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Abstract

Fix coprime s, t > 1. We re-prove, without Ehrhart reciprocity, a conjecture of
Armstrong (recently verified by Johnson) that the finitely many simultaneous (s, t)-
cores have average size 1

24(s−1)(t−1)(s+t+1), and that the subset of self-conjugate
cores has the same average (first shown by Chen–Huang–Wang). We similarly prove
a recent conjecture of Fayers that the average weighted by an inverse stabilizer—
giving the “expected size of the t-core of a random s-core”—is 1

24(s − 1)(t2 − 1).
We also prove Fayers’ conjecture that the analogous self-conjugate average is the
same if t is odd, but instead 1

24(s− 1)(t2 + 2) if t is even. In principle, our explicit
methods—or implicit variants thereof—extend to averages of arbitrary powers.

The main new observation is that the stabilizers appearing in Fayers’ conjectures
have simple formulas in Johnson’s z-coordinates parameterization of (s, t)-cores.

We also observe that the z-coordinates extend to parameterize general t-cores.
As an example application with t := s+d, we count the number of (s, s+d, s+2d)-
cores for coprime s, d > 1, verifying a recent conjecture of Amdeberhan and Leven.

Keywords: core partition; hook length; beta-set; group action; cyclic shift; Dyck
path; rational Catalan number; Motzkin number; numerical semigroup

1 Introduction

1.1 History and motivation

A partition is an infinite weakly decreasing sequence λ = (λ1, λ2, . . .) of nonnegative
integers with finite size |λ| := λ1 + λ2 + · · · . The Young diagram of λ is the set [λ] =
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Figure 1: English notation for λ = (5, 5, 0, . . .). Removing the displayed rim 4-hook (of
(1, 3) ∈ [λ]) leaves the partition (4, 2, 0, . . .); removing the remaining rim 4-hook leaves
the 4-core λ4 = (1, 1, 0, . . .).

{(r, c) ∈ Z2
>0 : c 6 λr}, often visualized as a set of #[λ] = |λ| boxes in some orientation.

Reflecting [λ] about the diagonal r = c gives the diagram of the conjugate partition
λ = (λ1, λ2, . . .), formally defined by λr := #{c ∈ Z>0 : r 6 λc} for r > 1; we say λ is
self-conjugate if λ = λ.

A partition λ has, associated to each square (r, c) ∈ [λ], a rim hook {(i, j) ∈ [λ] : i >
r, j > c, and (i+ 1, j + 1) /∈ [λ]} of (positive) rim hook length 1 + (λr− r) + (λc− c)—the
same as the hook length of the usual hook {(i, c) ∈ [λ] : i > r} ∪ {(r, j) ∈ [λ] : j > c}.
Importantly, removing a rim hook of λ leaves the Young diagram of a smaller partition.
(See Figure 1.) Note that the (finite) set of hook lengths is invariant under conjugation.

When s is a positive integer, we say a partition is an s-core if it has no hooks of
length s, or equivalently no rim s-hooks (rim hooks of length s); following Fayers [15], we
denote by Cs the set of s-cores, and by Ds ⊆ Cs the set of self-conjugate s-cores. More
generally, any partition λ has a unique s-core λs ∈ Cs, given by repeatedly removing rim
s-hooks. To prove that this s-core operation λ 7→ λs is well-defined, one can use the
beta-sets reviewed in Section 2.1, which also show that λ is an s-core if and only if it has
no hook lengths divisible by s, unifying two common definitions of Cs. These notions are
connected to representation theory, symmetric function theory, and number theory (see
e.g. [13, 15, 19]).

Going further, many authors (see e.g. [1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 15, 16, 17, 21,
24, 25, 27, 28, 29]) have recently considered the interaction of s-cores and t-cores (both
the partitions and operations), for two positive integers s, t. For example, Anderson [5]
showed that for coprime s, t > 1, the set Cs ∩ Ct of (simultaneous) (s, t)-cores has size
equal to the number of (s, t)-Dyck paths, which Bizley [8] had earlier enumerated—via
‘cyclic shifts’—as the ‘rational Catalan number’ 1

s+t

(
s+t
t

)
.1 Ford, Mai, and Sze [17] later

showed that for coprime s, t > 1, the set Ds ∩ Dt of self-conjugate (s, t)-cores has size
equal to the lattice path count

(
⌊s/2⌋+⌊t/2⌋

⌊t/2⌋

)
. In a different direction, Olsson [24] showed

that the t-core of an s-core is an s-core, hence a simultaneous (s, t)-core (as it is a t-core
by definition).

In this paper, we mainly focus on related conjectures of Armstrong from [6], and Fayers
from [15], on certain weighted average sizes of (s, t)-cores when s, t are coprime. Chen,
Huang, and Wang [11] established Armstrong’s self-conjugate conjecture (Theorem 1.2
below) using the Ford–Mai–Sze bijection [17]. Using a poset formulation of Anderson’s

1In fact, (s, t)-cores biject to subsets of Z>0 that contain 0 and are closed under addition by s, t
(e.g. via beta-sets, following negation and suitable translation), which are counted in [18]. Through this
bijection, numerical semigroups containing s, t inject into Cs ∩ Ct.
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bijection [5], Stanley and Zanello [27] recursively established Armstrong’s general conjec-
ture (Theorem 1.1 below) for the ‘Catalan case t = s + 1’; Aggarwal [1] generalized their
method to the case t ≡ 1 (mod s). However, it is unclear whether a similar ‘Catalan-like’
recursive structure holds for other choices of s, t. Recently, by different means described
below, Johnson [21] fully proved Theorem 1.1, and re-proved Theorem 1.2.

Theorem 1.1 (Armstrong [6, Conjecture 2.6]; Johnson [21, Corollary 3.8]). Fix coprime
s, t > 1. Then ∑

λ∈Cs∩Ct
|λ|

∑

λ∈Cs∩Ct
1

=
1

24
(s− 1)(t− 1)(s + t + 1),

where the sums run over all (s, t)-core partitions.

Theorem 1.2 (Armstrong [6, Conjecture 2.6]; Chen–Huang–Wang [11, proof in Section
2]; Johnson [21, Proposition 3.11]). Fix coprime s, t > 1. Then

∑

λ∈Ds∩Dt
|λ|

∑

λ∈Ds∩Dt
1

=
1

24
(s− 1)(t− 1)(s + t + 1),

where the sums run over all self-conjugate (s, t)-core partitions.

Developing Olsson’s [24] and his own [13] ideas, Fayers soon after conjectured weighted
analogs (Theorems 1.3 and 1.4 below) of Armstrong’s conjectures—in some sense giving
the “expected size of the t-core of a random s-core” [15]. In this paper, we carry over
explicit versions of Johnson’s methods to establish both of Fayers’ conjectures, despite the
absence of an obvious ‘exponential’ analog of Ehrhart reciprocity. We also briefly explain,
in Remark 8.3, how one could give more implicit or “conceptual” proofs if necessary.

Theorem 1.3 (Fayers [15, Conjecture 3.1]). Fix coprime s, t > 1. Then
∑

λ∈Cs∩Ct
|StabGs,t(λ)|−1 · |λ|

∑

λ∈Cs∩Ct
|StabGs,t(λ)|−1 · 1

=
1

24
(s− 1)(t2 − 1),

where the sums run over all (s, t)-core partitions, and the stabilizers are defined in terms
of Fayers’ ‘level t’ group action on Cs [13, 15] reviewed in Definition 3.7.

Theorem 1.4 (Fayers [15, Conjecture 4.5]). Fix coprime s, t > 1. Then

∑

λ∈Ds∩Dt
|StabHs,t(λ)|−1 · |λ|

∑

λ∈Ds∩Dt
|StabHs,t(λ)|−1 · 1

=

{
1
24

(s− 1)(t2 − 1) if t ≡ 1 (mod 2)
1
24

(s− 1)(t2 + 2) if t ≡ 0 (mod 2)
,

where the sums run over all self-conjugate (s, t)-core partitions, and the stabilizers are
defined in terms of Fayers’ ‘level t’ group action on Ds [15] reviewed in Definition 6.6.

Remark 1.5. As Fayers notes in [15], the orbits of Gs,t and Hs,t are infinite, so one weights
by the inverses of the finite stabilizers instead. However, by considering finite quotients
acting on certain finite subsets of Cs and Ds, he also gives the weighted averages finite
probabilistic interpretations that agree exactly, not just asymptotically, with the original
averages.

the electronic journal of combinatorics 23(1) (2016), #P1.4 3



Johnson’s z-coordinates parameterization of (s, t)-cores, and our modest extension to
general t-cores (see Proposition 4.2 for general cores and in Proposition 6.11 for the self-
conjugate specialization)—which depends on a choice of s > 1 coprime to t—plays a key
role in our paper, which rests upon his cyclic shifts argument for general cores. However,
whereas Johnson finishes by ‘weighted Ehrhart reciprocity’ (see [9] for an introduction to
‘un-weighted’ Ehrhart theory), we will stick to flexible direct tools—and implicit variants
thereof—which can in principle evaluate sums of arbitrary powers of the partition sizes
(see Remark 8.6).

The main new observation is that the stabilizer sizes appearing in Fayers’ conjec-
tures (Theorems 1.3 and 1.4) have symmetric (or almost symmetric) formulas in the
z-coordinates, which simply re-index the restricted counts |Ss(λ) ∩ (j + tZ)| of elements
in Fayers’ s-sets Ss(λ) (from [13, 15]). In fact, we first prove (in Propositions 3.4 and 3.6)
that the sets Ss(λ)∩(j+tZ) underlie the tools allowing us, in Fayers’ words [13], to “[com-
pare] the t-cores of different s-cores” in the first place—thus illustrating the significance
of z-coordinates.

As an application of the cyclic shifts in the (extended) z-coordinates, we also parame-
terize and then enumerate the simultaneous (m,m+d,m+2d)-cores for coprime m, d > 1,
verifying the following recent conjecture of Amdeberhan and Leven [4] in two different
ways.

Theorem 1.6 (Amdeberhan–Leven, [4, Conjecture 3.1]). Fix coprime m, d > 1. Then

∑

λ∈Cm∩Cm+d∩Cm+2d

1 =
1

m + d

⌊m/2⌋
∑

i=0

(
m + d

i, i + d,m− 2i

)

.

([4] also gives an equivalent expression using 1
m+d

(
m+d

i,i+d,m−2i

)
=

(
m+d−1
2i+d−1

)(
2i+d
i

)
1

2i+d
.)

Remark 1.7. Following the recursive method of Stanley and Zanello [27], Amdeberhan
and Leven [4] (and independently, Yang, Zhong, and Zhou [29]) proved the d = 1 case
via Motzkin number interpretations. Both papers also proved other facts about (m,m +
1,m + 2)-cores.

Remark 1.8. A few days after the arXiv postings of v2 of the present paper and v1 of
[2], Paul Johnson informed us (via private correspondence) that he had independently
found our asymmetric proof (in Section 7) of Theorem 1.6. In fact, he proved the slightly
stronger result that the term 1

m+d

(
m+d

i,i+d,m−2i

)
counts the number of (m,m+d,m+2d)-cores

with exactly i hooks of length d; see the end of Remark 3.5 for a brief explanation.

1.2 Outline of paper

In Section 2, we review the relevant definitions, terminology, and basic results about s-
core partitions and the s-core operation on partitions, mostly from Fayers [13, 15] and
Johnson [21]. Section 3 provides the fundamental results on t-cores of s-cores, giving
the background needed to state Theorems 1.3 and 1.4 (Fayers’ conjectures). We isolate
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Figure 2: Russian notation for λ = (3, 2, 2, 0, . . .), from Johnson’s arXiv source [21]. (As
pointed out by an anonymous expert, the idea itself has been used earlier by Okounkov
and Reshetikhin.) The infinite rim boundary is thickened. A rim edge has a filled circle
below if and only if the edge slopes upwards. By convention, our labeling increases from
right to left (opposite the usual Cartesian x-axis).

our main new observation as Proposition 3.4, which first gives a cleaner proof of a key
proposition from [13], and later features in our stabilizer computations.

Section 4 describes the relevant computations for Section 5 (on general cores): we
compute the sizes of the stabilizers appearing in Theorem 1.3 and express s-set data,
stabilizer sizes, and partition sizes in Johnson’s z-coordinates. We also extend the z-
coordinates, and review the cyclic shifts used to compute z-coordinate sums of cyclic
functions, such as the stabilizer and partition sizes.

Section 5 presents the main results of the paper, namely explicit proofs of Theorems
1.1 and 1.3 (general conjectures). Section 6 presents self-conjugate analogs of the general
analysis, building up to explicit proofs of Theorems 1.2 and 1.4 (self-conjugate conjec-
tures).

Section 7 uses cyclic shifts in the extended z-coordinates from Section 4.2 to quickly
prove Theorem 1.6. Section 8 discusses possibilities for future work, including the question
of calculating sums of higher powers (or moments) of the (s, t)-core partition sizes.

2 Background: s-core partitions and operation

Experts can quickly skim this section for the notation used in our paper (as the literature
seems to have many different conventions), particularly the framework of beta-sets (Sec-
tion 2.1) for studying hooks, and two parameterizations of s-cores: Johnson’s c-coordinates
(Section 2.2) from [21], and Fayers’ s-sets and a-coordinates (Section 2.4) from [13, 15].

