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SUMMARY 
The determination of source signature is a major calibration problem in reflection seismology. 
This ‘deconvolution’ problem is conventionally approached by way of statistical methods, by 
direct measurement, or by the location of a clean reflection in an otherwise quiet part of a 
reflection section. We show that a quasi-impulsive, isotropic point source may be recovered 
simultaneously with the velocity profile from reflection data over a layered fluid, in linear 
(perturbation) approximation. Our approach is completely deterministic, and does not 
depend on the presence of an isolated reflection in a quiet part of the section, as we illustrate 
with a numerical example, After describing the algorithm and a numerical implementation, 
we give a complete mathematical treatment, which shows that our estimates of source wavelet 
and velocity profile are stable in a certain sense. Because of this stability property we 
conjecture that our approach to simultaneous estimation of source and medium parameters 
actually applies to a much broader class of models than that treated here. 
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1 INTRODUCTION 

A major calibration problem in reflection seismology is that 
of source-signature identification. The seismic section 
depends not just on the mechanical structure of the Earth, 
the elucidation of which is the aim of reflection seismology, 
but also on the time dependence and spatial distribution of 
the seismic energy source. The separation of these two 
factors (Earth structure, energy source) is often regarded as 
a deconvolution problem (‘source-signature deconvolution’) 
and is commonly attacked with statistical tools (predictive 
deconvolution, ARMA modeling, maximum likelihood 
estimation), which aim simultaneously to suppress other 
sorts of seismic ‘noise’ (notably multiple reflections). These 
widely-used methods have been criticized as being based on 
unwarranted assumptions about both source and Earth 
structure (Ziolkowski 1984). An alternate method of source 
calibration is actual measurement of the direct wave, or use 
of a strong reflection in an otherwise relatively quiet part of 
the section. 

In this paper we investigate the possibility that the 
time-dependence of an isotropic point-source might be 
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and by AFOSR 84-0252. Technical Report 87-17, June 1987. 

determined directly (and deterministically) from the section, 
even when no isolated reflection event can be located. In 
effect, we ask whether the source parameters can be 
determined simultaneously with the earth model. We show 
that, under some restrictions, the answer is ‘yes’. 

This possibility of codetermination of source and velocity 
arises from the different dependence of their data influence 
on offset: that is, the effects of changing the source wavelet, 
respectively the velocity structure, move out and scale 
differently. These effects may be separated algebraically; 
there results an equation linking the data section with the 
velocity, sampled at several different, but related, depths. 
The wavelet has been eliminated from this relation 
altogether. Once the velocity has been determined, the 
wavelet may be extracted easily. On the other hand, 
functional-delay equations, such as the one we derive here 
for the velocity, are not commonplace in the mathematics of 
seismology, and it is not entirely obvious that such equations 
can be solved in a reasonable sense. Accordingly we give a 
complete theoretical treatment, ensuring that solutions can 
be found computationally as well. We implement an 
algorithm based on our theoretical developments, and show 
by numerical illustration that wavelet and velocity may 
indeed be separately determined even when their influence 
is coexistent in time. 

To derive this result, we have imposed some hypotheses 
on both the earth model and the energy source. Those 
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concerning the earth model are: 
(Ml )  that the Earth structure varies only with depth 

(M2) that the Earth is a linearly elastic fluid, with only 

(M3) that the variation of sound velocity with depth is 

(layered medium); 

the sound velocity varying with position (depth); 

somewhat smooth. 
Concerning the source, we have assumed that 

(Sl) the spatial distribution of the source is point-like, to 
adequate approximation; 

(S2) the source radiation pattern is isotropic, so that the 
source is described by a single function of time 
(wavelet); 

(S3) the source wavelet is quasi-impulsive, i.e. differs 
from the Dirac delta function by a square-integrable 
function. 

None of these assumptions (with the possible exception of 
S1) is valid for an accurate model of the typical seismic 
reflection experiment: The Earth is non-layered and 
inhomogeneous on interesting length scales and supports 
shear (as well as compressional) waves. Also the seismic 
source often has an anisotropic radiation pattern, and (most 
important) is bandlimited (not close to delta). 

It seems clear that most of these assumptions could be 
relaxed, at least to some extent. The most important and 
involved step is the introduction of non-impulsive sources. It 
is plausible on the basis of velocity analysis (and is carefully 
justified on theoretical grounds in Santosa & Symes 1986) 
that bandlimited point-source data (with known source) 
determine a layered velocity structure, provided that the 
target structure is sufficiently rich in reflectors (thus is 
sufficiently non-smooth). We expect to be able to combine 
these bandlimited inversion ideas with those presented in 
this paper to codetermine bandlimited sources as well. We 
will further discuss the extent to which the restrictions 
M1-M3 and S1-S3 might be relaxed in the concluding 
section. 

We note that Canadas & Kolb (1986) give numerical 
evidence that the velocity and source wavelet (and, to some 
extent, the density) of a layered fluid may be recovered 
from simulated seismic reflection data. They do not, 
however, give a theoretical justification for their procedure. 
Ramm (1987) has given a theoretical result for quasi- 
impulsive sources, which differs from ours in that it makes 
use of the low-frequency (rather than high-frequency) 
asymptotics of the response, hence is intrinsically restricted 
to the quasi-impulsive case. 

The book by Lavrent’ev, Reznitskaya & Yakhno (1986) 
has recently come to our attention (January 1988). In 
Section 2.2 the authors consider a problem similar to that 
studied here. Their work is similar to ours in that they also 
find that the recovery of first-order perturbations in medium 
and source parameters hinges on the solution of a 
multiplicative-delay equation like (3.2) below. It differs 
from ours in that they do not use the plane-wave 
decomposition, and restrict their attention to perturbations 
about a homogeneous background model. 

The model described above is quantified in the following 
boundary value problem, connecting 

p(x )  -fluid density 

u(x, tbparticle displacement field 
A(x) -bulk modulus 

f ( t )  -source wavelet: 

in { ( x , t ) : x 3 > 0 }  

A ( x ) V .  u(x, t )  = - - f ( t )b(x , ,  x2) 

for x , = O  

u(x,  t) = 0, t << 0. 

