participant 8 
illustrated in Fig. 8C. While for the reaching ID the best target 
size was 3.5 % of MVF/MVCC, for holding the best target 
size was 4 %, with a time tolerance of 0.1 s. Moreover, not all 
participants had their maximum information transmitted for 
the same time tolerance, indicating that also this quantity 
depends on participants’ ability in holding the cursor in a fixed 
position. 

Finally, the maximum information transmitted when 
reaching and holding (i.e., the maximum value of information 
among all the simulated conditions, Fig. 8D) also increased 
with practice. This means that participants improved with 
practice their ability to control concurrently natural and extra 
DoFs, both spatially and temporally. 

4. Discussion

The control of an extra limb or end-effector while
simultaneously performing movements with the natural limbs 

Figure 7. Individual movement strategies. Mean peak velocity times across targets, over null space control blocks, for both 
force and null space control variables. Shaded area represents standard deviation. 
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requires using signals that do not interfere with limb motion 
[26,62]. As a first step towards the ambitious goal of 
augmenting human motor capabilities, we tested whether 
simultaneous control of natural and extra DoFs through 
isometric force and intrinsic muscular null space signals is 
feasible. We developed a control interface in a virtual 
environment using isometric force generated at the hand to 
control the translation of an ellipsoidal cursor and, 
concurrently, muscle-to-force null space activations, i.e., 
patterns of muscular activations that do not generate force, to 
control the rotation of the cursor around one axis. We assessed 
how well 8 participants controlled the end-effector with such 
interface in a reaching task that required translating and 
rotating the cursor to match the position and orientation of 8 
ellipsoidal targets, thus testing spatial control, and maintaining 
the cursor in the target for a 1 s, thus also testing temporal 
control. The results indicate that such an application of 
muscular null space is feasible, since after a moderate amount 
of practice average reaching performance was close to 100%. 
Furthermore, all the participants showed improvements in 
different performance parameters with practice, such as an 
increase in reaching and holding success rate, a reduction of 
angular error, and an increase of holding time. However, we 

found remarkable inter-individual differences in task 
performance, learning capabilities, and strategies to 
coordinate natural and extra DoFs. 

There are three kinds of null spaces that can be defined for 
the human motor system: kinematic, muscular, and neural 
[26]. Moreover, when considering null space signals to be 
used for controlling extra DoF during the performance of a 
task, we can define as task-extrinsic those null space signals 
generated by body parts, muscles, or neural circuits not 
directly involved in the task, and task-intrinsic those signals 
directly involved. Here we considered task-intrinsic muscular 
null space signals for extra DoFs control.  Muscular null space 
may be a convenient choice for augmentation since it 
represents a trade-off between the desirable (low noise and 
non-invasiveness) and potentially limiting (low 
dimensionality) characteristics of the kinematic null space and 
the desirable (high dimensionality) and limiting 
(invasiveness) characteristics of the neural null space. A larger 
dimensionality of the null space is desirable because it allows 
for more flexibility in the selection of the dimensions to be 
used for control. Additionally, using intrinsic muscular task 
null space may avoid interfering with the performance of 
additional tasks involving other body parts. For example, 

Figure 8. Assessment of individual control ability. (A) The corrected spatial ID (mean among the last three NSC blocks, 
estimated through a simulation) is shown as a function of target tolerance, showing the optimal target size for reaching of 
each participant. (B) Throughput as a function of block number. The dashed black line corresponds to the mean value across 
blocks. (C) Example of corrected total ID (mean among the last three NSC blocks) as a function of target and time 
tolerances for participant 6. The red dot indicates the maximum value of transmitted information achieved by the participant 
among all the simulated conditions; the temporal evolution of its value is reported in orange curve of panel (D). It is worth 
noting that other maxima could be present outside the space covered by the simulation, and that the curve for ∆𝑠 = 0.999 
(reaching condition) is equivalent to the one present in the panel (A). (D) Time evolution of the maximum information 
transmitted (among all the simulated conditions, i.e. the maximum of the surfaces such as that shown in panel (C)) for each 
block and participant. The dashed black line corresponds to the mean value across blocks. 
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using null space signal from arm muscles to control extra 
DoFs participating to the main task performed by the arms 
(e.g., an extra robotic limb positioning an object being 
manipulated by hands) may allow to perform secondary tasks 
such as standing or walking.  

