×

Simultaneous determination of three sulfanilamide artificial sweeteners in foodstuffs by capillary electrophoesis coupled with contactless conductivity detection based on porous aromatic frameworks enhanced solid phase extraction

Journal:	Canadian Journal of Chemistry
Manuscript ID	cjc-2018-0410
Manuscript Type:	Article
Date Submitted by the Author:	26-Sep-2018
Complete List of Authors:	Xia, Shaige; Zhengzhou University, College of Chemistry and Molecular Engineering Yin, Dan; Zhengzhou University, College of Chemistry and Molecular Engineering Chen, Yanlong; Zhengzhou University, College of Chemistry and Molecular Engineering Yang, Zhicong; Zhengzhou University, College of Chemistry and Molecular Engineering Miao, Ying; Zhengzhou University, College of Chemistry and Molecular Engineering Zhang, Wenfen; Zhengzhou University, College of Chemistry and Molecular Engineering Chen, Sheng; Zhengzhou University, College of Chemistry and Molecular Engineering; Zhengzhou University, College of Chemistry and Molecular Engineering; Zhengzhou University, College of Chemistry and Molecular Engineering; Zhengzhou University, Center for Advanced Analysis and Computational Science Zhao, Wuduo; Zhengzhou University, Center for Advanced Analysis and Computational Science Zhang, Shusheng; Zhengzhou University, College of Chemistry and Molecular Engineering; Zhengzhou University, Center for Advanced Analysis and Computational Science Zhang, Shusheng; Zhengzhou University, College of Chemistry and Molecular Engineering; Zhengzhou University, College of Chemistry and Molecular Engineering; Zhengzhou University, College of Chemistry and Analysis and Computational Science
Is the invited manuscript for consideration in a Special Issue?:	Not applicable (regular submission)
Keyword:	porous aromatic frameworks, solid phase extraction, sulfanilamide artificial sweeteners, foodstuffs

SCHOLARONE[™] Manuscripts

1	Simultaneous determination of three sulfanilamide artificial sweeteners in
2	foodstuffs by capillary electrophoesis coupled with contactless conductivity
3	detection based on porous aromatic frameworks enhanced solid phase
4	extraction
5	Shaige Xia ¹ , Dan Yin ¹ , Yanlong Chen ¹ , Zhicong Yang ¹ , Ying Miao ¹ , Wenfen Zhang ¹ , Sheng Chen ^{1,2} , Wuduo
6	Zhao ^{1,2*} , Shusheng Zhang ^{1,2*}
7	
8	¹ College of Chemistry and Molecular Engineering, Kexue Road 100,Zhengzhou University, Zhengzhou 450001, P. R.
9	China
10	² Center for Advanced Analysis and Computational Science, Kexue Road 100,Zhengzhou University, Zhengzhou
11	450001, P. R. China
12	
13	*Corresponding authors at:
14	Shusheng Zhang, Email: <u>zsszz@126.com</u> ; Phone: +86-0371-67739686.
15	Wuduo Zhao, Email: <u>zhaowuduo@163.com</u>

17 Abstract

18	In this paper, a simple and easy-operating method of solid phase extraction (SPE) followed by capillary
19	electrophoresis (CE) with capacitively coupled contactless conductivity detection (C ⁴ D) is evaluated as a novel
20	approach for the simultaneously determination of acesulfame-K (ACE), sodium saccharin (SAC) and sodium
21	cyclamate (CYC) in foodstuffs without derivatization. In order to reduce the complex matrix interference resulting
22	from the constituents of samples and enrich targets, porous aromatic frameworks (PAFs) enhanced SPE, a suitable
23	sample pretreatment procedure was introduced. Several factors affecting extraction efficiency and electrophoretic
24	separation were investigated. Additionally, The interaction mechanisms of host (PAF-6)-guests (ACE/SAC/CYC)
25	were further studied. Under the optimum conditions, three sulfanilamide artificial sweeteners were baseline separated
26	within 8 min, exhibiting a linear calibration over three orders of magnitude (R ² >0.995); The limits of detection (LOD)
27	and quantification (LOQ) were considered better than those usually obtained by CE with UV and C ⁴ D detection. The
28	proposed SPE-CE-C ⁴ D method has been successfully applied to analyse beverage samples and candied fruits with
29	recoveries in the range of 78.89 - 92.00%.