We write z = x 3 ,  and note that (Ml) is stated 
p = p(z), A. = A@). We assume that A = const., so that 
c ( z )  = A1’2p(z)-1’2 parameterizes the medium (M2). 

We remark that this is not a significant restriction: the 
problem of simultaneous determination of p and A from 
known (and impulsive) source data is well understood (see 
e.g. Santosa & Symes 1987, and other work cited there). 
Extension of our present results to this more general case is 
routine. We have chosen to present the result for A =  const. 
merely to avoid obscuring the novelty of the present paper 
with irrelevant complexities. 

The hypothesis (S3) is that 

f ( t )  = 6(r) + f l ( t )  

with f l  square-integrable. Causality is expressed by the 
requirement that f i ( t )  =0, t<O and we also assume that 
f l ( t )  = 0, r 2 rmm. Consequently, f defines an invertible 
convolution operator (on L2[0, TI for any T > 0). 

We idealize the seismogram as the surface trace of the 
vertical displacement field u = (ux, u,,, u,) viewed as a 
function of the velocity profile c and the wavelet f: 
s[c,  f ]  = u,(z = 0). 

We shall use the commonplace notation of 6(.) to denote 
perturbations of ( a ) ;  the distinction from the Dirac delta 
function will be clear from the context in which it is used. 
Our main result concerns the perturbational seismogram 
6s[c, f], which is the result of first-order perturbation of the 
velocity profile and source wavelet: 

6s[c,  f] = 6u,(z = O ) ,  

where the perturbation field 6u satisfies 

a26u 6% 
at2 

p 7 =  V V .  6u - 6p- 

v -  6u = - 6 f ( t ) 6 ( x 1 ,  x z )  

6u=O t<<O 

and 6p = -26c . c - ~ .  
Our main result may be stated: 
The velocity profile and source wavelet perturbations 6c, 

Sf are uniquely determined by the perturbational point-source 
seismogram 6s, under hypotheses M l - M 3  and Sl -S3 .  

Note that we do not assume the presence of an isolated 
reflector. Thus the influences of Sf and Sc are coexistent in 
time. Nonetheless they can be recovered separately. In our 
view, it is this feature which makes the present result 
interesting despite the severe restrictions imposed on our 
model. 

This result concerns the perturbational (‘variable- 
background Born approximation’) problem. The technique 
is constructive, and estimates 6c, 6f in terms of 6s. It seems 
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cutoff for large but still precritical p. For a suitable choice of 
mute, the components still satisfy the plane-wave equation 
(2.1) up to an error which may be controlled by the 
techniques presented here: see Santosa & Symes (1988). 

The plane-wave seismogram (p-tau section) S is the 
surface (z =0) time history of the plane wave normal 
displacement fields 

clear that regularity results similar to those explained in 
Symes (1986b, c) could be combined with the conclusions 
presented here to yield unique determination off and c from 
s. Such matters will be discussed elsewhere. 

We begin the study of this problem by transforming the 
point-source seismogram to a plane-wave (p-tau) section, 
and determining its structure, in Section 2. We use this 
structural information in Section 3 to derive a constructive 
procedure for separate determination of source and velocity 
perturbations. We suggest numerical techniques for the 
solution of least-squares formulations of the inverse 
problems and present the results of numerical experiments 
based on one of the possible implementations, in Section 4. 
These experiments were performed by Paul Sacks at Iowa 
State University. Section 5 contains the proofs of the main 
mathematical result and of several technical lemmas needed 
in Section 3. We end the paper with a discussion of 
possibilities for relaxing the restrictions, and extending the 
scope, of our results (Section 6). 

2 STRUCTURE OF THE 
PERTURBATIONAL SEISMOGRAM 

Our main tool in this paper is the plane-wave 
decomposition : since the coefficients are independent of 
time and of the horizontal coordinates, the Radon integral- 

// & dy u(x,  y ,  2, t + P . x )  

produces for each p a field satisfying a system of partial 
differential equations in z ,  t. In fact, we are only interested 
in a finite depth interval O S Z  IZ,,,, so without loss of 
generality we assume 

O < c * I c ( Z ) I c * ,  0 5 2  

for suitable constants c , ,  c* .  In Santosa & Symes (1985, 
Appendix) it is shown that for sufficiently small p,  the 
plane-wave component of normal displacement 

W ,  r , p ) = I I & d y u , ( x , y ,  2, t + p x )  

solves the boundary value problem 

u=o, t<<O. 

Recall that the wave velocity is given by c ( z )  = A1/2p-1112(z). 
After normalization, we may assume for the rest of the 
paper that A = 1, so that the mechanics are described by c 
alone. 

The equation (2.1) is hyperbolic only so long as c IpI < 1 
(precritical slowness). We define 

z,,,,,(p)=sup{z:c(z’)p<1 for O s z ’ < z }  

and consider (2.1) and related equations only in the slab 
[ ( z ,  t )  : 0 5 z < zmax(p)] for each p. 

We note that the Radon transform integral given above 
must in general be modified by the introduction of a mute or 

The topic of our paper is the ‘inverse’ problem: 

find a velocity-source pair (c.  f )  for which 
Given a measurement of G of plane-wave reflection data, 

S[c, f J(t, p )  = U(0, t, P )  = G ( t ,  P ) .  

This formulation supposes implicitly that the (t, p)-pairs 
at which the data G is given are precritical for the sought 
velocity profile c,  which presumption is itself a nonlinear 
constraint on c.  

Now it is natural to think that any feasible measurement 
G would be contaminated by error, hence might not fit any 
model exactly. Accordingly, it is popular to replace the 
‘exact inverse’ problem above by a best-fit formulation. A 
common choice of error measure is the mean square, which 
leads to the least-squares inverse problem: 

Find c, f to minimize 

where dS2 is a measure (i.e. possibly nonuniform weight, 
continuous covariance matrix). 

In this paper we shall limit our weights to those of the 
form 

dQ(t ,  p )  = d T d p ( p ) .  

Thus time points are uniformly weighted in each trace 
( p  =coast . ) ,  but we allow the traces to be weighted 
according to the measure d p ( p ) .  For example, if 
d p ( p )  = dp,  then all traces are uniformly weighted (over the 
domain of integration), whereas if d p ( p )  is a finite sum of 
point masses, then the error measure above is concentrated 
on the corresponding finite set of traces. 