Our approach is novel because it is the first time that an 
intrinsic muscular null space signal extracted from multiple 
arm muscles is used to control an extra DoF. Many 
applications of extrinsic kinematic null space have been 
proposed in the past, such as end-effectors controlled by foot 
motion [27,63–65], and a third thumb controlled through the 
big toe [28]. Extrinsic muscular null space has been used for 
the control of a sixth finger using facial muscles [66] or for the 
control of external devices using torso muscles [67,68]. Others 
studies have focused instead on the intrinsic kinematic null 
space, such as a third limb controlled through force sensors on 
the fingertips [69]. Applications of neural null space for the 
control of external devices through brain-machine interfaces, 
such as a third arm [33] or one of the two DoFs of a cursor in 
a 2D virtual environment [70,71], have also been reported. 
However, the possibility of using intrinsic muscular null space 
for augmentation has received less attention. A recent study 
has shown that activity in the beta-band of spiking activity of 
motor neurons identified from high-density EMGs electrode 
from a single muscle could be suitable to control additional 
DoFs concurrently with natural limb motion [41], but possible 
interference with other muscles was not directly monitored. 
Another recent study [40] has demonstrated the possibility of 
controlling the vertical displacement of a cursor in a 2D 
environment through co-contraction of two antagonistic 
muscles (pectoralis major and posterior deltoid) while 
controlling the horizontal displacement through the reciprocal 
activity of the two muscles. With respect to these recent 
studies, our interface allowed to directly test the feasibility of 
simultaneous control in a scenario closer to real-life, i.e., in a 
3D virtual environment, of 3 natural DoFs (cursor translation) 
and an extra DoF (cursor rotation), for a total of 4 DoFs 
controlled simultaneously. Moreover, our task-intrinsic 
muscular null space signal was extracted from many muscles 
involved in the reaching/holding task. We could assess the 
interference between the different DoFs and the relative 
muscle activations, showing that participants could learn to 
reduce such interference with practice. In principle, our 
approach could also be extended to the control of multiple 
extra DoFs by selecting different components in the intrinsic 
muscular null space. However, further investigation is needed 
to assess how performance and learning rate depends on the 
number of extra DoFs. 

Because of the high inter-individual variability among our 
participants, we developed an assessment framework based on 
information theory inspired by Fitts’ law to assess individual 
control ability independently from the performance observed 
with specific task parameters. In fact, performance metrics 

such as success rates are strictly dependent on the specific task 
conditions used in the assessment. In contrast, evaluating 
performances in terms of an ID, such as the one proposed in 
the Fitts’ law, allows to generalize an individual’s 
performance and extrapolate it from the specific context, 
representing them as transmitted information and giving a 
measure of the effective spatial accuracy limits of a 
participant. Tasks with larger and closer targets can be easily 
accomplished with high success rates but low spatial accuracy, 
which means low information transmitted, i.e., the possibility 
of choosing a smaller number of targets in a given task. On the 
other hand, tasks with smaller and farther targets are more 
difficult, requiring high spatial accuracy which is equivalent 
to more spatial information transmitted. Since its original 
formulation [49], Fitts’ law has been widely employed to 
evaluate human performance during tracking [72], 
myoelectric control [73], prostheses control [74], and human-
computer interaction (HCI) [45,50,75]. Fitts’ law captures the 
speed-accuracy tradeoff typically observed in human aimed 
movements by relating movement duration to an ID defined 
according to target distance and size. Thus, since the ability to 
accurately control an end effector depends on the speed of 
movement, motor control ability should be assessed according 
to a speed-accuracy trade-off function rather than by accuracy 
alone [60]. However, the ID itself, corrected through the 
success rate of a participant, as a measure of average 
transmitted information [42], can be taken as a metric for 
performance evaluation related to spatial accuracy and control 
ability.  