2.1 Beta-sets

To each partition one naturally associates a beta-set illuminating the hook length struc-
ture. It is often easier to work with beta-sets than with partitions themselves.
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Definition 2.1 ([21, Section 2.2]). For any (infinite weakly decreasing) partition λ =
(λ1, λ2, . . .), let Bλ ⊂ Z denote the (infinite) beta-set of beta-values, i.e. integers x such
that the the rim edge (with midpoint) at position x + 1

2
slopes upwards in Figure 2.

Remark 2.2. Most sources (e.g. [13, 15, 20]) instead define Bλ := {λi − i}i>1. The
definitions are equivalent by a simple coordinate geometry argument. Some sources,
notably Anderson [5] (and the poset method users [27, 1, 4, 3], by extension) and Vandehey
[28], instead distinguish the finite set (Bλ + r) ∩ Z>0 = {(λ1 − 1) + r, . . . , (λr − r) + r}
of first column hook lengths, where r denotes the length of λ, defined so that λ1 > · · · >
λr > 0 = λr+1 = · · · . This perspective works particularly well for the study of maximal
cores (see e.g. [28] for (s, t)-cores and [3] for (a, b, c)-cores).

Proposition 2.3 (Robinson [26, 2.8]; Johnson [21, Section 2.3.1]). A rim s-hook is pa-
rameterized (uniquely) by an element x ∈ Bλ \ (Bλ + s). In particular, a partition λ is
an s-core if and only if Bλ − s ⊆ Bλ.

2.2 Johnson’s signed ‘charge’ measure c

In light of Proposition 2.3, one would like to have a clean description of possible beta-sets.
The basic tool for this is charge, which also parameterizes s-cores in Corollary 2.7.

Definition 2.4 (c.f. [21, Definition 2.1 and Section 2.2]; [19]; [12]). Call a set S ⊆ Z good
if S ∩ Z>0 and Z<0 \ S are both finite. For good S, define the signed s-charge measure

cs,i(S) := #[(−1 − i + sZ) ∩ (Z \ S) ∩ {x + 1
2
< 0}] − #[(−1 − i + sZ) ∩ S ∩ {x + 1

2
> 0}]

for any s > 1 and i ∈ Z/sZ. Then
∑

i∈Z/sZ cs,i(S) = c1,0(S) is the total charge of S.

For any partition λ, we may define cs,i(λ) := cs,i(B
λ), since Bλ is good.

Remark 2.5. We will not use the notions of electron, positron, and Maya diagram from
Johnson’s exposition.

The basic importance of charge is given by the following charge condition.

Proposition 2.6 ([21, Section 2.2]). Fix s > 1. Via beta-sets, partitions are parameter-
ized (uniquely) by good sets S (as defined in Definition 2.4) with

∑

i∈Z/sZ cs,i(S) equal to
0.

Combining the s-core criterion Bλ−s ⊆ Bλ (from Proposition 2.3) with the preceding
zero charge invariant yields the following simple c-coordinates parameterization of s-cores.
For the conversion to Fayers’ a-coordinates, see Section 2.4.

Corollary 2.7 (Johnson [21, Lemma 2.8]; Garvan–Kim–Stanton [19, Bijection 2]). Fix
s > 1. The s-cores are parameterized (uniquely) by s-tuples (cs,i)i∈Z/sZ ∈ Zs summing to
0.
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2.3 The s-core operation is well-defined

Beta-sets not only parameterize rim s-hooks (Proposition 2.3), but also conveniently de-
scribe the removal of rim s-hooks, as follows.

Proposition 2.8 ([21, Section 2.3.1]). The removal (from a partition λ) of a rim s-hook,
say parameterized by x ∈ Bλ \ (Bλ + s), corresponds to an s-push: replacing the element
x of Bλ by x− s. The process also preserves the charge s-tuple (cs,i)i∈Z/sZ.

Definition 2.9 (c.f. [21, Section 2.3. Abaci.]). The s-push of a good set S is the well-
defined result of repeatedly applying the s-pushes defined in Proposition 2.8. Explicitly,
the s-push of S can be described as follows:

• Fix a residue class i+ sZ; then S ∩{i+ sZ} takes the form {. . . , x− 2s, x− s, x, x+
α1s, . . . , x + αks} for any sufficiently small x ∈ S ∩ {i + sZ}.

• Then the s-push of S, restricted to the residue class i + sZ, is {. . . , x − 2s, x −
s, x, x + s, . . . , x + ks}.

Repeatedly applying Proposition 2.8 shows that the s-core operation is well-defined.

Proposition 2.10 (c.f. [21, Section 2.3.1]). Every partition λ has a unique s-core, denoted
by λs ∈ Cs. Its beta-set Bλs

is the s-push of the original beta-set Bλ, so cs,i(λ) = cs,i(λ
s)

for all i ∈ Z/sZ.

2.4 Fayers’ s-sets versus Johnson’s c-coordinates

For any s-core λ, let as,i(λ) := s + max[Bλ ∩ (i + sZ)] for each i ∈ Z. But Definition 2.4
and Corollary 2.7 give cs,−1−i(λ) in terms of Bλ∩(i+sZ). Comparing the two descriptions
gives as,i = i− scs,−1−i for 0 6 i 6 s− 1. In particular,

∑

i∈Z/sZ cs,i = 0 (Proposition 2.6)

is equivalent to
∑

i∈Z/sZ as,i =
(
s
2

)
.

Proposition 2.11 (Fayers [13]; [15, Section 3.3]). Fix s > 1. The s-cores are parameter-
ized (uniquely) by s-sets Ss = {as,i}i∈Z/sZ of a-coordinates summing to

(
s
2

)
with as,i ≡ i

(mod s) for all i ∈ Z. Explicitly, Ss(λ) := (Bλ + s) \Bλ for λ ∈ Cs.

Remark 2.12. In view of cs,i(λ) = cs,i(λ
s) from Proposition 2.10, it would be meaningful to

define as,i(λ) := as,i(λ
s) for any λ. However, we will only speak of s-sets and a-coordinates

of s-cores. Charge will suffice for our greater needs in Proposition 6.2 and Corollary 6.3.

3 Background: t-cores of s-cores

In this section, we go through the fundamental results on t-cores of s-cores. In particular,
we isolate the crucial Proposition 3.4, meanwhile giving a cleaner proof of a key result of
Fayers (see Proposition 3.6). This motivates Fayers’ ‘level t action on s-cores’ (Definition
3.7), defining the stabilizers in Theorem 1.3 (Fayers’ general conjecture).
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3.1 When is a t-core an s-core?

The following simple criterion parameterizes Cs∩Ct in at-coordinates. It implicitly appears
throughout this paper and elsewhere.

Lemma 3.1 (Johnson [21, Lemma 3.1]; re-worded by Fayers [15, Lemma 3.8]). In Fayers’
a-coordinates (see Proposition 2.11), the set Cs ∩ Ct of s-cores within the affine lattice Ct
of t-cores is defined by the system of inequalities at,i > at,i+s − s for i ∈ Z/tZ.

3.2 Comparing t-cores of different s-cores

Propositions 3.2, 3.4, and 3.6 below are the key conceptual inputs for comparing t-cores
of various s-cores. We start by extending Olsson’s theorem [24], following Fayers [13].

Proposition 3.2 (c.f. [13, proof of Proposition 4.1]). Fix any s, t > 1 and λ ∈ Cs. Then
λt ∈ Cs ∩ Ct, and furthermore Ss(λ

t) ≡ Ss(λ) (mod t) (viewed as multisets of residues).

Proof sketch. Given λ ∈ Cs, Fayers inductively constructs a sequence of s-core partitions
λ(0), . . . , λ(−m) (with m > 0) such that λ(0) = λ, the term λ(−i−1) is an s-core obtained
from λ(−i) by removing a certain sequence of rim t-hooks, and λ(−m) ∈ Cs ∩ Ct. He
shows, under this construction, that Ss(λ

(−i−1)) ≡ Ss(λ
(−i)) (mod t) for 0 6 i < m, so

Ss(λ
(−m)) ≡ Ss(λ) (mod t). But λ(−m) = λt by uniqueness of the t-core (Proposition

2.10).

Remark 3.3. One can avoid induction by first comparing (Bλ−s)∩(j+tZ) with Bλ∩(j+tZ)
as j ∈ Z varies, and then (in view of Proposition 2.10) the t-pushes (Bλt

− s) ∩ (j + tZ)
and Bλt

∩ (j + tZ).

We isolate our main new observation as the following proposition, which first gives
a cleaner proof of a key result from [13] (see Proposition 3.6), and later features in our
stabilizer computations, namely Propositions 4.1 (general case) and 6.12 (self-conjugate
analog).

Proposition 3.4. Fix any s, t > 1 and λ ∈ Cs. Then

|[Ss(λ) − s] ∩ (j + tZ)| =
1

t
(at,j(λ

t) − [at,j+s(λ
t) − s]).

Proof. Proposition 3.2 says λt ∈ Cs and Ss(λ) ≡ Ss(λ
t) (mod t). Thus it suffices to prove

the result with λ replaced by its t-core λt.
In other words, we may without loss of generality assume λ ∈ Cs∩Ct. Recall the t-core

criterion Bλ − t ⊆ Bλ from Proposition 2.3. Then by definition of at,j ≡ j (mod t) and
at,j+s ≡ j + s (mod t), we have

Bλ ∩ (j + tZ) = {. . . , at,j − 2t, at,j − t}

(Bλ − s) ∩ (j + tZ) = {. . . , [at,j+s − s] − 2t, [at,j+s − s] − t}.

However, Proposition 2.11 gives Ss(λ) − s = Bλ \ (Bλ − s) for the s-core λ (with the
criterion Bλ − s ⊆ Bλ implicit), so [Ss(λ) − s] ∩ (j + tZ) is the difference-t arithmetic
progression {at,j+s − s, . . . , at,j − t} of nonnegative length 1

t
(at,j − [at,j+s − s]).
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Remark 3.5. Compare with both the statement and proof of Lemma 3.1, which can be
rephrased in terms of the quantities ω := 1

t
(at,j − [at,j+s − s]). When s, t are coprime,

these re-index in Corollary 4.4 to form Johnson’s z-coordinates for (s, t)-cores λ (as vaguely
mentioned in the introduction).

Furthermore, for arbitrary t-cores λ, the quantity ω is meaningful not only when
ω > 0 (in which case ω = |(Bλ \ (Bλ − s)) ∩ (j + tZ)|), but also when ω 6 0 (in which
case −ω > 0 counts the size of ((Bλ − s) \ Bλ) ∩ (j + tZ), i.e. the number of rim s-
hooks coming—via Proposition 2.3—from beta-values x + s ∈ Bλ ∩ (j + s + tZ) with
(x + s) − s /∈ Bλ). The latter observation is essentially due to Paul Johnson (via private
correspondence), and gives combinatorial significance to our modest extension of his z-
coordinates (see the second halves of Propositions 4.2 and 6.11).

Proposition 3.4 cleanly proves a result of Fayers “crucial” for “comparing the t-cores
of different s-cores” [13].

Proposition 3.6 (Extension of [13, Proposition 4.1]). Fix coprime s, t > 1. Then the
t-core λt of an s-core λ is uniquely determined by the multiset of modulo t residues Ss(λ)
(mod t). Combined with Proposition 3.2, we conclude that λ, µ ∈ Cs have the same t-core
if and only if the multisets of modulo t residues Ss(λ),Ss(µ) (mod t) are congruent.

Proof. Fix λ ∈ Cs, so Proposition 3.4 gives |Ss(λ) ∩ (j + s + tZ)| = 1
t
(at,j(λ

t)−[at,j+s(λ
t)−

s]). Since s, t are coprime, it follows that Ss(λ) (mod t) determines St(λ
t) = {at,j(λ

t)}
up to translation. The sum condition

∑

j∈Z/tZ at,j(λ
t) =

(
t
2

)
(from Proposition 2.11) then

singles out a unique translate equal to St(λ
t), which corresponds under Proposition 2.11

to a unique t-core λt.

3.3 Level t action and statement of Fayers’ general conjecture

Proposition 3.6 motivates the following group action on Cs, for which Corollary 3.11 will
hold almost by definition.

Definition 3.7 (c.f. Fayers [13, Section 3.2]; [15, Section 3.1]). Fix coprime s, t > 1. Let
Gs,t be the set of permutations f : Z → Z such that

• f is s-periodic, i.e. f(m + s) = f(m) + s for all m;

• f satisfies the sum-invariance condition
∑s−1

i=0 f(i) =
(
s
2

)
;

• f preserves residues modulo t, i.e. f(m) ≡ m (mod t) for all m.

It is easy to check that Gs,t has a group structure, and that it acts in the obvious way
on the set of s-sets Ss(λ) (of s-cores λ), or equivalently on beta-sets Bλ (of s-cores λ).
This induces an action on Cs, via Proposition 2.11.