The problem stated above is nonlinear. To begin our 
study in this paper we shall assume that the velocity is a sum 
of a (smooth, slowly varying) background velocity c and a 
(possibly rapidly varying) perturbation 6c. We make a 
similar assumption concerning the source, i.e. that it is the 
sum of a background wavelet f = 6 + f i ,  f i  square- 
integrable, and a perturbation 6f. We shall study the 
corresponding perturbation 6s in the seismogram, which 
depends linearly on bc, 6f. 

Formally, to first order, the result of perturbing the 
velocity profile c +c + 6c  and the source wavelet f +- f + 6f 
is to perturb the plane-wave field U by a field 6U satisfying 

6U = 0, t < 0. 

The perturbational seismogram 6S is the surface value of 
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6U:  

6S(r ,  p )  = 6U(O, t, p ) .  

Presumably S[c + 6c, f + Sf] S[c, f] + 6s. Conditions 
under which this is true, i.e. 6s is actually the derivative of 
S. are discussed in Symes (1986a). 

To understand the structure of the perturbational 
seismogram 6S, we now introduce asymptotic approxima- 
tions for the various fields. There will result an expansion of 
6S, which is of crucial importance to what follows. 

As mentioned in the introduction, we consider in this 
paper only deconvolvable source wavelet f :  that is, we 
assume that the convolution operator with kernel f has a 
bounded inverse on L2[0, T] for any T > 0. It is sufficient 
(but not necessary) that the Fourier transform f(o) have a 
uniformly bounded reciprocal. (Of course, we make no such 
restrictions on 6f.) Since (with the obvious notation) 

s, =f *ssp 
we could in principle apply the convolution inverse off  to 
the seismogram, and to the perturbational seismogram. This 
amounts to replacing Sf by (f*)-'Sf, and f by 6, in all of 
the above equations. 

The field U is now the plane-wave impulse-response. As is 
well-known, this field possesses a progressing wave 
expansion: see Courant & Hilbert (1962, chapter 6) for 
generalities and Symes (1981, section 2) for computation of 
the present example. We obtain 

U(Z, t, p )  = v(0, P)l'z"(z> p Y2Wt - T ( z ,  p ) )  + R(z ,  t, p ) ,  
(2.3) 

where 

is the plane-wave vertical wave velocity, 

is the vertical travel time for the plane-wave at slowness p ,  
H is the Heaviside unit step function, and R is a continuous 
remainder term. This expansion and others like it depend 
for their validity on the existence of sufficiently many 
derivatives of c, which we assume. See the concluding 
section for a little discussion of this point. 

To derive the promised expansion of 6S, first consider the 
case 6f = O .  Then a Green's identity argument, detailed in 
Santosa & Symes (1987, section 5) results in the expansion, 
expressed in terms of y : = 6 log c = 6c /c  

where co = c(0) and K, is an operator of Volterra type: 
Z ( 7 . P )  

M,Y(G P 1 = dzkc(f  Y r, Z)Y(Z) 

with continuous kernel k,, and Z ( r ,  p )  is the inverse of the 
two-way travel time: 

= Z(2T(z,  p),  p ) .  

On the other hand, a perturbation in f ( = s )  gives the 
solution of the inhomogeneous problem 

6U=OO, t < 0  

which is in turn the convolution of 6f with the solution of 
the same problem, but with 6f replaced by (Dirac) 6. We 
recognize that the latter problem is identical to (2.1) with 
f = -6, so 

6SI,,,O = Sf *Ulr=0. 

Using the progressing wave expansion we see that this is 
proportional to the integrated wavelet 

P T  

up to an error given by a Volterra operator on @. 
Introducing the velocity trace 

we can re-write the above relation as 

6S(&.-,,= V*G (2.5) 

and V ( t ,  p) = v(0, p ) 6 ( t )  + (continuous error) is an inver- 
tible (on Lz)  t-convolution kernel, known from the 
reference seismogram. 

Combining (2.5) and (2.4) we get 

Wt, p )  = V*G(t ,  p )  - v(0, p ) { ( l  - czPz)-'Y)(z(T, p ) )  

+ K Y ( T 9  P ) .  (2.6) 

Observe that V *  has a simple convolution inverse 

VI(Z, p )  = 4 0 ,  p ) - ' 6 ( z )  + k l ( t ,  p )> 

where k ,  is continuous and causal for each p. We shall use 
this fact in the algorithm in Section 4. 

3 SEPARATION OF WAVELET AND 
VELOCITY PERTURBATIONS 

It is evident from (2.6) that the p-dependence ('moveout' 
and scaling) of 6f and 6c, as they appear in 6S, are 
different. In this section, we draw a consequence: that both 
6f and 6c may be determined from 6s. 

We do not address the quality of this determination here, 
or even the precise conditions under which it holds. We 
want the reader to be aware of the limitations of such formal 
analysis: it gives no insight whatsoever into the effectiveness 
of any algorithms developed to exploit the theoretical 
observation. Such insight can only be gained by a rigorous 
(i.e. correct and complete) analysis, which we give in 
Section 5. 

In keeping with the formal approach of this section, we 
will drop all 'Volterra' terms [i.e. (ld in (2.6)] as negligible. 
The sense in which this is actually true is explained in 
Section 5. 
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precritical (t, p )  pairs for all velocity profiles to be 
constructed during the iteration. This assumption a priori  
restricts the velocity profiles and allows us to use only a 
minimal set of 'safely precritical' data. Obviously relaxation 
of these restrictions would be desirable. For some discussion 
see Santosa & Symes (1987, sections 2 and 7). 

From (2.6) we can write 

DS[c, 61(6c, 6f) = E(4P Y )  + w4, Y), 

DS[c, 6](6f ,  6c) = 6s 

E(4, Y ) ( t ,  P )  = v(0, P ) { @ ( t )  + [(I - C2P2)-'Yl(z(P, t))) 

( 4 4  

where 

is the directional derivative of the seismogram S, 

and K is a Volterra-type integral operator with continuous 
kernel. 

We shall suppose that the wavelet is a slowly-varying 
perturbation of 6: 

f ( t )  = 6 ( z )  + f l ( Z ) ,  

where fl(z) is square-integrable, as mentioned in the 
introduction. Thus the integrated wavelet 4 is continuous 
for tr 0, and satisfies 

lim $(T)= 1. 