While various formulation of Fitts’ law have been 
developed to adapt to different tasks or to correct the ID to 
account for target misses [42,58,76], Fitts’ law has always 
been considered in the spatial domain, with time taken into 
account only in the form of temporal constraints influencing 
task execution [53,54]. However, it may be sometimes 
necessary to evaluate the performance also in temporal 
domain, such as to evaluate whether an individual is able to 
perform an action at the right time or for the required time 
lapse. To account for the effects of temporal targeting, i.e., a 
task in which spatial distance is minimal and for this reason 
movement time can be considered constant and close to zero, 
a recent study applied Fitts’ law to a temporal pointing task, 
in which the user must only decide when to perform an action 
(in this case, pressing a button when the cursor is inside 
targets) [46]. Assuming a Gaussian response distribution for 
the endpoints, the error rate could be expressed as a function 
of an ID equal to the logarithm of a temporal target distance 
divided by a temporal target width. Similarly, to take into 
account the holding phase in our task, which can be considered 
a temporal task, we hypothesize that the total information 
transmitted performing the task is equal to the sum of two IDs, 
a spatial ID resembling the classical Fitts’ index, and a 
temporal ID similar to the one proposed in [46]. As the Fitts’ 
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ID can be derived from an “aiming is choosing” rationale [42], 
we derived the temporal ID from a “waiting is choosing” 
rationale, which allows a generalization of the temporal ID to 
any compatible temporal task without relying on any 
assumption on the response function. We also corrected those 
ID multiplying them for the respective success rate (reaching 
or holding) [42]. Such ID therefore allows to consider not only 
reaching tasks, but also holding tasks, and could be 
hypothetically extended to more complex task composed by 
multiple reaching and holding phases to evaluate an invidual 
performance based on the average information transmitted in 
each phase. Through this framework, we found that, when 
considering only the reaching phase, the smallest target size is 
not always the one providing the highest information 
transmitted because the gain in source information associated 
with smaller targets may be overcome by the loss in 
transmission performance corresponding to a decrease in 
reaching success rate. When considering both reaching and 
holding phases, we found that spatial and temporal 
requirements affect each other, generally reducing a 
participants’ optimal target size with respect to the reaching 
phase only, with the maximum information transmitted 
resulting for a specific, individual combination of spatial and 
temporal parameters. Such an approach could allow to 
hypothetically optimize an interface (not necessarily based on 
myoelectric control) depending on the user’s capabilities, 
possibly also adapting the interface parameters as the user 
learns to control the device. 

The prolonged usage of both prostheses and augmenting 
devices may have effects at the neural level. Amputation 
causes reorganization in the primary somatosensory cortex 
[77]. A recent study has showed that, in BCI control of 
independent DoFs, it is possible to dissociate neural gamma 
activity correlated to muscle activations [70]. Another study 
has shown that users of a third thumb controlled through a toe 
presented, after 5 days, a different representation of their hand 
in the sensorimotor cortex [78]. Considering the findings of 
such studies, we expect that even the intrinsic muscular null 
space control of an external device could bring some 
modifications in neural motor circuits. The exploitation of 
musculoskeletal redundancy to control a device is actually a 
new motor skill that requires learning, as it has been shown by 
the success rate curves from our study, and it is something 
different from the natural modulation of limb impedance [39] 
and even from the tele-impedance, which is based on the use 
of muscular null space to control the impedance of robots, 
providing them with a task-related elastic profile in addition 
to position trajectories [37], while no actual additional DoF is 
controlled. Thus, we hypothesize that, in this context, null 
space control improvements with training could be associated 
to the acquisition of novel muscular null space synergies, 
possibly encoded in the corticospinal pathways [79] and in the 
cortico-cerebellar circuits [80]. Investigation of the 

neuroplasticity associated to learning null space control may 
be necessary to test such a hypothesis. 