Remark 3.8 (Different but equivalent definitions). We have not given Fayers’ actual defi-
nition of the ‘level t action of the s-affine symmetric group’ (based on the t = 1 case from
[23]), but rather one equivalent by [15, Proposition 3.5], and easier to work with for our
purposes.
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Remark 3.9 (Natural action?). It is not hard to show that a permutation f : Z → Z
preserves the set of beta-sets of s-cores if and only if it satisfies the explicit s-periodicity
and sum-invariance conditions.

In practice one often encounters group elements by their restrictions to s-sets.

Proposition 3.10 ([15, Corollary 3.6]). Let λ, µ be s-cores. Suppose φ a set bijection
φ : Ss(λ) → Ss(µ) that preserves residue classes modulo t. Then φ uniquely extends to an
element f ∈ Gs,t (under Definition 3.7).

Corollary 3.11 ([13, Proposition 4.2 and Corollary 4.5]). Fix coprime s, t > 1. Then
λ, µ ∈ Cs lie in the same Gs,t-orbit if and only if λt = µt. In other words, each Gs,t-orbit
of Cs contains a unique t-core (hence an (s, t)-core), and any λ ∈ Cs lies in Gs,tλ

t.

Sketch of more direct proof. Fix s-cores λ, µ. Proposition 3.6 followed by Proposition 3.10
gives equivalence of λt = µt and µ ∈ Gs,tλ. The re-phrasing follows by specializing to
µ := λt (where λt ∈ Cs follows from Proposition 3.2).

Definition 3.7 and Corollary 3.11 provide the background and context for Theorem 1.3
(stated in the introduction).

4 Key inputs for computation

In this section, we describe all the computational methods and results used to compute
the sums in Theorems 1.1 and 1.3. First we compute the sizes of the stabilizers appearing
in Theorem 1.3. Section 4.2 compares Fayers’ a-coordinates with a modest extension of
Johnson’s z-coordinates. In Section 4.4 we give an explicit formula for the size of a t-core,
and in Section 4.3 we explain the standard cyclic shifts used to compute z-coordinate
sums of cyclic functions, such as the stabilizer and partition sizes.

4.1 Size of the stabilizer of an s-core

Most of the proof ideas for Theorem 1.3 come from Johnson [21] and Fayers [13, 15]. The
key new observation is the following computational simplification of Fayers’ formula for
the size of the stabilizer of an s-core, based on Proposition 3.4, which will simplify even
further once we translate to Johnson’s z-coordinates (see Corollary 4.4).

Proposition 4.1 (c.f. [15, Proposition 3.7]). Fix coprime s, t > 1, and λ ∈ Cs. Then
with Gs,t from Definition 3.7, |StabGs,t(λ)| equals

∏

j∈Z/tZ[1
t
(at,j(λ

t) − [at,j+s(λ
t) − s])]!.

Proof. Using Proposition 3.10, Fayers showed in [15, Proposition 3.7] that StabGs,t(λ)
(under a different but equivalent definition of Gs,t; see Remark 3.8) has size

∏

j∈Z/tZ

|Ss(λ) ∩ (j + tZ)|! =
∏

j∈Z/tZ

|[Ss(λ) − s] ∩ (j + tZ)|!.

Substituting in Proposition 3.4 gives the result.
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4.2 Johnson’s z-coordinates versus Fayers’ t-sets

As reflected by the simple translation Corollary 4.4, Proposition 4.1 and Remark 3.5
provide one source of motivation for the following choice of coordinates. We not only
review Johnson’s parameterization of (s, t)-cores, but also extend it to arbitrary t-cores,
given a parameter s > 1 coprime to t.

Proposition 4.2 (c.f. [21, Lemma 3.5]: Johnson’s z-coordinates versus Fayers’ t-sets).
Fix coprime s, t > 1. The set Cs ∩ Ct of (s, t)-cores (viewed as s-cores within the set of
t-cores) is parameterized by either of the sets At(s),TDt(s), described as follows.

• By Lemma 3.1, the set of t-sets St(λ) of (s, t)-cores λ, i.e. the set of points
At(s) = {(at,i)i∈Z/tZ} defined by the inequalities at,i > at,i+s − s, the sum condi-
tion

∑

i∈Z/tZ at,i =
(
t
2

)
, and congruence conditions at,i ≡ i (mod t).

• Johnson’s trivial determinant representations set TDt(s) = {(zt,i)i∈Z/tZ} defined
by the inequalities zt,i > 0, the sum condition

∑

i∈Z/tZ zt,i = s, and congruence

conditions zt,i ≡ 0 (mod 1) and
∑

i∈Z/tZ izt,i ≡ 0 (mod t).

An isomorphism (also preserving the ambient linear and simplex structures) is given by
the invertible affine change of variables zt,j := 1

t
(at,sj+k − [at,s(j+1)+k − s]), for j ∈ Z/tZ,

where k := 1
2
(s + 1)(t − 1) ∈ Z. The inverse map can be described by at,k+ℓs −

t−1
2

=
∑t−1

j=0(
t−1
2

− j)zt,j+ℓ, for ℓ ∈ Z/tZ.
Under the same affine change of variables, the larger set Ct of t-cores is parameterized

by either of the following sets.

• By Proposition 2.11, the set of t-sets St(λ) of t-cores λ, i.e. the set of points
Ct = {(at,i)i∈Z/tZ} defined by the sum condition

∑

i∈Z/tZ at,i =
(
t
2

)
, and congruence

conditions at,i ≡ i (mod t).

• In z-coordinates, the set of points Ct = {(zt,i)i∈Z/tZ} defined by the sum condition
∑

i∈Z/tZ zt,i = s, and congruence conditions zt,i ≡ 0 (mod 1) and
∑

i∈Z/tZ izt,i ≡ 0

(mod t).

Remark 4.3. Although it will only matter for the asymmetric Theorem 1.3, not the sym-
metric Theorem 1.1, we use, in Johnson’s notation, the parameterization TDt(s), instead
of TDs(t) as Johnson might for Armstrong’s conjectures [21].

Before proving the result, we first translate s-set and stabilizer data to z-coordinates.

Corollary 4.4. Fix coprime s, t > 1. Fix λ ∈ Cs. The z-coordinates parameterizing the
(s, t)-core λt are defined by the affine change of variables

zt,j(λ
t) := 1

t
(at,sj+k(λt) − [at,s(j+1)+k(λt) − s])

︸ ︷︷ ︸

as defined in Proposition 4.2

= |[Ss(λ) − s] ∩ (sj + k + tZ)|
︸ ︷︷ ︸

by Proposition 3.4

,
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where k is the constant 1
2
(s + 1)(t− 1). Furthermore, Proposition 4.1 translates to

|StabGs,t(λ)| =
∏

j∈Z/tZ

(
at,j(λ

t) − [at,j+s(λ
t) − s]

t

)

!

=
∏

j∈Z/tZ

(
at,sj+k(λt) − [at,s(j+1)+k(λt) − s]

t

)

!

︸ ︷︷ ︸

since j + tZ 7→ sj + k + tZ is bijective

=
∏

j∈Z/tZ

zt,j(λ
t)!.

Proof of a-versus-z isomorphism in Proposition 4.2. Let φ be the affine map sending a
point (xi)i∈Z/tZ on the (t− 1)-dimensional plane

∑

i∈Z/tZ Xi =
(
t
2

)
to (yj)j∈Z/tZ with yj :=

1
t
(xsj+k− [xs(j+1)+k− s]). Then φ maps into the (t−1)-dimensional plane

∑

j∈Z/tZ Yj = s.

Since s, t are coprime, it is easy to check that φ : {
∑

i∈Z/tZ Xi =
(
t
2

)
} → {

∑

j∈Z/tZ Yj = s}
is injective, hence bijective.

Perhaps the most natural description of the inverse φ−1 is given (for ℓ ∈ Z/tZ, noting
that ℓ 7→ sℓ + k is surjective modulo t) by evaluating

∑t−1
j=0(

t−1
2

− j)yj+ℓ · t, i.e. the sum
∑t−1

j=0(
t−1
2

− j)s + ( t−1
2

− j)xsj+sℓ+k − ( t−1
2

− j)xs(j+1)+sℓ+k, which telescopes to

t− 1

2
xs·0+sℓ+k +

t− 1

2
xs·t+sℓ+k −

t−2∑

j=0

xs(j+1)+sℓ+k = txsℓ+k −

(
t

2

)

.

This yields the equality
∑t−1

j=0(
t−1
2

− j)yj+ℓ = xsℓ+k −
t−1
2

.
Having analyzed the ambient affine space, we now wish to show that φ restricts to a

set bijection At(s) → TDt(s) for Cs∩Ct, as well as the analogous bijection for Ct. Suppose
(xi) ∈ {

∑

i∈Z/tZ Xi =
(
t
2

)
} corresponds under φ to (yj) ∈ {

∑

j∈Z/tZ Yj = s}; then we make
the following observations.

1. Since s, t are coprime, the inequalities xi > xi+s− s hold for all i ∈ Z/tZ if and only
if yj > 0 for all j ∈ Z/tZ;

2. The identity
∑t−1

j=0 jyj+ℓ = k−xk+sℓ follows (for any ℓ ∈ Z/tZ) from the telescoping

sum above (substituting
∑t−1

j=0 yj+ℓ = s and k = t−1
2

+ t−1
2

· s);

3. If xi ≡ i (mod t) for all i ∈ Z/tZ, then
∑

jyj = k − xk ≡ 0 (mod t) and yj ≡ 0
(mod 1) for all j ∈ Z/tZ;

4. Suppose
∑t−1

j=0 jyj(= k − xk) is 0 (mod t), i.e. xk ≡ k (mod t), and further yj ≡ 0
(mod 1) for all j ∈ Z/tZ. Then for any ℓ ∈ Z, we have

xk+sℓ = k−

t−1∑

j=0

jyj+ℓ = k+sℓ−

t−1∑

j=0

(j+ℓ)yj+ℓ ≡ k+sℓ−
∑

j∈Z/tZ

jyj ≡ k+sℓ (mod t),

so xi ≡ i (mod t) for all i ∈ Z/tZ (as s, t are coprime). (Alternatively, we could
look at the partial sums z0 + · · · + zℓ−1 = 1

t
(xk − xk+ℓs + ℓs).)
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The first and third items show that φ maps At(s) into TDt(s). The first and fourth items
show that φ−1 maps TDt(s) into At(s). (We are using the fact that φ bijects a superset
of At(s) to a superset of TDt(s).) So φ bijects At(s) to TDt(s), establishing the change
of coordinates for Cs∩Ct. Similarly, considering only the third and fourth items (ignoring
the first item) establishes the change of coordinates for Ct.

Finally, the explicit formula for the inverse φ−1 establishes the desired description of
the inverse (at,i)i∈Z/tZ = φ−1(zt,j)j∈Z/tZ of the isomorphism.

Remark 4.5. Already in this proof we have seen the ‘cyclic shifts identity’
∑t−1

j=0 jyj+ℓ ≡
−sℓ+

∑

j∈Z/tZ jyj (mod t) for t integers (yj)j∈Z/tZ summing to s, which will feature more
prominently in Proposition 4.7.

Corollary 4.6 (Weak version of Anderson’s theorem [5]). At(s) and TDt(s) are discrete
bounded sets, hence finite. In particular, there are finitely many (s, t)-cores, so the sums
in Theorems 1.1, 1.2, 1.3, 1.4 are finite and well-defined.

4.3 Cyclic shifts in the z-coordinates

Johnson [21] relies on cyclic symmetry in his proofs of Anderson’s theorem [5] (that there
are exactly 1

s+t

(
s+t
s

)
distinct simultaneous (s, t)-cores) and Armstrong’s general conjecture

(Theorem 1.1). For Theorems 1.1 and 1.3, we also rely on the following ‘cyclic shifts’
argument.

Proposition 4.7 (c.f. [21, proofs of Corollary 3.6 and Theorem 3.7]). Fix coprime s, t >
1. Let f(X0, . . . , Xt−1) be a cyclic complex-valued function (i.e. for all i ∈ Z/tZ we have
f(X0, . . . , Xt−1) = f(Xi, . . . , Xi+t−1), with indices taken modulo t). Then

∑

(zt,j)j∈Z/tZ∈TDt(s)

f(zt,0, . . . , zt,t−1) =
1

t

∑

xj>0∑
j∈Z/tZ xj=s

f(x0, . . . , xt−1).

Proof. For any t nonnegative integers x0, . . . , xt−1 > 0 (indexed modulo t) summing to
s, the cyclic permutations (xr, . . . , xr+t−1) leave distinct residues via the ‘cyclic shifts
identity’

∑

j∈Z/tZ

jxr+j ≡ −rs +
∑

j∈Z/tZ

(r + j)xr+j ≡ −rs +
∑

j∈Z/tZ

jxj (mod t),

since s is coprime to t. Thus each orbit of the cyclic Z/tZ-action contains exactly one
point of TDt(s), and since f is cyclic (and the sums are over the finite sets TDt(s) and
{(xj)j∈Z/tZ ∈ Zt

>0 :
∑

j∈Z/tZ xj = s}, by Corollary 4.6), the result follows.