Then, since 

T-O+ 

DS[c, fJ(6c, S f )  =f *DS[c, 61(6c, ( f*)- 'w)  
in fact DS[c , fJ(6c ,  6 f )  is given by the same expression 
(4.2), where D6 is modified to include convolution by the 
square-integrable part off. 

The Gauss-Newton method for minimizing J(c,  f )  
updates a current estimate (cc , fc )  by solving a linear 
least-squares problem: 

c+ = c, + 6c, f+ = f, + Sf ,  

where (6c, 6 f )  minimizes 

IIDS[c,, fC1(6c, 6f) - (G - S [ ~ , , f ~ l ) I l ~ .  

DS[CC> fcl*DS[cc, L l ( k  6f) 
= DS[cc, fcl*(G - S[cc, fl) 

(4.3) 

The minimizer of (4.3) satisfies the normal equations 

(4.4) 
where DS* is the adjoint of DS [regarded as a linear map 
acting on (4, y )  from L'[O, T I  x L'[o, z]-+ L'{[o, T I  x 
SUPP dP, d t d P ( P ) ) I .  

Since K in (4.2) is Volterra, it represents a small 
perturbation if Z, T are small enough. This suggests 
replacing DS and DS* in (4.4) with the simpler operators E 
and E*, with the latter given by 

E*@= ( E p ,  I E p )  

Thus (2.6) becomes 

6s = 4 0 ,  P ) ( 4 ( 4  - [(I - C2P2)- 'Yl(z(t> P)) .  

[Here we have used the remark at the end of Section 2 ,  
writing V(t ,  p )  i= v(0, p)6(z ) . ]  

Thus, except for scale, 4 appears without any 
p-dependence at all. Accordingly, form the auxiliary data 
set 

q t ,  P I ,  P2) = 4 0 ,  p , ) - ' ~ S ( a ,  P I )  - v(0, P z ) - W t ,  P2) 

- [(I - c2P:)- 'Yl(Z(t,  P I ) ) .  

= [ ( I  - c2P:)- 'YI(Z(t,  P 2 ) )  

Suppose that p1 >p2. Then v(z, p l )  > v(z, p 2 )  for all z ,  so 
the p,-wave reaches any given depth earlier than the 
p,-wave. Accordingly, 

&,p1,p2) :=Z(2T(z,  P l ) ,PZ)<Z.  (3.1) 

a z ,  PI .  P 2 )  = (1 - c 2 ( z l P : ) a 2 T ( z ,  P I ) ,  P I ?  Pz) 

G(Z? P l ?  P2) = Y(Z) + B(z,  P1, PZ)Y((Y(Z, P1. PZ)), 

B(z, P17 P2) = (1 - C2(ZlPI)(l - c 2 ( 4 z ,  Ply P A )  Pz) 

The transformed auxiliary data set 

is the left-hand side in the functional equation for y :  

(3.2) 

where 
2 2 - 1  . 

Because of the 'delay' inequality (3.1), the equation (3.2) 
gives y(z), for any z ,  as a combination of the data G and 
the value of y at some shallower z'(<z). Thus it would seem 
reasonable that y would be entirely determined if we know 
y ( z )  for some very shallow near surface layer 0 5 z I z,, for 
then we could work our way downward, using (3.2) 
recursively, to obtain y at any depth. Thus some restriction 
on the behaviour of y near z = O  would allow us to 
determine y. 

While this is true, it is unnecessary to restrict y near the 
surface, because of the properties of the coefficients (Y and 
B. This result is somewhat technical, and will be given in 
detail in Section 5. 

In sum, the functional equation (3.2) determines y ( z )  
(without any restrictions). Then y ( z )  may be substituted in 
(2.6), which may then be solved for $(t) (for any p). Thus 
both y ( z )  and @(t) are determined. 

In the next section, we consider the algorithmic 
implications of this observation. 

4 NUMERICAL S O L U T I O N  OF T H E  
INVERSE P R O B L E M  

In this section we show how the considerations of Section 3 
yield an iterative algorithm for solution of the least-squares 
inverse problem in the ( t , p )  domain, and discuss its 
implementation for a special case. 

J(c,  f ) := I lS(c,f)  - GI[:= / d p ( p ) /  dt IS - GI2 (4.1) 

in the notation of Section 3. In fact, we assume here that 
T,&) = T and that the domain of integration consists of 

Thus we attempt to minimize, for given ( r ,  p )  data G ,  
T m a x ( ~ )  

0 

It follows from the heuristics of Section 3 and the 
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estimates in Section 5 that E*E is invertible-in fact positive 
definite-and E and E’ are easy to evaluate. Thus the 
modified normal equations 

E*E(#J, V )  = E*(G - S[C,, f,]) (4.5) 

are uniquely solvable, and an iterative method like 
conjugate gradients should be quite efficient. 

In rough outline, the resulting algorithm is: repeat until 
convergence 

(1) compute the seismogram S[c, f]; 
(2) solve the modified normal equations (4.5) for 4, y :  
(3) update c +ceY, f cf + 4’; go to (1) 
Essentially the same approach (replace DS by E) is used 

with success by Sacks & Santosa (1987) in recovering c alone 
(they consider the ‘consistent’ case and solve a functional 
equation but the idea is very similar). 

Since the replacement D S t E  involves only a small 
change for t and z small, we would expect this algorithm to 
behave like the Gauss-Newton iteration near t = t = 0. The 
estimates of Section 5, which show that DS is bounded 
below, would suffice to show that the Gauss-Newton 
algorithm is convergent if S were differentiable. Unfortun- 
ately, differentiability of S requires more constraints on c 
than we have included here-essentially, c must be 
relatively smooth. The reasons for this, and a convergence- 
inducing regularization of the least-squares problem, are 
discussed in Symes (1986~). Granted that this regularization 
has been implemented, either by restricting the class of 
admissible c’s or by adding a penalty term to J ,  
Gauss-Newton will converge locally and thus so will the 
modified algorithm given above. 

We will now consider a special case of this procedure. 
More general examples will be explored elsewhere. 