Another important finding that has been reported in the 
literature is that, as for skill learning [81–83], feedback 
mechanisms integrated in an interface could help users 
improving their performance faster and to a higher level. It has 
been demonstrated that somatosensory feedback facilitates to 
learn controlling both prostheses [84] and augmenting devices 
[85]. For this reason, we believe that integrating 
somatosensory feedback in wearable bi-directional interfaces 
based on intrinsic muscular null space control will improve 
performance and facilitate learning. 

In conclusion, we demonstrated the feasibility of a novel 
approach to control extra DoFs using muscular null space 
signals from many muscles directly involved in a task being 
performed concurrently. Participants in our experiment were 
able to reach targets and their performances improved with 
practice. Such an approach could be applied to control more 
sophisticated assistive or augmentative robotic devices (as 
extra limbs) in everyday life situations, for both able-bodied 
and disable-bodied people. Such approach is substantially 
different from the myoelectric control of exoskeletons, as they 
do not add additional DoFs [7,10,21]. We also developed an 
assessment framework based on information theory inspired 
by Fitts’ law, with two indices of difficulty, which could be 
useful to quantify a participant’s ability in reaching and 
holding a position independently from specific parameters of 
the assessment task. Further work is needed to understand the 
neural origin and mechanisms underlying learning of null 
space control. These results can be a starting point for the 
investigation of muscular null space control for augmentation, 
and our information theory approach can provide a novel tool 
to assess the ability of individual participants to control a 
device through noisy signals such as EMG, considering not 
only spatial precision, but also temporal precision. 

References 

[1] Fougner A, Stavdahl Ø, Kyberd P J, Losier Y G and Parker
P A 2012 Control of Upper Limb Prostheses: Terminology
and Proportional Myoelectric Control—A Review IEEE
Transactions on Neural Systems and Rehabilitation
Engineering 20 663–77

[2] Ha K H, Varol H A and Goldfarb M 2011 Volitional control
of a prosthetic knee using surface electromyography IEEE
Transactions on Biomedical Engineering 58 144–51

[3] Huang S, Wensman J P and Ferris D P 2014 An
experimental powered lower limb prosthesis using
proportional myoelectric control Journal of Medical Devices,
Transactions of the ASME 8

[4] Jiang N, Rehbaum H, Vujaklija I, Graimann B and Farina D
2014 Intuitive, Online, Simultaneous, and Proportional
Myoelectric Control Over Two Degrees-of-Freedom in



19 

Upper Limb Amputees IEEE Trans. Neural Syst. Rehabil. 
Eng. 22 501–10 

[5] Parker P A and Scott R N 1986 Myoelectric control of
prostheses Crit Rev Biomed Eng 13 283–310

[6] Vujaklija I, Farina D and Aszmann O 2016 New
developments in prosthetic arm systems ORR Volume 8 31–
9

[7] Dollar A M and Herr H 2008 Lower extremity exoskeletons
and active orthoses: Challenges and state-of-the-art IEEE
Transactions on Robotics 24 144–58

[8] Ferris D P and Lewis C L 2009 Robotic lower limb
exoskeletons using proportional myoelectric control 2009
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society 2009 Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society pp 2119–24

[9] Lunardini F, Casellato C, d’Avella A, Sanger T D and
Pedrocchi A 2016 Robustness and Reliability of Synergy-
Based Myocontrol of a Multiple Degree of Freedom Robotic
Arm IEEE Transactions on Neural Systems and
Rehabilitation Engineering 24 940–50

[10] Singh R M and Chatterji S 2012 Trends and Challenges in
EMG Based Control Scheme of Exoskeleton Robots - A
Review International Journal of Scientific and Engineering
Research 3 1–8

[11] Song R, Tong K, Hu X and Zhou W 2013 Myoelectrically
controlled wrist robot for stroke rehabilitation Journal of
NeuroEngineering and Rehabilitation 10 52