Corollary 4.8 (Relevant cyclic sums). Fix coprime s, t > 1. Then we evaluate the sum
∑

(zt,j)∈TDt(s)
f(zt,0, . . . , zt,t−1) in the cases listed below, where the most important terms

have been boxed. For a vector or weak composition x = (xi)i∈Z/tZ with t components, define

the sum |x| :=
∑

i∈Z/tZ xi and (if appropriate) the multinomial coefficient
(
|x|
x

)
:=

(
|x|

x1,...,xt

)
.

First we look at “exponential” cases.
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• 1
t
· ts when f =

(
|x|
x

)
· 1 (constant);

• 1
t
· sts−1 when f =

(
|x|
x

)
· 1
t

∑

i∈Z/tZ xi (linear);

• 1
t
· s(s− 1)ts−2 when f =

(
|x|
x

)
· 1
t

∑

i∈Z/tZ xi(xi − 1) or f =
(
|x|
x

)
· 1
t

∑

i∈Z/tZ xixi+r

for some r 6≡ 0 (mod t) (quadratic).

Next we look at “ordinary” cases.

• 1
t
·
(
s+t−1
t−1

)
when f = 1 (constant);

• 1
t
·
(
s+t−1

t

)
when f = 1

t

∑

i∈Z/tZ xi (linear);

• 1
t
· 2
(
s+t−1
t+1

)
when f = 1

t

∑

i∈Z/tZ xi(xi − 1) (square quadratic);

• 1
t
·
(
s+t−1
t+1

)
when f = 1

t

∑

i∈Z/tZ xixi+r for some r 6≡ 0 (mod t) (mixed quadratic).

Remark 4.9. We will use these explicit (generating function) calculations below in the
proofs of Theorems 1.1 and 1.3, instead of the coarser Ehrhart and Euler–Maclaurin theory
language of Johnson [21]. (See Remarks 8.3 and 8.6 for further conceptual discussion.)

Proof of “exponential” cases. First we use Proposition 4.7 to reduce the cyclic sums in
question over TDt(s) to sums over the easier domain of {xi > 0 : |x| = s}. On this easier
domain, the standard tool of exponential generating functions (

∏

i∈Z/tZ exp(ZiT )) suffices.

Equivalently, one may directly differentiate the multinomial
∑

|x|=s

(
|x|
x

)
Zx0

0 · · ·Z
xt−1

t−1 =

(Z0 + · · · + Zt−1)
s. For example, by differentiating zero times we get

∑

|x|=s

(
|x|
x

)
= ts;

by differentiating once we get
∑

|x|=s

(
|x|
x

)
x0 = sts−1; and by differentiating twice we get

∑

|x|=s

(
|x|
x

)
x0(x0 − 1) =

∑

|x|=s

(
|x|
x

)
x0xr = s(s− 1)ts−2 (if t ∤ r).

Proof of “ordinary” cases. Once again we use Proposition 4.7 to reduce the cyclic sums in
question over TDt(s) to sums over the easier domain of {xi > 0 : |x| = s}, where the stan-
dard tool of ordinary generating functions (

∏

i∈Z/tZ(1−ZiT )−1) suffices. For example, by

differentiating zero times we get
∑

|x|=s 1 = [T s](1−T )−t =
(
s+t−1
t−1

)
; by differentiating once

(with respect to Z0) we get
∑

|x|=s x0 = [T s]T (1 − T )−t−1 =
(
(s−1)+(t+1)−1

(t+1)−1

)
; by differenti-

ating twice with respect to Z0 we get
∑

|x|=s x0(x0 − 1) = [T s]2T 2(1 − T )−t−2 = 2
(
s+t−1
t+1

)
;

or by differentiating once with respect to each of Z0, Zr (if t ∤ r) we get
∑

|x|=s x0xr =

[T s]T 2(1 − T )−t−2 =
(
s+t−1
t+1

)
.
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4.4 Size of a t-core

The c- and a- coordinate versions of the following lemma could have been placed ear-
lier, but we wish to use the z-coordinates, most relevant right before Section 5. The
c-coordinate version has been used in [19] and [12] to deduce certain properties of the
generating function for t-cores.

Lemma 4.10 (c.f. [21, proof of Theorem 2.10]). Fix t > 1 and a t-core λ.

• In Johnson’s ct-coordinates, |λ| =
∑t−1

i=0(
t
2
c2t,i − ( t−1

2
− i)ct,i), from [21, Theorem

2.10]; [19, Bijection 2]; [12], up to the linear relation
∑

i∈Z/tZ ct,i = 0.

• In Fayers’ at-coordinates, |λ| = − 1
24

(t2 − 1) + 1
2t

∑

i∈Z/tZ[at,i −
t−1
2

]2 (a symmetric

polynomial);

• Fix s > 1 coprime to t. In the extended zt-coordinates,

|λ| = −
1

24
(t2 − 1) +

1

24
(t2 − 1)

∑

ℓ∈Z/tZ

z2t,ℓ + M2(zt,0, . . . , zt,t−1)

(a cyclic polynomial), where M2 ∈ Z[X0, . . . , Xt−1] is the “leftover” cyclic homoge-
neous quadratic with only ‘mixed’ terms (i.e. no square terms X2

0 , . . . , X
2
t−1), and

with coefficient sum − 1
24
t(t2 − 1).

In particular, in z-coordinates, the sum of the coefficients of |λ| + 1
24

(t2 − 1)—the non-
constant (i.e. homogeneous quadratic) part of the z-expression—is 0.

Remark 4.11. Our proofs of Theorems 1.1 and 1.3 rely crucially on the cyclic symmetry
of the formula for the size |λ| in the z-coordinates. (Johnson’s proof of Theorem 1.1 does
as well [21].) Due to the cyclic nature of the change of variables relating the z- and a-
coordinates (see Proposition 4.2), it suffices to understand why |λ| is symmetric in the
a-coordinates.

The following proof directly explains the (complete) symmetry in the a-coordinates,
but one could also convert from the c-coordinates using Section 2.4.

Discrete calculus proof for a-coordinates. Split the partition into two halves by cutting
along the y-axis (see Figure 3). We calculate the size of the partition (or area of the
partition diagram) as

|λ| =
∑

x∈Bλ

x+ 1

2
>0

(

x +
1

2

)

−
∑

x/∈Bλ

x+ 1

2
<0

(

x +
1

2

)

.

As written this holds for any partition, but we want to simplify it further for t-cores
λ. As we are working with the at,i-coordinates, we will break up the contributions by
residue class modulo t. Fix 0 6 i 6 t− 1, and define the i + tZ area contribution F (at,i)
(i.e. contribution in the sums above from x congruent to i (mod t)); we will study how
it changes as at,i varies along the residue class i + tZ. We have
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Figure 3: Russian notation for λ = (3, 2, 2, 0, . . .), based on Figure 2. The y-axis (dotted)
is distinguished for area computation: |λ| = 5

2
+ 1

2
− (−3

2
) − (−5

2
).

• F (i) = 0 (no contribution when Bλ ∩ (i + tZ) = {. . . , i− 3s, i− 2s, i− s});

• F (at,i) − F (at,i − t) = [at,i − t] + 1
2

(note that this holds both in the ‘positive/left
case’ at,i > i + t and the ‘negative/right case’ at,i 6 i).

Standard discrete calculus yields F (at,i) = G(at,i)−G(i), where G(x) = 1
2t
x(x−t)+ 1

2
· 1
t
x.

Completing the square gives F (at,i) = 1
2t

[at,i −
t−1
2

]2 − 1
2t

[i− t−1
2

]2.

To finish, we sum over all 0 6 i 6 t − 1, using the identity 1
2t

∑t−1
i=0(i −

t−1
2

)2 =
1
24

(t2 − 1).

Proof of a-to-z translation. Write |λ| = − 1
24

(t2 − 1) + 1
2t
· P for convenience. Proposition

4.2 (which holds for t-cores, not just (s, t)-cores) gives at,k+ℓs −
t−1
2

=
∑t−1

j=0(
t−1
2

− j)zt,j+ℓ

for all ℓ ∈ Z/tZ, since s, t are coprime. Then

P :=
t−1∑

i=0

[

at,i −
t− 1

2

]2

=
∑

ℓ∈Z/tZ

[

at,k+ℓs −
t− 1

2

]2

=
∑

ℓ∈Z/tZ

[
t−1∑

j=0

(
t− 1

2
− j

)

zt,j+ℓ

]2

(1)
is a cyclic quadratic polynomial in the zt,ℓ, so P = C(t)

∑

ℓ∈Z/tZ z
2
t,ℓ + H(zt,0, . . . , zt,t−1)

for some constant C depending only on t, and a cyclic homogeneous quadratic H ∈
Z[X0, . . . , Xt−1] with no ‘square terms’ (i.e. X2

0 , . . . , X
2
t−1). We make the following calcu-

lations.

• P vanishes when at,ℓ = t−1
2

for all ℓ ∈ Z/tZ, or equivalently when the z-coordinates
are all equal. So the sum of z-coefficients of |λ| + 1

24
(t2 − 1) = 1

2t
· P is 0.

• C(t) =
∑t−1

j=0(
t−1
2

− j)2 = 1
12
t(t2 − 1).

• H(1, . . . , 1) = P (1, . . . , 1) − C(t)
∑

ℓ∈Z/tZ 12 = 0 − tC(t) = − 1
12
t2(t2 − 1).

Substituting P into |λ| = − 1
24

(t2 − 1) + 1
2t
· P finishes the job.
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5 Proofs of general conjectures

In this section, we first give a proof of Armstrong’s general conjecture by direct compu-
tation. We then use the same methods to prove Fayers’ general conjecture.

Proof of Theorem 1.1 by direct computation. We use z-coordinates. By Corollary 4.8, the
denominator is just

∑

TDt(s)
1 = 1

t

(
s+t−1
t−1

)
(the number of (s, t)-cores).

Using Lemma 4.10 and Corollary 4.8 with the identity x2 = x(x−1)+x, the numerator
∑

TDt(s)
|λ| =

∑

TDt(s)
(− 1

24
(t2 − 1) · 1 + 1

24
(t2 − 1) ·

∑

ℓ∈Z/tZ z
2
t,ℓ + M2(zt,ℓ)) becomes

−
t2 − 1

24
·

1

t

(
N

t− 1

)

+
t2 − 1

24
· t ·

1

t

[(
N

t

)

+ 2

(
N

t + 1

)]

−
t(t2 − 1)

24
·

1

t

(
N

t + 1

)

=
t2 − 1

24
·

1

t

(
N

t− 1

)[

−1 + t ·
s

t
+ t ·

s(s− 1)

t(t + 1)

]

,

where we have suppressed N := s + t − 1 and used
(
N
t

)
= s

t

(
N
t−1

)
and

(
N
t+1

)
= s−1

t+1

(
N
t

)

(viewed as polynomial identities in s, for fixed t > 1). Finally, dividing the numerator

expression by the denominator 1
t

(
N
t−1

)
yields 1

24
(t2 − 1)(−1 + s + s(s−1)

t+1
), which simplifies

to 1
24

(t− 1)(t + 1) s−1
t+1

[(t + 1) + s] = 1
24

(s− 1)(t− 1)(s + t + 1).

The same technique proves Fayers’ general conjecture.

Proof of Theorem 1.3. In z-coordinates, the stabilizer StabGs,t(λ) has size
∏

i∈Z/tZ zt,i! (by

Corollary 4.4). By Corollary 4.8, the denominator times s! is just
∑

TDt(s)

(
|zt|
zt

)
= 1

t
· ts =

ts−1.
Using Lemma 4.10 and Corollary 4.8 with the identity x2 = x(x−1)+x, the numerator

times s!, i.e.
∑

TDt(s)

(
|zt|
zt

)
|λ| =

∑

TDt(s)

(
|zt|
zt

)
(− 1

24
(t2 − 1) · 1 + 1

24
(t2 − 1) ·

∑

ℓ∈Z/tZ z
2
t,ℓ +

M2(zt,ℓ)), becomes

− 1
24

(t2 − 1) · 1
t
· ts + 1

24
(t2 − 1) · [sts−1 + s(s− 1)ts−2] − 1

24
(t2 − 1) · s(s− 1)ts−2,

which simplifies to 1
24

(t2 − 1)ts−1(s− 1). Finally, dividing (s! times the) numerator by (s!
times the) denominator yields the desired ratio of 1

24
(s− 1)(t2 − 1).

Remark 5.1. Conceptually, the s(s−1)ts−2 coefficients cancel because they collect to form
the sum of the coefficients of |λ| + 1

24
(t2 − 1), which is 0 as noted in Lemma 4.10.

6 Self-conjugate analogs

Using almost the same methods as before, we build up to proofs of Theorems 1.2 and
1.4 in Section 6.4. However, we no longer need a cyclic shifts argument, because the
parameterization of self-conjugate cores (see Proposition 6.11) is simpler.
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6.1 Background: beta-sets, charges, s-sets, and conjugation

Proposition 6.1 (c.f. [15, Lemma 4.3]). Fix x ∈ Z. Then x ∈ Bλ if and only if
−1 − x /∈ Bλ.

Proposition 6.2 (Extension of Fayers [15, Lemma 4.6]). Fix s > 1 and i ∈ Z/sZ. Then
cs,i(λ) = −cs,−1−i(λ) holds for all partitions λ.