We take (for p ,  > p z  s 0)  

&(P) = S ( P  - P A  + h(P - P 2 )  

which amounts to choosing for our data exactly two 
plane-wave traces. Now we should have ‘just enough’ data 
to solve the problem: two time series to determine two time 
series. In fact, a minor modification of the discussion of 
Section 3 leads to the conclusion that, for appropriate z and 
t intervals, the mapping 

(t) (UI#J, Y ) ( P l ,  9) 
E(4h Y ) ( P 2 ,  .) 

is invertible (as is the analogous map with E replaced by 
DS\c,fl). It follows that 8* is inveflible as we\\, so the 
modified normal equations (4.5) are (in this special case) 
equivalent to 

which is an approximation to 

DS[c, f I ( k  Sf) = G - S [ C ,  f I. (4.7a) 

Now (4.7) defines the Newton update for the functional 
equation 

S[c, f 1 = G (4.7b) 

so we would expect iterative use of (4.6) to yield an 
approximate solution of this functional equation, rather than 
merely a least-squares solution. This is precisely the 

analogue of the algorithm presented in Sacks & Santosa 
(1987). 

The prescription for solving (4.6) is actually given in 
Sections 3 and 5; in outline, repeat until convergence the 
following steps: 

(i) Create the auxiliary data set 

G ( t )  = VT(G - f I ) ( t >  P I )  - VT(G - S[c,fl)(t, ~ 2 ) ~  

(4.8a) 

where V, is the convolution inverse of the (current) velocity 
trace; 

(ii) Create the auxiliary data set 

G ( z )  = (1 - c(z)2p:)G(2T(z,  PI)). 

(ii) Solve for y the functional equation 

where 

using the Neumann series 
m 

(0 + U)-l= c (-Uy 
n = O  

(4.8b) 

(4.9) 

(4.10) 

the convergence of which is guaranteed by the properties of 
LY and fl and by Lemma 1 of Section 5.  

(iv) Compute I#J from the relation 

(v) Update c and f :  

c +cey 

f +f + 6’. 

Remark. These steps may be simplified further by 
noticing that Vl(t, p )  = v(0, p ) - ’ 6 ( t )  + k , ( t ,  p), as noted 
earlier, so that the convolution Vf may be replaced by 
multiplication with v(0, p) - ’  at the cost of another 
(‘Volterra’) error of the type we are already ignoring. This 
was also done in Section 3. 

We have implemented a single step of this procedure. We 
compute the plane-wave seismogram S[c, f] using a 
standard leapfrog finite-difference method, applied to the 
first-order system equivalent to the wave equation, in which 
the velocity is one of the dependent variables. These and 
other functions were represented by grid-functions on 
suitable space-time grids. 

To obtain the unknown Sc(z)  we must compute the 
function G ( z ) ,  defined in (4.8a, b), then evaluate the series 
(4.10). The compositions with travel-time, and with the 
depth change-of-coordinates (4.9), are computed using 
piecewise linear interpolation, the accuracy of which is 
compatible with that of the difference scheme. We replaced 
convolution with V by its discrete version: 
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- - - - PERTIMED vaocm 
 KCO OVER^ vaocm 

1.4 . 

455 

PERTWUI  VELOCITY - - - - UNpERTlIfBEU VELOCITY 

1.4 

0.9 
1 0 DEPTH 

Fignre 1. Reference and perturbed velocity profiles for first set of 
experiments (Figs 1-5). 

0.90 
2 0 TIYE 

Fire 2. Reference and perturbed wavelets for first set of 
experiments. 

-1.20 

-1 .60  I I I 
2 3 ' T I E  0 

Figure 3. Reference and perturbed traces for p = 0.0, 0.4. 

1 
0.9 

OEPTH 0 

Figure 4. Comparison of exact and recovered velocity profiles from 
data of Fig. 3. 

1.10 

1.00 

0.90 
2 T I Y  0 

Fylre 5. Comparison of exact and recovered wavelets from data of 
Fig. 3. 

SLOWSESS p = 0. - - - - S L W S S  p =.I 

-1.15 
2. T f Y  0. 

W A C C  TRACCS 
1% PERTllRBATION 

F%gmc 6. Perturbed traces, p =O.O,  0.4; 1 per cent rms 
perturbation in c(z), f ( r ) .  Reference traces same as in Fig. 3. 
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SLOWNESS p = 0 .  
-,-.sLowIEssp= . I  

0.99 
1 TIME 

1% PERTURBATION 

0 

Figure 7. Comparison of exact and recovered wavelets from data of 
Fig. 6. 

and deconvolution by V (i.e. convolution with V,) with the 
solution of this triangular system by back-substitution. 

A synthetic example of this procedure is presented in Figs 
1-5. Figure 1 shows the reference velocity c and the velocity 
to be recovered c + 6c, and Fig. 2 shows the corresponding 
reference and perturbed wavelets. For the two slownesses we 
chose p 2  = 0 and p1 = 0.4. In Fig. 3 we show S[c, f ] ( t ,  pi),  
i = 1, 2 and G ( t ,  pi) = S[c + 6c, f + 6f](t, pi), i = 1, 2. 

The velocity perturbation 6c is computed as discussed 
above; it was necessary to use three terms in the series 
(4.10). The resulting estimate of c + 6c is displayed in Fig. 
4, along with the exact velocity profile. Finally, the exact 
and recovered wavelets are shown in Fig. 5. 

We emphasize that this example illustrates our contention 
that the source wavelet (perturbation) may be recovered 

CWPUTED SOLUTION - - - - EXACT VELOCITY PHOFILE 

I 1.030 

1% PERTURBATION 

Figure 8. Comparison of exact and recovered velocity profiles from 
data of Fig. 6. 

-1.10 

-1.40 
2 .  

TIYE 0 .  

SURFACE TRACES 
10% P E R T W T I O N  

Figure 9. Perturbed traces, p = O . O ,  0.4; 10 per cent rms 
perturbation in c ( z ) ,  f ( t ) .  Reference traces same as in Fig. 3. 

CWUTEO SOLUTION - - - - EXACT WAVELET 

0 .90  
1 

TIYE 0 

10% PERTURBATION 
Figure 10. Comparison of exact and recovered wavelets from data 
of Fig. 9. 

CWWTEO SOLUTION - - - - CXACT VELOCITY PROFILE 

... 
1. 

DEPTH 
10% PERTURBATION 

0 .  