[12] Berger D J, Gentner R, Edmunds T, Pai D K and d’Avella A
2013 Differences in Adaptation Rates after Virtual Surgeries
Provide Direct Evidence for Modularity J. Neurosci. 33
12384–94

[13] Rugy A de, Loeb G E and Carroll T J 2012 Muscle
Coordination Is Habitual Rather than Optimal J. Neurosci.
32 7384–91

[14] Barnard A, Jackson A and Jackson A 2012 Flexible Cortical
Control of Task-Specific Muscle Synergies J. Neurosci. 32
12349–60

[15] Radhakrishnan S M, Baker S N and Jackson A 2008
Learning a Novel Myoelectric-Controlled Interface Task
Journal of Neurophysiology 100 2397–408

[16] Sang-Hui Park and Seok-Pil Lee 1998 EMG pattern
recognition based on artificial intelligence techniques IEEE
Transactions on Rehabilitation Engineering 6 400–5

[17] Young A J, Smith L H, Rouse E J and Hargrove L J 2013
Classification of Simultaneous Movements Using Surface
EMG Pattern Recognition IEEE Transactions on Biomedical
Engineering 60 1250–8

[18] Amsuess S, Goebel P, Graimann B and Farina D 2015 A
Multi-Class Proportional Myocontrol Algorithm for Upper
Limb Prosthesis Control: Validation in Real-Life Scenarios
on Amputees IEEE Trans. Neural Syst. Rehabil. Eng. 23
827–36

[19] Jiang N, Englehart K B and Parker P A 2009 Extracting
Simultaneous and Proportional Neural Control Information
for Multiple-DOF Prostheses From the Surface
Electromyographic Signal IEEE Trans. Biomed. Eng. 56
1070–80

[20] Vukobratovic M, Borovac B, Surla D and Stokic D 2012
Biped Locomotion: Dynamics, Stability, Control and
Application (Springer Science & Business Media)

[21] Fleischer C and Hommel G 2008 A Human–Exoskeleton
Interface Utilizing Electromyography IEEE Transactions on
Robotics 24 872–82

[22] Johnson D C, Repperger D W and Thompson G 1996
Development of a mobility assist for the paralyzed, amputee,
and spastic patient Proceedings of the 1996 Fifteenth
Southern Biomedical Engineering Conference Proceedings
of the 1996 Fifteenth Southern Biomedical Engineering
Conference pp 67–70

[23] Ambrosini E, Ferrante S, Schauer T, Klauer C, Gaffuri M,
Ferrigno G and Pedrocchi A 2014 A myocontrolled
neuroprosthesis integrated with a passive exoskeleton to
support upper limb activities Journal of Electromyography
and Kinesiology 24 307–17

[24] Stein J, Narendran K, McBean J, Krebs K and Hughes R
2007 Electromyography-Controlled Exoskeletal Upper-
Limb–Powered Orthosis for Exercise Training After Stroke
American Journal of Physical Medicine & Rehabilitation 86
255–61

[25] Colombo G, Joerg M, Schreier R and Dietz V 2000
Treadmill training of paraplegic patients using a robotic
orthosis Journal of rehabilitation research and development
37 693–700

[26] Dominijanni G, Shokur S, Salvietti G, Buehler S, Palmerini
E, Rossi S, De Vignemont F, D’Avella A, Makin T R,
Prattichizzo D and Micera S 2021 Enhancing human bodies
with extra robotic arms and fingers: The Neural Resource
Allocation Problem arXiv:2103.17252 [cs, eess]

[27] Abdi E, Burdet E, Bouri M, Himidan S and Bleuler H 2016
In a demanding task, three-handed manipulation is preferred
to two-handed manipulation Sci Rep 6 21758

[28] Kieliba P, Clode D, Maimon-Mor R O and Makin T R 2020
Neurocognitive consequences of hand augmentation bioRxiv
2020.06.16.151944