Proof. Substituting Proposition 6.1 into Definition 2.4 for cs,i(λ) gives

cs,i(λ) = #[(−1−i+sZ)∩(−1−Bλ)∩{x+1
2
< 0}]−#[(−1−i+sZ)∩(Z\−1−Bλ)∩{x+1

2
> 0}].

Applying the involution x 7→ −1 − x recovers the definition of −cs,−1−i(λ).

But the s-core operation preserves s-charge (see Proposition 2.10), so Proposition 6.2
yields cs,i(λ

s
) = cs,i(λ) = cs,−1−i(λ) = cs,−1−i(λ

s) = cs,i(λs). Since c-coordinates uniquely
parameterize s-cores (Proposition 2.7), we obtain the following result.

Corollary 6.3. The s-core operation commutes with conjugation, i.e. λ
s

= λs for any
partition λ.

The c-to-a translation of Section 2.4 gives another corollary of Proposition 6.2.

Corollary 6.4 ([15, proof of Lemma 4.6]). Fix λ ∈ Cs. Then λ ∈ Cs as well, and
as,i(λ) = s − 1 − as,−1−i(λ) for all i ∈ Z/sZ, or equivalently Ss(λ) = s − 1 − Ss(λ). In
particular, λ ∈ Ds if and only if Ss(λ) = s − 1 − Ss(λ), i.e. Ss is a symmetric s-set in
Fayers’ terminology.

6.2 Background: t-cores of self-conjugate s-cores

6.2.1 Comparing t-cores of different self-conjugate s-cores

The only necessary modification from the general case is the following self-conjugate
version of Proposition 3.2.

Proposition 6.5 (Extension of Proposition 3.2). Fix any s, t > 1 and λ ∈ Ds. Then
λt ∈ Ds ∩ Dt, and furthermore Ss(λ

t) ≡ Ss(λ) (mod t) (viewed as multisets of residues).

Direct alternative proof. Proposition 3.2 already shows everything except that λt is self-
conjugate. Strictly speaking, [15, Proposition 4.7] does prove this indirectly, but it is

cleaner to use λ = λ and Corollary 6.3 to get λt = λ
t

= λt.

6.2.2 Self-conjugate level t action

We now present a self-conjugate analog of the group Gs,t from Definition 3.7.
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Definition 6.6 (c.f. [15, Section 4.1]). Fix coprime s, t > 1. Let Hs,t be the subgroup of
Gs,t consisting of f ∈ Gs,t such that f(−1−m) = −1− f(m) for all m ∈ Z (based on the
involution m 7→ −1 −m).

It is easy to check that Hs,t has a group structure, and that it acts in the obvious way
on the set of symmetric s-sets Ss(λ), or equivalently suitable beta-sets. This induces an
action on Ds, via Corollary 6.4.

Remark 6.7 (Different but equivalent definitions). We have not given Fayers’ actual defini-
tion of the ‘level t action of the s-affine hyperoctahedral group’, but rather one equivalent
by [15, Propositions 4.1 and 4.2], and easier to work with for our purposes.

Remark 6.8 (Natural action?). It is not hard to show that Hs,t is the subset of elements
f ∈ Gs,t that preserve Ds.

We have following self-conjugate analog of Proposition 3.10, with analogous proof.

Proposition 6.9 (c.f. [15, proof of Proposition 4.9]). Let λ, µ be self-conjugate s-cores,
and φ : Ss(λ) → Ss(µ) a bijection (of symmetric s-sets) that preserves residue classes
modulo t, satisfying φ(m) + φ(s − 1 − m) = s − 1 for all m ∈ Ss(λ). Then φ uniquely
extends to an element f ∈ Hs,t (under Definition 6.6).

We can now state a self-conjugate analog of Corollary 3.11.

Corollary 6.10 ([15, Corollary 4.8]). Fix coprime s, t > 1. Then λ, µ ∈ Ds lie in the
same Hs,t-orbit if and only if λt = µt. In other words, each Hs,t-orbit of Ds contains a
unique t-core (hence self-conjugate (s, t)-core), and any λ ∈ Ds lies in Hs,tλ

t.

Sketch of more direct proof. Fix λ, µ ∈ Ds. Proposition 3.6 followed by Proposition 6.9
gives equivalence of λt = µt and µ ∈ Hs,tλ. The re-phrasing follows by specializing to
µ := λt (where λt ∈ Ds follows from Proposition 6.5).

Definition 6.6 and Corollary 6.10 provide the background and context for Theorem 1.4
(stated in the introduction).

6.3 Key inputs for computation

In this section, we describe all the computational methods and results used to compute
the sums in Theorems 1.2 and 1.4, roughly following the structure of Section 4.

6.3.1 Johnson’s u-coordinates versus Fayers’ t-sets

We will use the z-coordinates again (and the closely related u-coordinates) to get a simple
expression (Proposition 6.12) for the Hs,t-stabilizers. Again, we not only review Johnson’s
(s, t)-core parameterization, but also give a modest extension to general t-cores.

Proposition 6.11 (c.f. [21, Section 3.3]: Johnson’s u-coordinates versus Fayers’ t-sets).
Fix coprime s, t > 1. For convenience, let s′ = ⌊s/2⌋ and t′ = ⌊t/2⌋. The set Ds ∩ Dt

of self-conjugate (s, t)-cores (viewed as self-conjugate s-cores within the set of t-cores) is
parameterized by either of the sets Bt(s), Ut(s), described as follows.
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• By Lemma 3.1, the set of t-sets St(λ) of self-conjugate (s, t)-cores λ, i.e. the subset
Bt(s) of points (at,i)i∈Z/tZ ∈ At(s) (specializing a-coordinates from Proposition 4.2)
satisfying the additional symmetry at,i + at,−1−i = t− 1 from Corollary 6.4—this is
[15, Lemma 4.6].

• The subset Ut(s) of points (zt,i)i∈Z/tZ ∈ TDt(s) (specializing z-coordinates from
Proposition 4.2) satisfying the additional symmetry zt,i = zt,−i—this is [21, Lemma
3.9].

• In fact, as implicitly used in [21, proof of Lemma 3.10], the set Ut(s) is canonically
isomorphic to the set of lattice points {(u0, u1, . . . , ut′) ∈ Z1+t′

>0 : u0 +u1 + · · ·+ut′ =

s′}, with the isomorphism defined by u0 := ⌊zt,0/2⌋ = s′ −
∑t′

i=1 ui and the following
additional relations: ui := zt,i (for 1 6 i 6 t′) if t is odd; and ut′ := zt,t′/2 and
ui := zt,i (for 1 6 i 6 t′ − 1) if t is even.

The isomorphism between these sets (also preserving the ambient linear and simplex
structures) is the same as that described in Proposition 4.2.

Under the same affine change of coordinates, the set Dt of self-conjugate t-cores can
be parameterized as follows.

• By Proposition 2.11, the set of t-sets St(λ) of self-conjugate t-cores λ, i.e. the subset
of points (at,i)i∈Z/tZ ∈ Ct satisfying the additional symmetry at,i + at,−1−i = t − 1
from Corollary 6.4.

• In z-coordinates, the subset of points (zt,i)i∈Z/tZ ∈ Ct satisfying the additional sym-
metry zt,i = zt,−i.

• In u-coordinates, the set of lattice points {(u0, u1, . . . , ut′) ∈ Z1+t′ : u0+u1+· · ·+ut′ =

s′}, with the isomorphism defined by u0 := ⌊zt,0/2⌋ = s′ −
∑t′

i=1 ui and the following
additional relations: ui := zt,i (for 1 6 i 6 t′) if t is odd; and ut′ := zt,t′/2 and
ui := zt,i (for 1 6 i 6 t′ − 1) if t is even.

Proof of a-to-z translation. As usual, let k = 1
2
(s + 1)(t − 1). Define the map φ as in

Proposition 4.2, so for any i ∈ Z/tZ, the difference t · (yi − y−i) evaluates to

(xsi+k − xsi+s+k + s) − (x−si+k − x−si+s+k + s) = (xsi+k + x−si+s+k) − (xsi+s+k + x−si+k).

Observe that (si+k) + (−si+s+k) = (−si+k) + (si+s+k) = s+ 2k ≡ −1 (mod t) for
all i ∈ Z/tZ. It follows (since s is coprime to t) that yi = y−i for all i ∈ Z/tZ if and only
if xi + x−1−i is constant over i ∈ Z/tZ; if and only if xi + x−1−i = t − 1 for all i ∈ Z/tZ
(because we are working in the plane

∑

i∈Z/tZ(xi + x−1−i) = t(t− 1)).

Proof of z-to-u translation. If yi = y−i for all i ∈ Z/tZ, then 0y0 = 0 and iyi+(t−i)yt−i ≡
0 (mod t) for all i ∈ Z/tZ.

If t is odd, then we automatically get
∑

i∈Z/tZ iyi ≡ 0 (mod t), clearly establishing

Ut(s) = {(u0, u1, . . . , ut′) ∈ Z1+t′

>0 : u0 + u1 + · · ·+ ut′ = s′} under the canonical map given

by ui := zt,i for 1 6 i 6 t′ and u0 := ⌊zt,0/2⌋ = s′ −
∑t′

i=1 ui (from
∑

i∈Z/tZ zt,i = s).
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If t is even, then the vanishing of
∑

i∈Z/tZ iyi ≡ (t/2)yt/2 (mod t) modulo t is equivalent

to yt′ ≡ 0 (mod 2). This establishes the isomorphism Ut(s) = {(u0, u1, . . . , ut′) ∈ Z1+t′

>0 :
u0 + u1 + · · · + ut′ = s′} under the canonical map given by ut′ = zt,t′/2; ui := zt,i for

1 6 i 6 t′ − 1; and and u0 := ⌊zt,0/2⌋ = s′ −
∑t′

i=1 ui (from
∑

i∈Z/tZ zt,i = s).
The previous two paragraphs prove the result for Ds∩Dt. The same z-to-u conversion

works for Dt as well, except one ignores the inequality conditions ui > 0 (which come
from the conditions zt,i > 0 of TDt(s)).

6.3.2 Size of the stabilizer of a self-conjugate s-core

The main new observation for Theorem 1.4 is the following computational simplification of
Fayers’ formula for the size of the stabilizer of a self-conjugate s-core, based on Proposition
3.4. This is the self-conjugate analog of Corollary 4.4 to Proposition 4.1.

Proposition 6.12 (c.f. Fayers [15, Proposition 4.9]). Fix coprime s, t > 1, and λ ∈ Ds.
For convenience, let t′ = ⌊t/2⌋.

1. If t is odd, then |StabHs,t(λ)| equals

2⌊zt,0(λt)/2⌋⌊zt,0(λ
t)/2⌋!

t′∏

i=1

zt,i(λ
t)! = 2u0(λt)

t′∏

i=0

ui(λ
t)!.

2. If t is even (so s is odd), then |StabHs,t(λ)| equals

2⌊zt,0(λt)/2⌋⌊zt,0(λ
t)/2⌋!2⌊zt,t′ (λ

t)/2⌋⌊zt,t′(λ
t)/2⌋!

t′−1∏

i=1

zt,i(λ
t)! = 2u0(λt)+ut′ (λ

t)

t′∏

i=0

ui(λ
t)!.

Proof. Fix λ ∈ Ds. Fayers uses Proposition 6.9 to compute |StabHs,t(λ)| as the number
of permutations π of the symmetric s-set Ss(λ) with π(s − 1 − m) = s − 1 − π(m)
and π(m) ≡ m (mod t) for all m ∈ Ss(λ), i.e. the product of the following individual
contributions:

• |Ss(λ) ∩ (j + tZ)|! = |Ss(λ) ∩ (s− 1 − j + tZ)|! for each pair of distinct residues
{j, s− 1 − j} (mod t);

• 2⌊ 1

2
|Ss(λ)∩(j+tZ)|⌋⌊1

2
|Ss(λ) ∩ (j + tZ)|⌋! for each residue j (mod t) with j ≡ s− 1 − j

(mod t).

Fayers evaluates the product in his own way, but it will be easier for us to directly translate
to z-coordinates via

zt,i(λ
t) = 1

t
(at,si+k(λt) − [at,s(i+1)+k(λt) − s]) = |Ss(λ) ∩ (si + s + k + tZ)|

from Corollary 4.4 (where k = 1
2
(s + 1)(t − 1) as usual), and then to u-coordinates via

Proposition 6.11 (as we have λt ∈ Ds∩Dt by Proposition 6.5). Observe that 2s+2k ≡ s−1
(mod t).
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1. If t is odd, then the only residue j with j ≡ s − 1 − j (mod t) is 2−1(s − 1)
(mod t). It follows that the residues si + s + k + tZ, for 0 6 i 6 t−1

2
= t′, form

a set of representatives of the pairs of residues {j, s − 1 − j} (mod t), with i = 0
corresponding to j = s + k ≡ 2−1(s − 1) (mod t). Thus |StabHs,t(λ)| equals the

product 2⌊zt,0(λt)/2⌋⌊zt,0(λ
t)/2⌋!

∏t′

i=1 zt,i(λ
t)!.