Figure 11. Comparison of exact and recovered velocity profiles 
from data of Fig. 9. 
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even without the presence of a strong clean reflection in an 
otherwise quiet part of the section. In this example, the 
perturbations 6c and 6f yield trace perturbations 6s which 
are completely time-coincident. 

Note that in the interesting special case that c(z)= 1, 
f ( f )  = 6(t) ,  the above procedure simplifies substantially, 
since S[c, f] can then be computed exactly. 

Since this procedure approximates one step of Newton’s 

method for the functional equation (4.7b), we would expect 
the accuracy to degrade as 6c becomes larger. To illustrate 
this degradation, we show in Fig. 6 the perturbed surface 
traces S[c + bc, f + bf] for p2 = 0, p1 = 0.4 and for 6c and 
bf representing 1 per cent of the ‘energy’ (L2-norm) of c and 
f. The recovered wavelets and velocity are compared with 
the targets in Figs 7 and 8. Figures 9, 10, and 11 repeat this 
comparison for 10 per cent perturbations 6c and 6f. 

5 ESTIMATION OF THE WAVELET A N D  VELOCITY PERTURBATIONS 

Our aim in this section is to show that the differential section 6s dominates the perturbations y = S log c and @ = J 6f: 

11+112+ IIYI12‘ c 11~s1129 
where the vertical bars denote appropriate L2-norms. Such estimates are necessary to ensure stable linear estimation of bc and 
bf, and also form the heart of the construction of nonlinear least-squares estimators for c and f. 

Our derivation will be constructive, and will justify a computational technique which we explored in the last section, as well 
as the heuristics of Section 3. 

Recall that 

is the convolutional inverse of V ( r ,  p),  with k l  continuous and causal. From the structure of V,, and the expansion for 6s in 
(2.6), the auxiliary data (Section 3) must have the form 

where K, is an integral operator with piecewise continuous kernel k , (p , ,  p2, t, z )  supported in (0 5 5 
max [ Z ( r ,  pl ) ,  Z ( r ,  p2) ] } .  This last term was dropped in Section 3. 

We have already indicated that when p1 > p 2 ,  

4, p1, P2):=Z(2T(z,pl),P,) <z. 

We will now quantify this inequality. 
The quantity m ( z , p 1 , p 2 )  is crucial to the argument which follows: it gives the depth reached by a wave travelling at the 

slower wave speed u ( - ,  p 2 )  in the two-way time taken by a wave travelling as the faster wave speed u ( - ,  p l )  to reach depth 2, 

thus it represents the ‘spatial delay’ caused by replacing the (faster) u( . ,  pl) by the (slower) v(-, p2) .  We shall assume that we 
consider only pairs ( r ,  p )  for which z = Z (  T, p )  satisfies 

for some fixed A > 0. Denote by &,,&) the largest z for which (5.2) holds. 
To take into account the possibly finite duration of the p- t  traces [0 5 t 5 Tmax(p)], set 

zmax(p) = min (TmaAP), Z(Tmax(P), PI). 
[Note that ZmaX(p) = m, for instance, for p = 0, if c is bounded on 0 5 z < and TmaX(O) = 00.1 Correspondingly, set 

rmax(p) = 2T(zmax(P), P).  

Then for 0 5 z < zm,,(p) a little algebra yields 
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Thus 

(5.3) 

where W2 is another integral operator with piecewise continuous kernel k2(p , ,  p 2 ,  z ,  z') supported in (0 I Z' II z } ,  and 

B(z, p1, P z )  = (1 - C 2 ( Z l P W  - c2(+ P1, Pz)>Pf>- ' .  

[Thus (5.4) is the precise statement of which (3.2) is an approximation.] Note that 

(5 .5 )  

Now it follows from (5.3), ( 5 4 ,  (5.5) and Lemma 3 below that 
- 

llYllL~[o,zm,x(pl)] 5 c1 llG(.P P1. P2)1lL2[O.Zm,(P,)l 

5 c2 llG(.? P1J P2)IIL~[0,tm.,(pl)l 

c3{ 11 P 1 ) I I L 2 [ o , T m . . ( p l ) ]  

+ 11 " ( ' 9  PZ)IILZIO.Tm. . (pz) l } .  (5.6) 

From the foregoing calculations and the statement of Lemma 3, the constants C,, C2, C, evidently depend on c, ,  A, and 
p :  - p ; >  0. 

IlSSll: = r m u d A p ) j  

Thus '11 11; is a weighted mean-square error measure. For example, if we choose d p ( p )  = dp (Lebesque measure), the all p-tau 
traces are weighted uniformly, whereas choosing d p ( p )  to be a linear combination of point masses has the effect of selecting a 
discrete set of slownesses. 

To express the dependence of 6c and 6f on the entire precritical p-tau section, choose a positive measure d p  and set 
Tm.x(P) 

dt. IWT ~11'. 

Now suppose that for some E > 0, 

{(Pl, p 2 ) :  IP1 -PA 2 €1 n (SUPP a x SUPP f 0- 

Let pmin = inf {IpI : p ,  p + E E supp p}. Then from (5.6) follows immediately the estimate 

where C, and C, depend on G and p as well. 
Perhaps a refined analysis of these constants is possible, in the spirit of Santosa & Symes (1988). 
Finally, with y known, 9 can be extracted from any of the components via (2.6), whence estimates for C$ follow immediately. 
To complete this section we give estimates needed above, which establish the invertibility on Lz of operators of the form 

O+T+K,  

where T is multiplicative-delay: 

T 4 z )  = B ( z ) u ( 4 z ) ) ,  

with a(z)  I a* < 1, 0 5 z 5 1 and K is an integral operator of Volterra type 

W Z )  = p w z ,  Mt). 

For convenience we restrict our attention to the scalar case. Analogous results for vector-valued functions follow from trivial 
modifications of the proofs. We begin with the case k = 0. 