30 **Keywords:** porous aromatic frameworks; solid phase extraction; sulfanilamide artificial sweeteners; foodstuffs;

31

32 Introduction

33 High-intensity sweeteners can be divided into natural sweeteners and synthetic sweeteners according to their 34 source ¹. Sweeteners have been widely used in foodstuffs since entering the food industry back in the 1800's ², 35 especially artificial high-intensity sweeteners with low calorie. In these so-called non-nutritive sweeteners, 36 acesulfame-K (ACE), sodium saccharin (SAC) and sodium cyclamate (CYC) (Fig. 1B) are mostly common artificial 37 synthetic sweeteners to replace sugar in foods in order to guarantee the safety and good quality of foods, as well as 38 satisfy the needs of consumers, particularly individuals with obesity and diabetes mellitus. Therefore, the 39 consumption of these low-calories foods by the worldwide population has dramatically increased. And it brings the 40 suspicions of adverse health effects of artificial high-intensity sweeteners. The study reported that continuous 41 ingestion of these sweeteners can lead to a metabolic disorder ^{3,4}. To assure food safety, the World Health 42 Organization (WHO) has placed strictest restriction on its usage and its acceptable daily intake (ADI) value⁵, and 43 many countries have also enacted relevant legislations ⁶⁻⁸. For the determination of individual sweeteners and their 44 combinations, several analytical methods have been proposed including high-performance liquid chromatography (HPLC) 9-11, ion chromatography (IC) 12,13, gas chromatography (GC) 14,15, ion chromatography-mass spectrometry 16, 45 46 HPLC-MS ¹⁷⁻²³, capillary electrophoresis (CE) ²⁴⁻²⁷ in conjunction with various detectors and so on. Among these 47 methods, HPLC method is widely used due to its simplicity and easy-operating. But, for low-concentrated cyclamate 48 with poor absorbance of ultraviolet (UV), it needs to be derived before analysis ^{9,10}. It is worthy to be noticed that 49 conductivity detection is an alternative determination method for lacking UV-absorbing ionic sweeteners. Recently,

50	CE-C4D ²⁸⁻³⁰ methods have been successfully used for directly determining ionic sweeteners due to its good
51	sensitivity, simple and inexpensive instrumentation and unrequired derivatization steps. For example, Bergamo et al
52	²⁹ determined four sweeteners in soft drinks and tabletop sweetener formulations by CE–C ⁴ D. A complete separation
53	of the analytes could be attained in less than 6 min and the method provided an excellent low limit of detection. The
54	prosed method shows CE-C4D has a great potential in separation of ionic lacking UV-absorbing compounds.
55	However, for various food species with more complicated matrix, it is necessary to develop suitably sensitive and
56	reliable methods for determination of different sweeteners.
57	Considering the sweeteners' concentration are low, as well as coexistence components in complicated matrix
58	can interfere with the determination of sweeteners. Many sample pre-treatment techniques involving pressurised
59	liquid extraction (PLE) ²⁰ , on-line preconcentration ³⁰ and solid phase extraction (SPE) ^{16,18,21,22,25} were developed by
60	numerous researchers to purify and enrich analytes. Among these methods, SPE has been widely used because of its
61	simplicity, rapidity, low cost, and ability to combine with different detectors in both on-line and off-line mode. To
62	date, a number of commercially available SPE cartridges, such as Oasis HLB, CNW poly-sery PWAX, Oasis MAX
63	and Plexa PAX were introduced to isolate the sweeteners from different matrices ^{16,18,21,22,25} . However, these
64	commercial SPE absorbents have a limit in effectively extracting multiple targets from complex matrix due to its
65	single interaction mechanism. Therefore, there is considerable interest in developing new selective multi-interaction
66	sorbents for extracting and isolating sweeteners from complicated matrices.