[29] Baldi T L, D’Aurizio N, Gaudeni C, Gurgone S, Borzelli D,
D’Avella A and Prattichizzo D 2020 Exploiting Implicit
Kinematic Kernel for Controlling a Wearable Robotic Extra-
finger arXiv:2012.03600 [cs]



20 

[30] Prattichizzo D, Malvezzi M, Hussain I and Salvietti G 2014
The Sixth-Finger: A modular extra-finger to enhance human
hand capabilities The 23rd IEEE International Symposium
on Robot and Human Interactive Communication The 23rd
IEEE International Symposium on Robot and Human
Interactive Communication pp 993–8

[31] Salvietti G, Hussain I, Cioncoloni D, Taddei S, Rossi S and
Prattichizzo D 2017 Compensating Hand Function in
Chronic Stroke Patients Through the Robotic Sixth Finger
IEEE Transactions on Neural Systems and Rehabilitation
Engineering 25 142–50

[32] Parietti F and Asada H H 2017 Independent, voluntary
control of extra robotic limbs 2017 IEEE International
Conference on Robotics and Automation (ICRA) 2017 IEEE
International Conference on Robotics and Automation
(ICRA) pp 5954–61

[33] Penaloza C I and Nishio S 2018 BMI control of a third arm
for multitasking Science Robotics 3 1–6

[34] Burdet E, Osu R, Franklin D W, Milner T E and Kawato M
2001 The central nervous system stabilizes unstable
dynamics by learning optimal impedance Nature 414 446–9

[35] Milner T E 2002 Adaptation to destabilizing dynamics by
means of muscle cocontraction Exp Brain Res 143 406–16

[36] Selen L P J, Franklin D W and Wolpert D M 2009
Impedance Control Reduces Instability That Arises from
Motor Noise J. Neurosci. 29 12606–16

[37] Ajoudani A, Tsagarakis N G and Bicchi A 2012 Tele-
impedance: Towards transferring human impedance
regulation skills to robots 2012 IEEE International
Conference on Robotics and Automation 2012 IEEE
International Conference on Robotics and Automation pp
382–8

[38] Laghi M, Ajoudani A, Catalano M G and Bicchi A 2020
Unifying bilateral teleoperation and tele-impedance for
enhanced user experience The International Journal of
Robotics Research 39 514–39

[39] Borzelli D, Cesqui B, Berger D J, Burdet E and d’Avella A
2018 Muscle patterns underlying voluntary modulation of
co-contraction PLOS ONE 13 e0205911

[40] Takagi A, Kambara H and Koike Y 2020 Independent
control of cocontraction and reciprocal activity during goal-
directed reaching in muscle space Sci Rep 10 22333

[41] Bräcklein M, Ibáñez J, Barsakcioglu D Y and Farina D 2021
Towards human motor augmentation by voluntary
decoupling beta activity in the neural drive to muscle and
force production J. Neural Eng. 18 016001

[42] Gori J, Rioul O and Guiard Y 2018 Speed-Accuracy
Tradeoff: A Formal Information-Theoretic Transmission
Scheme (FITTS) ACM Trans. Comput.-Hum. Interact. 25
27:1-27:33

[43] Kamavuako E N, Scheme E J and Englehart K B 2014 On
the usability of intramuscular EMG for prosthetic control: A
Fitts’ Law approach Journal of Electromyography and
Kinesiology 24 770–7

[44] Soukoreff R W and MacKenzie I S 2009 An informatic
rationale for the speed-accuracy trade-off 2009 IEEE
International Conference on Systems, Man and Cybernetics
2009 IEEE International Conference on Systems, Man and
Cybernetics - SMC (San Antonio, TX, USA: IEEE) pp
2890–6

[45] Soukoreff R W and MacKenzie I S 2004 Towards a
standard for pointing device evaluation, perspectives on 27
years of Fitts’ law research in HCI International Journal of
Human-Computer Studies 61 751–89