Lemma 1. Suppose that a, /3 E C'[O, 11 satisfy 
(1) a(O)=O, 
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(2) for some a*, a* with O <  a*, a* and a* < 1, 

Then 

~ " " u ( z  ) = Bn (z)u(  a n  (2 

crn(z)5ff*a,  -,( Z ) ~ . . . ~ ( ( u * ) n Z ,  0 1 Z S 1  

/?(z)(a'(z))-1/p 5 4 [ 1  + p ( O ) ( a ' ( o ) ) - l q : = A <  1 

Now that 

so that a,(l) 5 (a*)" + 0 as n + a. Choose 6 so that for 0 I z 5 6, 

and select n so that (a*)" 5 6. 
Note that 

cr:, = a'oa"-, . aA-1 

Set 
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on [0, aN(l)]. Also note that, if z E [o, aN(l)]  and k 2 n, = (Yk-N[(YN(w))] = a k ( w )  5 6 for some w E [0, 11. Thus 

(5.10) 

Taken together, (5.8),  (5.9), and (5.10) imply that 

~ ~ u ~ ~ ~ ;  5 CpA"-"'p llull; 
for N 2 n. If 

N r n +  

then 

log c - log p 

(-1% A)  

llTNullp 5 P l1~11, 
as required. Clearly C, I and n depend on the stated quantities. 

We now consider operators of 'Volterra' form, that is, 

Mu(z) = fd5k(z9 S)u(5;). 

As is well known, for continuous kernels k, such operators have spectral radius zero as operators on LP. See e.g. Widom 

Actually, slightly less than continuity is required. We consider operators K defined by kernels k, possibly matrix-valued, for 
(1969, pp. 9-11). 

which the function 

f ( z )  = k ( - ,  2) 

lies in Co([O, I], L2[0, 11) with the property that supp k ( z )  c [ z ,  11, 0 I z < 1. 
Note that the Volterra property is equivalent to the stitement that 

supp u c [ZI, 11 3 supp u6u = [ZIP 11. 

dzf (z )u(z )  E L*[O, 11. 

Lemma 2. Suppose that k E Co([O, 11; L2[0, 11) satisfies supp f ( z )  c [z, I] and define for u E L2[0, 11 

Mu = 

Then for any positive p < 1 there exists a positive integer N depending on 
L l  

SUPP I l~(Z)IIL2[0,1, 

IIHNI12 < 1. 

f l = f  

o s z s 1  

and on p, for which 

Proof. [This is a small modification of the standard argument. See e.g. Widom (1969).] Define the iterated kernels f,, by 

kn(zl )  = / d z i n - l ( z ) k ( z l ,  z )  

One easily verifies that f,, E C@([O, 11; L2[0, 11). Because of the observation preceding the statement of the lemma, 
supp f n ( z )  c [z,  11 as well. 

n = 2, 3, 4 .  . . 

Note that 
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where we have written C = supOlzrl I lf(z)ll .  Assume that 

In general, 

m + Z  

Thus ~~U6"~~ < 1 for large n, as desired. Q.E.D. 

Lemma 3. Suppose that k is a Volterra kernel as described in Lemma 2, and T is a multiplicative delay operator defined by 
scalars a, /3 obeying the conditions of Lemma 1 .  Then 

O+T+K 

is invertible: in particular, for some E > 0 depending on the quantities described in Lemmas 1 and 2, 

I N 0  + lr + W I I  2 E llull 
for u E L'[O, I]. 

a bounded operator on L'[O, 11, given by a kernel 
Proof. The convergence of the Neumann series of 0 + T in operator norm is a consequence of Lemma 1. Thus (0 + T)-'K is 

f&)  = (0 + lr)-lLo(z). 

The Volterra property of f ,  follows from the delay property (a < 1) of T, and an estimate for k ,  in Co([O, 11; L2[0, 11) follows 
drectly from Lemma 1 as well. Thus 

Il(0 + T +  W)UII 2 Il(0 + T)(O + (0 + u)-'w)u)ll 

2 EJ1(0 + (0 + u)-'w)ull 

2 E 1 1 ~ 1 1  
by the application of Lemma 2. 

6 DISCUSSION 

In this section we discuss briefly the consequences of 
weakening the hypotheses Ml-M3, Sl-S3 stated in Section 
1, which underlay our arguments but which are unaccep- 
tably restrictive for practical application. 

The extension of the perturbational results to nonlayered 
background media is straightforward, to some extent, so 
long as the background is smooth. In some sense the 
literature on migration is concerned exactly with this 
extension: for some recent, mathematically correct results 
for the fixed f case see Beylkin (1985) and Rakesh (1986). 
Results analogous to those presented here should be 
achievable in this context. The (full) nonlinear nonlayered 
problem is much more difficult; for some limited results see 
Sacks & Symes (1985), Symes (1986a). 

The isotropic elasticity model is the general choice for the 
'premium' model level; see e.g. Tarantola (1984). Some 
results on the determination of a layered elastic medium 
from various point-source data sets may be found in Clarke 
(1984), Yagle & Levy (1986), Carazzone (1986), and Sacks 
& Symes (1987). On the other hand, at least transverse, and 

Q.E.D. 

possibly more general, anisotropy is evident in reflection 
data in some locales (Thomsen 1986); Coen & Meadows 
(1985) give some results concerning anisotropic elastic 
inversion. We see no difficulty in extending the results 
reported here to these more general layered models. 

The smoothless question is quite interesting and is 
presently inadequately understood. Symes (19864 gives a 
review of the extent to which smoothness constraints can be 
relaxed for a single-plane-wave, layered medium problem, 
and Sacks & Symes (1985) gives some idea of the difficulties 
which arise in the study of several-dimensional problems in 
the presence of limited smoothness. An analytic approach to 
the nonlinear problem requires that this issue be addressed, 
as perturbations and backgrounds must then be regarded as 
having the same degree of smoothness. On the other hand, 
non-smoothness may have very favourable consequences, as 
will be discussed below in relation to band-extrapolation, 
and must certainly be regarded as a feature of the actual 
parameter distributions in earth materials. 

As mentioned in the introduction, the point-source 
assumption seems adequate for reflection seismology on 
physical grounds. On the other hand, common land and 
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marine energy sources are strongly anisotropic. To some 
extent this feature might be modelled by a multipole source 
term, and the moment tensor components recovered by a 
generalization of our technique. This seems an important 
matter for further work. 

Perhaps the most unrealistic assumption of our work is S3 
(quasi-impulsive nature of sources): it is simply violently 
wrong. Typical reflection seismic sources have significant 
energy content in the range 4-60Hz, a t  best. Thus a 
reasonable isotropic point-source model should involve a 
very non-impulsive wavelet. 