67	In recent years, porous materials stand out among numerous absorbents on account of their outstanding
68	performance in the sample pretreatment, especially porous aromatic frameworks (PAFs) which has larger surface
69	area and larger π - π conjugate system as well as a simple preparation procedure ^{31,32} . Our group has been committed
70	to the research of COFs in recent years, and a novel multi-interaction and mixed-mode porous aromatic frameworks
71	PAF-6 has been synthesized ³³ and used as SPE adsorbent to extract and determine bisphenol A (BPA) in milk and
72	its packing samples. The results show that PAF-6 has an excellent adsorption capability for BPA based on hydrogen
73	bonding and the inclusion interactions of host-guest. At the same time, the PAF-6 coated magnetic nanoparticles
74	(PAF-6 MNPs) ³⁴ were prepared and used to enrich and remove the trace organic pollutants in water, and the main
75	toxic component in mainstream smoke of cigarette, respectively. The results demonstrate that the PAF-6 MNPs
76	sorbent possesses excellent adsorption of phenols, polycyclic aromatic hydrocarbons (PAHs) and nitroaromatics
77	based on multiple π - π stacking and hydrogen-bond interactions. According to the molecular structures of of PAF-6
78	(Fig 1A) and ACE, SAC and CYC (Fig. 1B), it is suggested that the <i>p-p</i> conjugate interactions, anion exchange
79	interactions and inclusion complexations may exist between PAF-6 and these three sweeteners. Therefore, it is
80	feasible to apply PAF-6 as SPE absorbent to purify and enrich them from foodstuffs before CE-C ⁴ D analysis.
81	In this work, SPE procedure with PAF-6 as sorbent was optimized for effectively extracting and enriching three
82	sulfanilamide artificial sweeteners in foodstuffs. Gauss theoretical calculations were carried out to assistantly

83 elucidate the multi-interaction sites between PAF-6 and the sweeteners. Based on SPE clean-up procedure, CE-C⁴D

- 84 method is developed for analysis of the three sulfanilamide artificial sweeteners in different beverage samples and
- 85 candied fruits with satisfactory results.

86 Experimental

87 Reagents and solutions

88 PAF-6 was synthesized in accordance with the previously published procedures ³³, Reagents were all of 89 analytical grade. Tris(hydroxymethyl)aminomethane (Tris), Hexadecyl Trimethyl Ammonium Bromide (CTAB) and 90 Sodium tetraborate were purchased from Shanghai Chemical Reagent Company of China National Pharmaceutical 91 Group (Shanghai, China). ACE, SAC and CYC were purchased from Aldrich (Milwaukee, WI, USA). Deionized 92 water was obtained from a Milli-Q Water Purification System (Millipore, Bedford, MA). Individual stock solution (1 93 mg mL⁻¹) of each sweetener was prepared by dissolving the corresponding solid reagents in deionized water. 94 Standard solutions used in the analysis were prepared by dilution of the respective stock solutions with deionized 95 water, as required.

96 Electrophoretic equipment and conditions

97 All experiments were performed on the HP^{3D}CE system equipped with ChemStation software (Agilent 98 Technologies, Waldbronn, Germany) and a laboratory-made C⁴D detector ³⁵. The C⁴D parameters were the same as 99 the previous report ³⁵. The bare fused-silica capillaries were obtained from Yongnian Optical Fiber Corporation 100 (Hebei, China) with an inner diameter of 50 µm and a length of 50 cm (41.5 cm to the detection window). The

101	apparent pH was obtained by using a pH meter (Shanghai Weiye Factory, Shanghai, China). A buffer solution (pH
102	9.74) containing 20 mmol L ⁻¹ Tris, 20 mmol L ⁻¹ Na ₂ B ₄ O ₇ and 50 μ mol L ⁻¹ CTAB were used as background
103	electrolyte (BGE) throughout this work. The separation voltage was -20 kV and the injection time was 5 s (at
104	50mbar). Before the analysis, the capillary was flushed with 1 mol L ⁻¹ NaOH solution for 10 min, then with
105	deionized water for 15 min, and finally with the BGE for 10 min. After each run, the capillary was flushed with BGE
106	for 3 min.
107	Sample preparation
108	A centrifuge (Zhongda Instrument Plant, Jiangsu, China) was used for centrifugal separation. All samples,
109	including 8 beverages (2 carbonated cola drinks, 3 fruit juice drinks, 1 red wine drink, 2 plum grape wine drinks), 6
110	candied fruits (2 candied mango, 2 candied plum, 2 candied kumquat) were purchased from local market (Zhengzhou,
111	China). They were prepared by the relevant procedures as follows.
112	For beverages, two carbonated cola drinks were degassed for 5 min in an ultrasonic bath, other six beverages
113	were shaken well. Then, they were diluted with deionized water as required. For candied fruits, take the edible part
114	of the candied fruits and mix homogeneously, a 5 g homogenized sample was dissolved in 20 mL of deionized water
115	and ultrasonicated in an ultrasonic bath for 10 minutes, and followed by centrifugation at 2100 rpm for 10 minutes.
116	The supernatant was transferred into a 50-mL volumetric flask. The precipitate was washed with deionized water and
117	repeated extraction. The supernatants were pooled into the same 50-mL volumetric flask, and deionized water was

- added volumetrically to 50 mL level. All sample solutions prepared were stored at 4 °C, then diluted as required for
- 119 SPE procedure.