2. If t is even (so s is odd), then the residues j with j ≡ s− 1− j (mod t) are s−1
2

+ tZ
and s−1

2
+ t

2
+ tZ. It follows that the residues si + s + k + tZ, for 0 6 i 6 t

2
= t′,

form a set of representatives of the pairs of residues {j, s − 1 − j} (mod t), with
i = 0 corresponding to j = s + k = s + (t − 1) s+1

2
≡ s−1

2
(mod t) and i = t

2
= t′

corresponding to j = s t
2

+ s + k ≡ 1 t
2

+ s−1
2

= s−1
2

+ t
2

(mod t). Thus |StabHs,t(λ)|

equals the product 2⌊zt,0(λt)/2⌋⌊zt,0(λ
t)/2⌋!2⌊zt,t′ (λ

t)/2⌋⌊zt,t′(λ
t)/2⌋!

∏t′−1
i=1 zt,i(λ

t)!.

Finally, in the odd t case, we can translate to u-coordinates using u0 = ⌊zt,0/2⌋ and
ui = zt,i for 1 6 i 6 t′. In the even case, we instead use zt,t′ = 2ut′ , u0 = ⌊zt,0/2⌋, and
ui = zt,i for 1 6 i 6 t′ − 1.

6.3.3 Evaluating quadratic sums in u-coordinates

We will evaluate several special u-coordinate sums in our proofs of Theorems 1.2 and 1.4
using the following self-conjugate analog of Corollary 4.8.

Proposition 6.13. Fix coprime s, t > 1. Define Ut(s) as in Proposition 6.11 (we will
freely switch between z-coordinates and u-coordinates parameterizing self-conjugate (s, t)-
cores as appropriate). For convenience, let s′ = ⌊s/2⌋ and t′ = ⌊t/2⌋, and let [s]2 :=
s−2s′ ∈ {0, 1}. Then we evaluate the sum

∑

(zt,j)∈Ut(s)
f(zt,0, . . . , zt,t−1) in the cases listed

below, where the most important terms have been boxed.
First we look at ‘modified exponential’ cases for odd t, freely using zt,0 = 2u0 + [s]2.

1. (1·2−1+t′·1)s
′

= ( t
2
)s

′

when (t is odd and) f = 2−u0

(
|u|
u

)
· 1 , where u = (u0, . . . , ut′);

2. s′( t
2
)s

′−1 when f = 2−u0

(
|u|
u

)
· ui for some 1 6 i 6 t′;

3. s′(s′ − 1)( t
2
)s

′−2 when either f = 2−u0

(
|u|
u

)
· ui(ui − 1) for some 1 6 i 6 t′ or

f = 2−u0

(
|u|
u

)
· uiuj for some distinct 1 6 i < j 6 t′;

4. [s]22(
t
2
)s

′

+ (2 + 2[s]2)s
′( t

2
)s

′−1 + s′(s′ − 1)( t
2
)s

′−2 (comes from [s]22(
t
2
)s

′

+(4+4[s]2) ·

2−1s′( t
2
)s

′−1 + 4 · 2−2s′(s′ − 1)( t
2
)s

′−2) when f = 2−u0

(
|u|
u

)
· z2t,0 = 2−u0

(
|u|
u

)
· ([s]22 +

(4 + 4[s]2)u0 + 4u0(u0 − 1)) for some 1 6 i 6 t′;

5. [s]2s
′( t

2
)s

′−1 + s′(s′ − 1)( t
2
)s

′−2 (comes from [s]2s
′( t

2
)s

′−1 + 2 · 2−1s′(s′ − 1)( t
2
)s

′−2)

when f = 2−u0

(
|u|
u

)
· zt,0ui = 2−u0

(
|u|
u

)
· ([s]2ui + 2u0ui) for some 1 6 i 6 t′.
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Next we look at ‘modified exponential’ cases for even t, freely using zt,0 = 2u0 + [s]2
and zt,t′ = 2ut′.

1. (1 · 2−1 + ( t
2
− 1) · 1 + 2−1)s

′

= ( t
2
)s

′

when (t is even and) f = 2−u0−ut′
(
|u|
u

)
· 1 ;

2. s′( t
2
)s

′−1 when f = 2−u0−ut′
(
|u|
u

)
· ui for some 1 6 i 6 t′ − 1;

3. s′(s′ − 1)( t
2
)s

′−2 when either f = 2−u0−ut′
(
|u|
u

)
· ui(ui − 1) for some 1 6 i 6 t′ − 1

or f = 2−u0−ut′
(
|u|
u

)
· uiuj for some distinct 1 6 i < j 6 t′ − 1;

4. 2 · 2−1s′(s′ − 1)( t
2
)s

′−2 = s′(s′ − 1)( t
2
)s

′−2 when f = 2−u0−ut′
(
|u|
u

)
· zt,t′ui = 2 ·

2−u0−ut′
(
|u|
u

)
· ut′ui for some 1 6 i 6 t′ − 1;

5. 2 · 2−1s′( t
2
)s

′−1 = s′( t
2
)s

′−1 when f = 2−u0−ut′
(
|u|
u

)
· zt,t′ = 2 · 2−u0−ut′

(
|u|
u

)
· ut′;

6. 22 · 2−2s′(s′ − 1)( t
2
)s

′−2 + 22 · 2−1s′( t
2
)s

′−1 = s′(s′ − 1)( t
2
)s

′−2 + 2s′( t
2
)s

′−1 when f =

2−u0−ut′
(
|u|
u

)
· z2t,t′ = 22 · 2−u0−ut′

(
|u|
u

)
[ut′(ut′ − 1) + ut′ ];

7. [s]22(
t
2
)s

′

+ (2 + 2[s]2)s
′( t

2
)s

′−1 + s′(s′ − 1)( t
2
)s

′−2 (comes from [s]22(
t
2
)s

′

+(4+4[s]2) ·

2−1s′( t
2
)s

′−1 + 4 · 2−2s′(s′ − 1)( t
2
)s

′−2) when f = 2−u0−ut′
(
|u|
u

)
· z2t,0 = 2−u0−ut′

(
|u|
u

)
·

([s]22 + (4 + 4[s]2)u0 + 4u0(u0 − 1)) for some 1 6 i 6 t′;

8. [s]2s
′( t

2
)s

′−1 + s′(s′ − 1)( t
2
)s

′−2 (comes from [s]2s
′( t

2
)s

′−1 + 2 · 2−1s′(s′ − 1)( t
2
)s

′−2)

when f = 2−u0−ut′
(
|u|
u

)
· zt,0ui = 2−u0−ut′

(
|u|
u

)
·([s]2ui+2u0ui) for some 1 6 i 6 t′−1;

9. [s]2s
′( t

2
)s

′−1 + s′(s′ − 1)( t
2
)s

′−2 (comes from [s]2 · 2 · 2−1s′( t
2
)s

′−1 + 22 · 2−2s′(s′ −

1)( t
2
)s

′−2) when f = 2−u0−ut′
(
|u|
u

)
· zt,0zt,t′ = 2−u0−ut′

(
|u|
u

)
· ([s]2 · 2ut′ + 2u0 · 2ut′).

Finally we look at ‘ordinary’ cases, freely using zt,0 = 2u0 + [s]2.

1.
(
s′+t′

t′

)
when f = 1 ;

2. 2
(
s′+t′

t′+2

)
+
(
s′+t′

t′+1

)
when f = u2

i = ui(ui − 1) + ui for some 1 6 i 6 t′;

3.
(
s′+t′

t′+2

)
when f = uiuj for some distinct 1 6 i < j 6 t′.

4. [s]22
(
s′+t′

t′

)
+ (4 + 4[s]2)

(
s′+t′

t′+1

)
+ 8

(
s′+t′

t′+2

)
when f = z2t,0 = [s]22 + (4 + 4[s]2)u0 +

4u0(u0 − 1) for some 1 6 i 6 t′;
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5. [s]2
(
s′+t′

t′+1

)
+ 2

(
s′+t′

t′+2

)
when f = zt,0ui = [s]2ui + 2u0ui for some 1 6 i 6 t′.

Proof of “exponential” cases. We can mimic the methods in Corollary 4.8, using the ex-
ponential generating function exp(2−1Z0T )

∏t′

i=1 exp(ZiT ) when t is odd, but instead

the exponential generating function exp(2−1Z0T ) exp(2−1Zt′T )
∏t′−1

i=1 exp(ZiT ) when t is
even.

Proof of “ordinary” cases. We can mimic the methods in Corollary 4.8, using the ordinary
generating function

∏t′

i=1(1 − ZiT )−1.

6.3.4 Size of a self-conjugate t-core

Lemma 4.10 (for Ct) simplifies in u-coordinates for Dt.

Lemma 6.14. Fix coprime s, t > 1 and λ ∈ Dt. For convenience, set s′ := ⌊s/2⌋ and
t′ := ⌊t/2⌋. We divide into cases based on the parity of t, but in both cases, the non-
constant (i.e. homogeneous quadratic) part of the quadratic, namely the polynomial given
by |λ| + 1

24
(t2 − 1), has coefficients summing to 0.

• If t is odd, then the size |λ| is given by a quadratic polynomial

− 1
24

(t2 − 1) + M2(u1, . . . , ut′) + S2(u1, . . . , ut′) + zt,0L1(u1, . . . , ut′) + 1
24

(t2 − 1)z2t,0

in zt,0, u1, . . . , ut′, where S2 is a homogeneous quadratic with only ‘square’ terms,
and with coefficient sum 1

24
(t − 2)(t2 − 1); L1 is a homogeneous linear polynomial

with coefficient sum −2 · 1
24

(t2− 1); and M2 is the “leftover” homogeneous quadratic
with only ‘mixed’ terms, and with coefficient sum − 1

24
(t− 3)(t2 − 1).

• If t is even, then the size |λ| is given by a quadratic polynomial

− 1
24

(t2 − 1) + M2(u1, . . . , ut′−1) + S2(u1, . . . , ut′−1) + 1
24

(t2 − 1)(z2t,t′ + z2t,0)

− 1
24

(t2 + 2)zt,0zt,t′ + zt,0L0(u1, . . . , ut′−1) + zt,t′Lt′(u1, . . . , ut′−1)

in zt,0, u1, . . . , ut′−1, zt,t′, where S2 is a homogeneous quadratic with only ‘square’
terms, and with coefficient sum 1

24
(t − 2)(t2 − 2t − 2); L0 is a homogeneous linear

polynomial with coefficient sum −2 · 1
24

(t2 − 1) + 1
24

(t2 + 2) = − 1
24

(t2 − 4); Lt′ is
a homogeneous linear polynomial with coefficient sum 2 · 1

24
(t2 + 2); and M2 is the

“leftover” homogeneous quadratic with with only ‘mixed’ terms, and with coefficient
sum − 1

24
(t3 − 2t2 + 2t + 8).

Recap of z-coordinate preliminaries. Write |λ| = − 1
24

(t2−1)+ 1
2t
·P for convenience. Since

λ ∈ Dt ⊆ Ct and s, t are coprime, Equation (1) (from the proof of Lemma 4.10) gives the a-
to-z translation P :=

∑t−1
i=0[at,i−

t−1
2

]2 =
∑

ℓ∈Z/tZ(
∑t−1

j=0(
t−1
2
−j)zt,j+ℓ)

2, with P (1, . . . , 1) =

0 in the z-coordinates. Recall also from Lemma 4.10 that [z2t,i]P =
∑t−1

j=0(
t−1
2

− j)2 =
1
12
t(t2 − 1) for all i ∈ Z/tZ.
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We finish by breaking into cases based on parity of t and using Proposition 6.11 (which
applies to Dt, not just Ds ∩ Dt). For convenience, let [x]t ∈ {0, 1, . . . , t − 1} denote the
least nonnegative residue of x (mod t).

Proof of Lemma 6.14 for odd t. In the u-coordinates (using ui = zt,i = zt,−i for 1 6 i 6
t−1
2

= t′), the polynomial P takes the form

P = M(u1, . . . , ut′) +
t′∑

i=1

αiu
2
i +

t′∑

i=1

βiuizt,0 + α0z
2
t,0.

We make the following calculations, often suppressing zi := zt,i.

• We have α0 = [z20 ]P equal to
∑t−1

j=0(
t−1
2

− j)2 (which simplifies as 1
12
t(t2 − 1)).

• To determine αi (for 1 6 i 6
t−1
2

), we evaluate αi = [u2
i ]P = ([z2i ]P + [z2−i]P +

[ziz−i]P ) as 2 · 1
12
t(t2−1)+2

∑

ℓ∈Z/tZ( t−1
2
− [i−ℓ]t)(

t−1
2
− [−i−ℓ]t), or 2 · 1

12
t(t2−1)+

2
∑

ℓ∈Z/tZ( t−1
2
− [2i+ℓ]t)(

t−1
2
− [ℓ]t). It follows that

∑t′

i=0 αi = [z20 ]P + 1
2

∑t−1
i=1([z

2
i ]P +

[z2−i]P + [ziz−i]P ) evaluates to

(t− 1) ·
t(t2 − 1)

12
+

∑

ℓ∈Z/tZ

t−1∑

i=0

(
t− 1

2
− [ℓ]t

)(
t− 1

2
− [2i + ℓ]t

)

.