In the last several years, considerable numerical evidence 
has emerged :o support the contention that bandlimited 
point-source data does determine layered velocity profiles 
by least-squares data fitting: see for example McAulay 
(1985) and Kolb, Collino & Lailly (1986). Santosa & Symes 
(1986) give a comprehensive analysis of this problem, and 
show that success of the least-squares approach is crucially 
dependent on 

(i) sufficient (precritical) aperture and, 
(ii) sufficient reflector density, i.e. sufficient lack of 

Thus the nonsmooth distribution of parameters may have as 
a positive consequence the feasibility of seismic inversion. 

We believe that the ideas of this paper and those of 
Santosa & Symes (1986) might be synthesized t o  obtain 
codetermination of velocity profiles and bandlimited 
point-sources, under appropriate conditions. In support of 
this conjecture we cite the numerical experiments of 
Canadas & Kolb (1986) who solved this problem 
numerically via least-squares data fitting. 

smoothness. 

ACKNOWLEDGMENTS 

The initial work was carried out a t  Cornell University under 
the auspices of the SRO-I11 project on inverse problems 
sponsored by ONR. We are grateful t o  the directors of that 
project, Professors Y.-H. Pao and L. Payne, for their 
encouragement and support. We would also like to  thank 
the editor (Dr J. Stevens) and the referees (Dr J. Carazzone 
and Dr T. Clarke) for suggestions which led t o  substantial 
improvements in the exposition. 

REFERENCES 

Beylin, G. ,  1985. Imaging of discontinuities in the inverse scattering 
problem by inversion of a causal generalized Radon transform, 

Canadas, G. & Kolb, P. 1986. Least-squares inversion of prestack 
data: simultaneous identification of density and velocity of 
stratified media, Presented at 56th Ann. Mtng SOC. Exploration 
Geophysicists, Houston, TX. 

Carauone, J.  J., 1986. Inversion of P-SV seismic data, Geophysics, 

Clarke, T. J.,  1984. Full reconstruction of a layered elastic medium 

1. math. Phys., 26, 99-108. 

51, 1056-1068. 

from P-SV slant-stack data, Geophys. J. R.  astr. SOC., 78, 
775-793. 

Coen, S. & Meadows, M., 1985. Exact and approximate inversion 
of plane-layered isotropic and anisotropic elastic media by layer 
stripping, Abstract presented at 55th Annual Meeting of Society 
of Exploration Geophysicirts, Washington. DC. 

Courant, R. & Hilbert, D., 1962. Methods of Mathematical Physics, 
vol. 11, Wiley-Interscience, New York. 

Kolb, P., Collino, F. & Lailly, P., 1986. Prestack inversion of a 1-D 
medium, Proc. IEEE, 74 (4). 

Lavrent’ev, M. M., Reznitskaya, K. G. & Yakhno, V .  G., 1986. 
One-dimensional Inverse Problems of Mathematical Physics, 
Translations, Series, 2 ,  vol. 130, American Mathematical 
Society, Providence, RI. 

McAulay, A., 1985. Prestack inversion with plane-layer point 
source modeling, Geophysics, 50, 77-89. 

Rakesh, 1986. A coefficient determination problem for the wave 
equation, PhD thesis, Department of Mathematics, Cornell 
University . 

Sacks, P. & Santosa, F. 1987. A simple computational scheme for 
determining the sound speed of an acoustic medium from the 
surface impulse response, SIAM J. Sci. stat. Comp. 3, 

Sacks, P. & Symes, W., 1985. Uniqueness and continuous 
dependence for a multidimensional hyperbolic inverse prob- 
lem, Comm. in P.D.E. 10, 635-676. 

Sacks, P. & Symes, W., 1987. Recovery of the elastic parameters 
of a layered half-space, Geophys. J. R. Astr. SOC. 88, 593-620. 

Santosa, F. & Symes, W. 1985. Determination of layered acoustic 
media via multiple impedance profile inversions from plane 
wave data, Geophys. J. R. astr. Soc., 81, 175-195. 

Santosa, F. & Symes, W., 1986. An analysis of least squares 
velocity inversion, preprint; to appear as SEC Monograph 
(1988). 

Santosa, F. & Symes, W. W., 1988. High-frequency perturbational 
analysis for the point-source response of a layered acoustic 
medium. J. comp. Phys., 74, (22), 318-381. 

Symes, W., 1981. Stable solution of the inverse reflection problem 
for a smoothly stratified elastic medium, SIAM J. math. Anal., 

Symes, W., 1985. Stability and instability results for inverse 
problems in several-dimensional wave propagation, Proc. of 
7th Internat. Conf. on Computing Methods in Applied Science 
and Engineering, INRIA. 

Symes, W., 1986a. Linearization stability for an inverse problem in 
several-dimensional wave propagation, SIAM 1. math. Anal., 

Symes, W., 1986b. On the relation between coefficient and 
boundary values for solutions of Webster’s horn equation, 
SIAM J. math. Anal., 17, 1400-1420. 

Symes, W., 1986c. Stability considerations for the velocity inversion 
problem, in Proc. SECISIAMISPE Conference on Seismic 
Exploration and Reservoir Modeling, ed. Fitzgibbon, W. 
SIAM, Philadelphia. 

Tarantola, A,, 1984. The seismic reflection inverse problem, in 
Inverse Problems of Acoustic and Elastic Waves, eds Santosa, 
F., Pao, Y.-H., Symes, W. W. & Holland, C. H., SIAM, 
Philadelphia. 

Thomsen, L., 1986. Reflection seismology in azimuthally anisotro- 
pic media, Presented at 56th Annual Meeting, Society of 
Exploration Geophysicists, Houston, TX. 

Widom, H., 1969. Lectures on Integral Equations, van Nostrand, 
New York. 

Yagle, A. & Levy, B., 1985. A layer-stripping solution of the 
inverse problem for a one-dimensional elastic medium, 
Geophysics 50. 

Ziolkowski, A., 1984. Deconvolufion, International Human 
Resources Development Corporation, Boston, MA. 

(4). 501-520. 

l2, 421-453. 

17, 132-151. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/95/3/449/558760 by guest on 16 August 2022