[46] Lee B and Oulasvirta A 2016 Modelling Error Rates in
Temporal Pointing Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems CHI ’16 (San Jose,
California, USA: Association for Computing Machinery) pp
1857–68

[47] Berger D J and d’Avella A 2014 Effective force control by
muscle synergies Front. Comput. Neurosci. 8

[48] Hermens H J, Freriks B, Merletti R, Stegeman D, Blok J,
Rau G, Disselhorst-Klug C and Hägg G European
Recommendations for Surface ElectroMyoGraphy 4

[49] Fitts P M 1954 The information capacity of the human
motor system in controlling the amplitude of movement
Journal of Experimental Psychology 47 381–91

[50] MacKenzie I S 1992 Fitts’ Law as a Research and Design
Tool in Human-Computer Interaction Human–Computer
Interaction 7 91–139

[51] Meyer D E, Keith-Smith J E, Kornblum S, Abrams R A and
Wright C E 1990 Speed-accuracy tradeoffs in aimed
movements: Toward a theory of rapid voluntary action
Attention and performance 13:  Motor representation and
control (Hillsdale, NJ, US: Lawrence Erlbaum Associates,
Inc) pp 173–226

[52] Newell A 1994 Unified Theories of Cognition (Harvard
University Press)

[53] Carlton L G 1994 The Effects of Temporal-Precision and
Time-Minimization Constraints on the Spatial and Temporal
Accuracy of Aimed Hand Movements Journal of Motor
Behavior 26 43–50

[54] Zelaznik H N, Mone S, McCabe G P and Thaman C 1988
Role of temporal and spatial precision in determining the
nature of the speed-accuracy trade-off in aimed-hand
movements Journal of Experimental Psychology: Human
Perception and Performance 14 221–30

[56] Cha Y and Myung R 2013 Extended Fitts’ law for 3D
pointing tasks using 3D target arrangements International
Journal of Industrial Ergonomics 43 350–5



21 

[57] Murata A and Iwase H 2001 Extending Fitts’ law to a three-
dimensional pointing task Human Movement Science 20
791–805

[58] Welford A T 1968 Fundamentals of skill (New York, NY,
US: Methuen)

[59] Welford A T 1960 The measurement of sensory-motor
performance: Survey and reappraisal of twelve years’
progress Ergonomics 3 189–230

[60] Reis J, Schambra H M, Cohen L G, Buch E R, Fritsch B,
Zarahn E, Celnik P A and Krakauer J W 2009 Noninvasive
cortical stimulation enhances motor skill acquisition over
multiple days through an effect on consolidation PNAS 106
1590–5

[61] Shmuelof L, Krakauer J W and Mazzoni P 2012 How is a
motor skill learned? Change and invariance at the levels of
task success and trajectory control Journal of
Neurophysiology 108 578–94

[62] Makin T R, de Vignemont F and Faisal A A 2017
Neurocognitive barriers to the embodiment of technology
Nature Biomedical Engineering 1 1–3

[63] Abdi E, Burdet E, Bouri M and Bleuler H 2015 Control of a
Supernumerary Robotic Hand by Foot: An Experimental
Study in Virtual Reality PLOS ONE 10 e0134501

[64] Noccaro A, Eden J, Di Pino G, Formica D and Burdet E
2021 Human performance in three-hands tasks Sci Rep 11
9511

[65] Saraiji M Y, Sasaki T, Kunze K, Minamizawa K and Inami
M 2018 MetaArms: Body Remapping Using Feet-Controlled
Artificial Arms The 31st Annual ACM Symposium on User
Interface Software and Technology - UIST ’18 The 31st
Annual ACM Symposium (Berlin, Germany: ACM Press) pp
65–74

[66] Salvietti G, Hussain I, Cioncoloni D, Taddei S, Rossi S and
Prattichizzo D 2017 Compensating Hand Function in
Chronic Stroke Patients Through the Robotic Sixth Finger
IEEE Transactions on Neural Systems and Rehabilitation
Engineering 25 142–50