But gcd(2, t) = 1, so
∑t−1

i=0(
t−1
2

− [2i + ℓ]t) = 0 for each ℓ ∈ Z/tZ. Thus
∑t′

i=0 αi =

(t− 1) · 1
12
t(t2 − 1), and

∑t′

i=1 αi = (t− 2) · 1
12
t(t2 − 1).

• Similarly, we expand (for 1 6 i 6 t−1
2

) βi = ([z0zi] + [z0z−i])P = 4
∑

ℓ∈Z/tZ( t−1
2

−

[i + ℓ]t)(
t−1
2

− [ℓ]t), so that
∑t′

i=1 βi = 2
∑

ℓ∈Z/tZ( t−1
2

− [ℓ]t)
∑t−1

i=1(
t−1
2

− [i + ℓ]t) =

2
∑

ℓ −( t−1
2

− [ℓ]t)
2 = −2 · 1

12
t(t2 − 1).

Finally, P (1, . . . , 1) = 0 gives M(1, . . . , 1) = −(t− 3) · 1
12
t(t2− 1), and substituting P into

|λ| = − 1
24

(t2 − 1) + 1
2t
P finishes the job.

Proof of Lemma 6.14 for even t. In the u-coordinates (using ui = zt,i = zt,−i for 1 6 i 6
t
2
− 1 = t′ − 1), the polynomial P takes the form

P = M(u1, . . . , ut′−1) +
t′−1∑

i=1

γiuizt,t′ +
t′−1∑

i=1

αiu
2
i +

t′−1∑

i=1

βiuizt,0 + α0z
2
t,0 + βt′zt,0zt′ + αt′z

2
t,t′ .

We make the following calculations, often suppressing zi := zt,i.

• We have α0 = [z2t,0]P and αt′ = [z2t,t′ ]P both equal to
∑t−1

j=0(
t−1
2
−j)2 (which simplifies

as 1
12
t(t2 − 1)).
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• For 1 6 i 6 t′ − 1, we evaluate αi = [u2
i ]P = 2 · 1

12
t(t2 − 1) + 2

∑

ℓ∈Z/tZ( t−1
2

−

[ℓ]t)(
t−1
2

− [2i + ℓ]t) as in the odd t case. It follows that
∑t′

i=0 αi = [z20 ]P + [z2t′ ]P +
1
2

∑

0<|i−t′|<t′([z
2
i ]P + [z2−i]P + [ziz−i]P ) evaluates to

(t− 2) ·
t(t2 − 1)

12
+

∑

ℓ∈Z/tZ

(
t− 1

2
− [ℓ]t

) t−1∑

i=0

(
t− 1

2
− [2i + ℓ]t

)

.

Note that
∑t−1

i=0(
t−1
2

− [2i + ℓ]t) depends only on the parity of the residue class ℓ
(mod t); it equals t t−1

2
−2(0+2+· · ·+(t−2)) = (1+3+· · ·+(t−1))−(0+2+· · ·+(t−

2)) = t′ if ℓ is even, and −t′ if ℓ is odd. Thus
∑

ℓ∈Z/tZ( t−1
2
− [ℓ]t)

∑t−1
i=0(

t−1
2
− [2i+ ℓ]t)

evaluates to
∑t′−1

j=0 ( t−1
2

− 2j)t′ + ( t−1
2

− 2j − 1)(−t′) =
∑t′−1

j=0 1 · t′ = 1
4
t2, whence

∑t′

i=0 αi = (t − 2) · 1
12
t(t2 − 1) + 1

4
t2, and

∑t′−1
i=1 αi = (t − 4) · 1

12
t(t2 − 1) + 1

4
t2 =

1
12
t(t− 2)(t2 − 2t− 2).

• Next, βt′ = [z0zt′ ]P = 2
∑

ℓ∈Z/tZ( t−1
2

− [t′ + ℓ]t)(
t−1
2

− [ℓ]t), which simplifies to

2
∑t′−1

j=0 ( t−1
2
− j)( t−1

2
− j− t′)+( t−1

2
− j− t′)( t−1

2
− j) = −1

3
t′(2t′2 +1) = − 1

12
t(t2 +2).

• Similarly, we expand (for 1 6 i 6 t′−1) βi = ([z0zi]+[z0z−i])P = 4
∑

ℓ∈Z/tZ( t−1
2
−[i+

ℓ]t)(
t−1
2
− [ℓ]t), so that

∑t′

i=1 βi = 2
∑

ℓ(
t−1
2
− [ℓ]t)

∑t−1
i=1(

t−1
2
− [i+ℓ]t) = 2

∑

ℓ −( t−1
2
−

[ℓ]t)
2 = −2 · 1

12
t(t2 − 1). It follows that

∑t′−1
i=1 βi = −2 · 1

12
t(t2 − 1) − βt′ = −2 ·

1
12
t(t2 − 1) + 1

12
t(t2 + 2) = − 1

12
t(t2 − 4).

• It remains to compute, for 1 6 i 6 t′ − 1, the coefficient γi = ([zt′zi] + [zt′z−i])P =

4
∑

ℓ∈Z/tZ( t−1
2

− [t′ + i + ℓ]t)(
t−1
2

− [ℓ]t), so that βt′ +
∑t′−1

i=1 γi = 2
∑

ℓ∈Z/tZ( t−1
2

−

[ℓ]t)
∑t−1

i=1(
t−1
2

− [t′ + i + ℓ]t) = 2
∑

ℓ∈Z/tZ −( t−1
2

− [ℓ]t)(
t−1
2

− [t′ + ℓ]t) = −βt′ . Thus
∑t′−1

i=1 γi = −2βt′ = 2 · 1
12
t(t2 + 2).

Finally, P (1, . . . , 1) = 0 gives M(1, . . . , 1) = − 1
12
t(t3 − 2t2 + 2t + 8), and substituting P

into |λ| = − 1
24

(t2 − 1) + 1
2t
P finishes the job.

6.4 Proofs of self-conjugate conjectures

This section is the self-conjugate analog of Section 5, addressing Armstrong’s and Fayers’
self-conjugate conjectures.

Proof of Theorem 1.2 by direct computation for odd t. We use u-coordinates. For conve-
nience, let s′ = ⌊s/2⌋ and t′ = ⌊t/2⌋, and let [s]2 := s− 2s′ ∈ {0, 1}. By Proposition 6.13,
the denominator is just

∑

Ut(s)
1 =

(
t′+s′

t′

)
.

For odd t, Lemma 6.14 says the size |λ| is given by a quadratic polynomial

− 1
24

(t2 − 1) + M2(u1, . . . , ut′) + S2(u1, . . . , ut′) + zt,0L1(u1, . . . , ut′) + 1
24

(t2 − 1)z2t,0

in zt,0, u1, . . . , ut′ , where M2 is a homogeneous quadratic with only ‘mixed’ terms, and
coefficient sum − 1

24
(t − 3)(t2 − 1); S2 is a homogeneous quadratic with only ‘square’
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terms, and coefficient sum 1
24

(t − 2)(t2 − 1); and L1 is a homogeneous linear polynomial
with coefficient sum −2 · 1

24
(t2 − 1). Then by Proposition 6.13, the numerator

∑

Ut(s)
|λ|

evaluates to

−
t2 − 1

24
·

(
N

t′

)

−
(t− 3)(t2 − 1)

24
·

(
N

t′ + 2

)

+
(t− 2)(t2 − 1)

24

[

2

(
N

t′ + 2

)

+

(
N

t′ + 1

)]

− 2
t2 − 1

24

[

[s]2

(
N

t′ + 1

)

+ 2

(
N

t′ + 2

)]

+
t2 − 1

24

[

[s]22

(
N

t′

)

+ (4 + 4[s]2)

(
N

t′ + 1

)

+ 8

(
N

t′ + 2

)]

,

where we have suppressed N := s′ + t′. Collecting terms, and using
(

N
t′+1

)
= s′

t′+1

(
N
t′

)
and

(
N

t′+2

)
= s′−1

t′+2

(
N

t′+1

)
(viewed as polynomial identities in s′, for fixed t′ > 0), the numerator

becomes

t2 − 1

24

[

(−1 + [s]22)

(
N

t′

)

+ [−(t− 3) + 2(t− 2) − 2 · 2 + 8]

(
N

t′ + 2

)

+ [(t− 2) − 2[s]2 + (4 + 4[s]2)]

(
N

t′ + 1

)]

=
t2 − 1

24

(
N

t′

)[

(−1 + [s]22) +
4s′(s′ − 1)

t + 1
+ [t + 2 + 2[s]2]

2s′

t + 1

]

,

where we have used t′ + 2 = t−1
2

+ 2 = t+3
2

to simplify. Factoring t2 − 1 = (t − 1)(t + 1)
and multiplying through by t + 1 transforms the numerator expression to the product of
1
24

(t− 1)
(
N
t′

)
with

(−1 + [s]22)(t + 1) + 4s′2 + 4[s]2s
′ + 2ts′ = −t− 1 + (2s′ + [s]2)

2 + ([s]22 + 2s′)t.

But [s]22 = [s]2 (and 2s′+[s]2 = s), so the product evaluates to 1
24

(t−1)
(
N
t′

)
(−t−1+s2+st),

which factors as 1
24

(t−1)
(
N
t′

)
(s−1)(s+ t+ 1). Dividing numerator by denominator yields

the desired ratio of 1
24

(s− 1)(t− 1)(s + t + 1).

Proof of Theorem 1.2 for even t. If t is even, then s is odd. But the un-weighted problem
is symmetric in s, t, so swapping the roles of s, t in the previous proof establishes the
claim.

The same techniques prove Fayers’ self-conjugate conjecture.

Proof of Theorem 1.4 for odd t. We use u-coordinates. For convenience, let s′ = ⌊s/2⌋
and t′ = ⌊t/2⌋, and let [s]2 := s− 2s′ ∈ {0, 1}. By Proposition 6.12 and Proposition 6.13,
the denominator times s′! is just

∑

Ut(s)
2−u0

(
|u|
u

)
= ( t

2
)s

′

where u = (u0, . . . , ut′).

For odd t, Lemma 6.14 says the size |λ| is given by a quadratic polynomial

− 1
24

(t2 − 1) + M2(u1, . . . , ut′) + S2(u1, . . . , ut′) + zt,0L1(u1, . . . , ut′) + 1
24

(t2 − 1)z2t,0
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in zt,0, u1, . . . , ut′ , where M2 is a homogeneous quadratic with only ‘mixed’ terms, and
coefficient sum − 1

24
(t − 3)(t2 − 1); S2 is a homogeneous quadratic with only ‘square’

terms, and coefficient sum 1
24

(t − 2)(t2 − 1); and L1 is a homogeneous linear polynomial
with coefficient sum −2 · 1

24
(t2 − 1). Then by Propositions 6.12 and 6.13, the numerator

times s′!, i.e. the sum
∑

Ut(s)
2−u0

(
|u|
u

)
|λ|, evaluates to

− 1
24

(t2 − 1) ·N s′ − 1
24

(t− 3)(t2 − 1) · s′(s′ − 1)N s′−2

+ 1
24

(t− 2)(t2 − 1)[s′(s′ − 1)N s′−2 + s′N s′−1]

− 2 · 1
24

(t2 − 1)([s]2s
′N s′−1 + s′(s′ − 1)N s′−2)

+ 1
24

(t2 − 1)([s]22N
s′ + (2 + 2[s]2)s

′N s′−1 + s′(s′ − 1)N s′−2),

where we have suppressed N := t
2
. Collecting terms, we have

• N s′ coefficient − 1
24

(t2 − 1) + 1
24

(t2 − 1)[s]22;

• s′N s′−1 coefficient 1
24

(t2 − 1)[(t− 2) − 2[s]2 + (2 + 2[s]2)], which is just 1
24

(t2 − 1) · t;

• s′(s′−1)N s′−2 coefficient − 1
24

(t−3)(t2−1)+ 1
24

(t−2)(t2−1)−2· 1
24

(t2−1)+ 1
24

(t2−1),
or more conceptually, the sum of coefficients of the polynomial |λ|+ 1

24
(t2−1), which

is 0 as noted at the case-free beginning of Lemma 6.14,

so that the numerator is N s′ · 1
24

(t2−1)(−1+[s]22 + t · s
′

N
), which simplifies, via [s]22 = [s]2 =

s− 2s′, as N s′ · 1
24

(t2 − 1)(s− 1). Finally, dividing numerator (times s′!) by denominator
(times s′!) yields the desired ratio of 1

24
(s− 1)(t2 − 1).

Proof of Theorem 1.4 for even t. We use u-coordinates. For convenience, let s′ = ⌊s/2⌋
and t′ = ⌊t/2⌋, and let [s]2 := s− 2s′ ∈ {0, 1}. By Proposition 6.12 and Proposition 6.13,
the denominator times s′! is just

∑

Ut(s)
2−u0

(
|u|
u

)
= ( t

2
)s

′

.

For even t, Lemma 6.14 says the size |λ| is given by a quadratic polynomial

− 1
24

(t2 − 1) + M2(u1, . . . , ut′−1) + S2(u1, . . . , ut′−1) + 1
24

(t2 − 1)(z2t,t′ + z2t,0)

− 1
24

(t2 + 2)zt,0zt,t′ + zt,0L0(u1, . . . , ut′−1) + zt,t′Lt′(u1, . . . , ut′−1)

in zt,0, u1, . . . , ut′−1, zt,t′ , where M2 is a homogeneous quadratic with with only ‘mixed’
terms, and with coefficient sum − 1

24
(t3−2t2 +2t+8); S2 is a homogeneous quadratic with

only ‘square’ terms, and coefficient sum 1
24

(t− 2)(t2 − 2t− 2); L0 is a homogeneous linear
polynomial with coefficient sum −2 · 1

24
(t2 − 1) + 1

24
(t2 + 2) = − 1

24
(t2 − 4); and Lt′ is a

homogeneous linear polynomial with coefficient sum 2 · 1
24

(t2 + 2). Then by Propositions

6.12 and 6.13, the numerator times s′!, i.e. the sum
∑

Ut(s)
2−u0

(
|u|
u

)
|λ|, is just the sum of

the following terms:

• − 1
24

(t2 − 1) ·N s′ (from constant term);

• − 1
24

(t3 − 2t2 + 2t + 8) · s′(s′ − 1)N s′−2 (from M2);
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• 1
24

(t− 2)(t2 − 2t− 2) · [s′(s′ − 1)N s′−2 + s′N s′−1] (from S2);

• 1
24

(t2 − 1) · [s′(s′ − 1)N s′−2 + 2s′N s′−1] (from z2t,t′);

• 1
24

(t2 − 1) · [[s]22N
s′ + (2 + 2[s]2)s

′N s′−1 + s′(s′ − 1)N s′−2] (from z2t,0);

• − 1
24

(t2 + 2) · [[s]2s
′N s′−1 + s′(s′ − 1)N s′−2] (from zt,0zt,t′);

• − 1
24

(t2 − 4) · [[s]2s
′N s′−1 + s′(s′ − 1)N s′−2] (from zt,0L0);

• 2 · 1
24

(t2 + 2) · s′(s′ − 1)N s′−2 (from zt,t′Lt′),

where we have suppressed N := t
2
. Collecting terms, we have

• N s′ coefficient − 1
24

(t2 − 1) + 1
24

(t2 − 1)[s]22, which is 0 since s is odd;

• s′N s′−1 coefficient 1
24

(t − 2)(t2 − 2t − 2) + 2 · 1
24

(t2 − 1) + 1
24

(t2 − 1)(2 + 2[s]2) −
[s]2

1
24

(t2 + 2) − 1
24

(t2 − 4), which is 1
24
t(t2 + 2) since s is odd;

• s′(s′ − 1)N s′−2 coefficient − 1
24

(t3 − 2t2 + 2t + 8) + 1
24

(t − 2)(t2 − 2t − 2) + 1
24

(t2 −
1) + 1

24
(t2 − 1)− 1

24
(t2 + 2)− 1

24
(t2 − 4) + 2 1

24
(t2 + 2), or more conceptually, the sum

of coefficients of the polynomial |λ|+ 1
24

(t2 − 1), which is 0 as noted at the case-free
beginning of Lemma 6.14.

Thus the numerator times s′! is s′N s′−1 · 1
24
t(t2 + 2) = s−1

2
N s′ · 2 · 1

24
(t2 + 2) = N s′ · 1

24
(s−

1)(t2 + 2), where we have used s′ = s−1
2

(as s must be odd). Dividing numerator (times
s′!) by denominator (times s′!) yields the desired ratio of 1

24
(s− 1)(t2 + 2).

7 Counting (m,m + d,m + 2d)-cores

We give two cyclic shifts proofs of Theorem 1.6, using different z-coordinate-based pa-
rameterizations of Cm ∩ Cm+d ∩ Cm+2d, which may generalize in different ways.

Remark 7.1. Explicitly, the proofs differ in that the first “symmetric proof” views (m,m+
d,m+ 2d)-cores as (m+d)-cores that are also (m,m+ 2d)-cores, while the second “asym-
metric proof” views (m,m+d,m+2d)-cores as (m,m+d)-cores that are also (m+2d)-cores.
The proofs both use (the change of variables from) Proposition 4.2 for different choices of
coprime s, t > 1, but with s only a “purely algebraic parameter” in the first proof.

Our first proof uses the extension of Proposition 4.2 for general t-cores, with t = m+d.

Symmetric proof. Let (s, t) = (d,m + d), so s, t > 1 are coprime. By Lemma 3.1, a
t-core λ lies in Ct−d = Cm if and only if at,i > at,i−d − (t − d) for all i ∈ Z/tZ, and
λ ∈ Ct+d = Cm+2d if and only if at,i > at,i+d − (t + d) for all i. Thus λ ∈ Ct is a
(t− d, t, t + d) = (m,m + d,m + 2d)-core if and only if

t > at,i − [at,i+d − d] > −t
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for all i.2 By Proposition 4.2 (applied to (s, t) = (d,m + d)) parameterizing Ct = Cm+d,
these inequalities translate in zt-coordinates—after division by t—to 1 > zt,j > −1 (i.e.
zt,j ∈ {−1, 0, 1}), along with the usual

∑

j∈Z/tZ zt,j = s = d; zt,j ≡ 0 (mod 1); and
∑

j∈Z/tZ jzt,j ≡ 0 (mod t).
A cyclic shifts argument analogous to Proposition 4.7 yields

∑

(zt,j)∈Cm∩Cm+d∩Cm+2d

1 =
1

t

∑

xj∈{−1,0,1}∑
j∈Z/tZ xj=d

1 =
1

t

⌊(t−d)/2⌋
∑

i=0

(
t

i, i + d, t− (2i + d)

)

,

where in the last step we count valid sequences (xj)j∈Z/tZ ∈ {−1, 0, 1}t by the numbers
i, i + d, t − (2i + d) of appearances of −1,+1, 0, respectively. Substituting in t = m + d
completes the proof.

Our second proof uses the more familiar form of Proposition 4.2, for (s, t)-cores.

Asymmetric proof. Let (s, t) = (m + d,m), so s, t > 1 are coprime. By Lemma 3.1,
a t-core λ lies in Cs = Cm+d if and only if at,i > at,i+s − s for all i ∈ Z/tZ, and λ ∈
Cs+d = Cm+2d = C2s−t if and only if at,i > at,i+2s − (2s − t) for all i. Thus λ ∈ Ct
is a (t, s, 2s − t) = (m,m + d,m + 2d)-core if and only if at,i − [at,i+s − s] > 0 and
at,i − [at,i+2s − 2s] > t for all i. By Proposition 4.2 (applied to (s, t) = (m + d,m))
parameterizing Cs ∩ Ct = Cm+d ∩ Cm, these inequalities translate in zt-coordinates—after
division by t—to zt,j + zt,j+1 > 1, along with the usual zt,j > 0;

∑

j∈Z/tZ zt,j = s = m + d;

zt,j ≡ 0 (mod 1); and
∑

j∈Z/tZ jzt,j ≡ 0 (mod t).
A cyclic shifts argument analogous to Proposition 4.7 yields

∑

(zt,j)∈Cm∩Cm+d∩Cm+2d

1 =
1

t

∑

xj ,xj+xj+1−1>0∑
j∈Z/tZ xj=s

1 =
1

t

⌊t/2⌋
∑

i=0

t

t− i

(
t− i

i

)

·

(
s− 1

(t− i) − 1

)

,

where in the last step we count valid sequences (xj)j∈Z/tZ by first choosing the i pairwise
non-neighboring 0 terms, and then the remaining t − i positive integers summing to s.
There are t

t−i

(
t−i
i

)
ways to choose the i zero-positions (we can double-count pairs (S, α)

with S ⊆ Z/tZ the set of i zero-positions, and α /∈ S some non-zero-position), and
(

s−1
(t−i)−1

)

ways to choose the t−i positive integers. To finish, we note 1
t−i

(
t−i
i

)(
s−1

t−i−1

)
= 1

s

(
s

i,s−t+i,t−2i

)

and then substitute in t = m and s = m + d.

Remark 7.2. Using either parameterization and mimicking the proof of Theorems 1.1 (in
particular the cyclic shifts), one could evaluate the sum of the sizes of (m,m+d,m+ 2d)-
cores. Mimicking Section 6, one could also study self-conjugate analogs for Dm ∩Dm+d ∩
Dm+2d. Also, in principle, one could probably carry much of this over to (m,m+d, . . . ,m+

2As described in Remark 3.5, Johnson essentially observed that the d-hooks in λ correspond to the
indices i ∈ Z/tZ satisfying at,i − [at,i+d − d] = −t.
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kd)-cores (for k > 3), or even to more general multiple cores, with the computational
messiness growing with the complexity of the set of avoided hook lengths. However, it
would likely be unenlightening to explicitly work out these directions without new ideas.

8 Future work

This section discusses possibilities for future work.

Question 8.1 (Significance of coordinates). How are the (asymmetric) z-coordinates
related to other bijections (Anderson [5] for general cores; Ford–Mai–Sze [17] for self-
conjugate cores; the poset formulation of Stanley–Zanello [27] developed further in [1],
[4], and [3]; etc.), which are generally more symmetric in s and t?

Question 8.2. Can the computations, especially for Fayers’ conjectures (Theorems 1.3
and 1.4) be simplified along the lines of Johnson’s weighted Ehrhart reciprocity methods in
[21] for Armstrong’s conjectures? Is there an ‘exponential’ version of Ehrhart reciprocity?

Remark 8.3. In Theorems 1.1 and 1.3 (and with some parity casework in Theorems 1.2 and
1.4) one can certainly use implicit variants of the generating function calculations (which,
for Fayers’ weighted sums, give an ‘exponential’ prototype of basic Ehrhart theory, but
not necessarily reciprocity) to first show that the average size is a polynomial in s of
degree at most 2, and then give 3 easy-to-determine pieces of information to uniquely
determine the quadratic. One piece of information could be Remark 5.1, i.e. that Fayers’
weighted average is linear in s; taking s = 1 or ‘s = 0’ could be two other pieces of
information. For Armstrong’s un-weighted average, Johnson [21] uses the 3 pieces ‘s = 0’,
s = 1, and s = −t − 1 (using weighted Ehrhart reciprocity in the last case; one could
also more concretely use the vanishing of

(
s+t−1
t+∗

)
for ∗ > 0). However, concrete explicit

computations have their benefits, and implicit variants are already well-exposited in [21].

More concretely, one could study sums of higher powers of |λ| or other statistics.

Question 8.4. For integers e > 0, what can one say about
∑

λ∈Cs∩Ct
|λ|e, or the weighted

sum
∑

λ∈Cs∩Ct
|StabGs,t(λ)|−1 · |λ|e? Can we study other statistics, such as length (number

of nonzero parts)? Do these have a nice form? What do they say about the distribution
of (s, t)-cores, indexed by size?

Remark 8.5. As Levent Alpoge points out, it may be more natural to look at moments
(e.g. in the un-weighted case, essentially sums of powers of |λ|− 1

24
(s−1)(t−1)(s+t+1)).

For specific conjectures of Ekhad and Zeilberger (supported by numerical evidence), see
[10, First Challenge] (which was posted on the arXiv a few weeks after v3 of the present
paper).

Remark 8.6. For any finite exponent e these sums can in principle be computed explicitly
by the cyclic shift methods used in Theorems 1.1 and 1.3. As a start, the generating
function calculations show that both the un-weighted and weighted averages are polyno-
mials in s (but a priori only rational expressions in t) of degree at most 2e. Using the
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higher degree analog of Remark 5.1, one can reduce the degree bound to 2e − 1 in the
weighted case. In the un-weighted case, one can use the symmetry in s, t to show that the
un-weighted average is always a polynomial in s, t, hence in fact a symmetric polynomial.

Alternatively, one could ask about generating functions of (s, t)-cores. Note that the
generating function for s-cores (indexed by size) has a well-known nontrivial expression,
given for instance in [19, Bijection 1] (based on the s-core operation).

Question 8.7. Does the generating function for (s, t)-cores (indexed by size) have a nice
form or any interesting properties?

Remark 8.8. Of course, if s, t are coprime, this is a polynomial (as there are finitely many
(s, t)-cores). See [22] for some potential progress by W. Keith in this direction. On the
other hand, if g := gcd(s, t) > 1, then [7] gives the (s, t)-generating function in terms of
the (s/g, t/g)-generating function (thanks to Rishi Nath for pointing out this reference).

One could perhaps also ask further interesting questions about t-cores of different
s-cores, following [13, 15]. For example, are there unexplored natural definitions of “ran-
domness”? Or is there anything one can do with the following remark?

Remark 8.9. The group Gs,t (Definition 3.7) acts not only on Cs (via s-sets or beta-sets
of s-cores), but on the whole set of partitions (via beta-sets). Similarly, the group Hs,t

(Definition 6.6) acts not only on Ds, but also on Cs (via s-sets or beta-sets), and the whole
set of partitions (via beta-sets).

In a different direction, one could investigate numerical semigroups containing s, t,
which inject into Cs ∩ Ct (as mentioned in the introduction). Do the techniques for (s, t)-
cores help?
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