[67] Guggenheim J W, Parietti F, Flash T and Asada H H 2020
Laying the Groundwork for Intra-Robotic-Natural Limb
Coordination: Is Fully Manual Control Viable? J. Hum.-
Robot Interact. 9 18:1-18:12

[68] Parietti F and Asada H H 2017 Independent, voluntary
control of extra robotic limbs 2017 IEEE International
Conference on Robotics and Automation (ICRA) 2017 IEEE
International Conference on Robotics and Automation
(ICRA) (Singapore, Singapore: IEEE) pp 5954–61

[69] Guggenheim J, Hoffman R, Song H and Asada H H 2020
Leveraging the Human Operator in the Design and Control
of Supernumerary Robotic Limbs IEEE Robotics and
Automation Letters 5 2177–84

[70] Bashford L, Wu J, Sarma D, Collins K, Rao R P N,
Ojemann J G and Mehring C 2018 Concurrent control of a
brain–computer interface and natural overt movements J.
Neural Eng. 15 066021

[71] Milovanovic I, Robinson R, Fetz E E and Moritz C T 2015
Simultaneous and independent control of a brain-computer
interface and contralateral limb movement Brain-Computer
Interfaces 2 174–85

[72] Hoffmann E R 1991 Capture of moving targets: a
modification of Fitts’ Law Ergonomics 34 211–20

[73] Borish C N, Bertucco M and Sanger T D 2020 Effect of
target distance on controllability for myocontrol
International Journal of Human-Computer Studies 140
102432

[74] Mendez V, Iberite F, Shokur S and Micera S 2021 Current
Solutions and Future Trends for Robotic Prosthetic Hands
Annu. Rev. Control Robot. Auton. Syst. 4 595–627

[75] Card S K, English W K and Burr B J 1978 Evaluation of
Mouse, Rate-Controlled Isometric Joystick, Step Keys, and
Text Keys for Text Selection on a CRT Ergonomics 21 601–
13

[76] Crossman E 1957 The speed and accuracy of simple hand
movements The nature and acquisition of industrial skills

[77] Makin T R and Flor H 2020 Brain (re)organisation
following amputation: Implications for phantom limb pain
NeuroImage 218 116943

[78] Kieliba P, Clode D, Maimon-Mor R O and Makin T R 2021
Robotic hand augmentation drives changes in neural body
representation Science Robotics 6

[79] Overduin S A, d’Avella A, Carmena J M and Bizzi E 2012
Microstimulation Activates a Handful of Muscle Synergies
Neuron 76 1071–7

[80] Berger D J, Masciullo M, Molinari M, Lacquaniti F and
d’Avella A 2020 Does the cerebellum shape the
spatiotemporal organization of muscle patterns? Insights
from subjects with cerebellar ataxias Journal of
Neurophysiology 123 1691–710

[81] Morris D, Tan H, Barbagli F, Chang T and Salisbury K
2007 Haptic Feedback Enhances Force Skill Learning
Second Joint EuroHaptics Conference and Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator
Systems (WHC’07) Second Joint EuroHaptics Conference
and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems (WHC’07) pp 21–6

[82] Wolpert D M, Miall R C and Kawato M 1998 Internal
models in the cerebellum Trends in Cognitive Sciences 2
338–47



22 

[83] Wulf G, Shea C H and Matschiner S 1998 Frequent
Feedback Enhances Complex Motor Skill Learning Journal
of Motor Behavior 30 180–92

[84] Stepp C E, An Q and Matsuoka Y 2012 Repeated training
with augmentative vibrotactile feedback increases object
manipulation performance PLoS ONE 7

[85] Amoruso E, Dowdall L, Kollamkulam M T, Ukaegbu O,
Kieliba P, Ng T, Dempsey-Jones H, Clode D and Makin T R
2021 Somatosensory signals from the controllers of an extra
robotic finger support motor learning bioRxiv
2021.05.18.444661