120 **PAF-6 SPE procedure**

- 121 As shown in Fig. 2, 30 mg of PAF-6 sorbent was packed into a 3 mL SPE cartridge. In total, 50 mL diluting
- 122 sample solution was passed through the PAF-6 SPE cartridge by gravity, which had been preconditioned with 3mL
- 123 of MeOH and 3 mL water, respectively. The cartridge was then washed with 3 mL water, and eluted with 5 mL 8%
- 124 ammoniation ethanol. The eluate was evaporated at ambient temperature under a gentle stream of nitrogen gas until
- 125 dry and re-dissolved in 1 mL buffer. Each sample was filtered through a 0.22 μm Nylon filter (Agilent, USA) prior
- 126 to CE–C⁴D analysis. All tests were performed in triplicate.
- 127 Quantum chemistry calculation
- 128 To further understand the mechanism of molecular interactions between the PAF-6 absorbent and target
- 129 analytes. Geometries of the guest ACE, SAC, CYC and the host PAF–6 were optimized by B3LYP/6–31+G(d) level.
- 130 The sizes of PAF–6 and the tree sweeteners were calculated using the Gaussian 09 program.

131 **Results and disscussion**

132 **Optimizing CE–C⁴D conditions**

- 133 The composition was optimized of the BGE in order to attain the best peak resolution and detectability. Fig. 3
- 134 shows electropherogram for a standard solution containing the three target sweeteners. We can note that separation

135 with good resolution can be obtained in less than 8 min.

136 The sensitivity of the conductivity detection is directly proportional to the mobility difference between the 137 analytes and the BGE co-ion; the BGE counter-ion also has influence on the instrument response. Moreover, BGE 138 significantly affects the migration time and the separation between targets directly. In the selection of BGE, the main 139 consideration is the ionization characteristic of the analytes. The pKa values for the corresponding acids of the ACE, 140 SAC and CYC are 2.0, 1.8 and 1.9, respectively, which indicated that the analytes have a net negative charge in an 141 aqueous BGE when pH > 2.0, and at pH above 4.0, > 99% are in anionic form. Therefore, in our study, negative 142 polarity separation voltage was used. However, in negative polarity separation voltage mode, the direction of the 143 electroosmotic flow (EOF) was opposite to that of anion electromigration resulted in very poor resolution. So it is 144 favorable to use the EOF modifier to suppress or reverse EOF direction when pH > 4.0. Thus, we chose general 145 CTAB as the EOF modifier. Accordingly in the present work, several electrolytes utilized as the buffer solution that 146 possess a useful pH range from 3.0 to 10.0 were tested, including Na₂B₄O₇, Na₂B₄O₇–H₃BO₃, Tris–His, Tris–H₃BO₃ 147 and Tris-Na₂B₄O₇. Among these tested BGE, 20mM Tris-Na₂B₄O₇ provided satisfactory results with the highest 148 resolution relative to the others.

The mixture of Tris and $Na_2B_4O_7$ is used for keeping the background conductivity as low as possible as well as producing the necessary pH buffering. In order to further improve the separation of these three artificial sweeteners, buffer pH and concentration of $Na_2B_4O_7$ in buffer were optimized. The relevant responses were evaluated by the resolutions between ACE and SAC (Rs1) and between SAC and CYC (Rs2). According to the results in table 1, a

- 153 BGE containing 20mM Na₂B₄O₇, at pH 9.74 adjusted by adding Tris was chosen because it provided the highest
- 154 resolution relative to the others.
- 155 Tests also showed that the efficiency of the separation became good and the migration time became short, when
- 156 the separation voltage was increased. As known, the higher voltage will result in the peak broadening because of the
- 157 Joule heating effect, the lower voltage will result in the poor resolution. Therefore, a voltage of 20 kV when the
- analytes can observe the minor peak-broadening was selected as the best separation voltage in our study. In addition,
- 159 the introduction of an organic solvent into a buffer system was considered as a method for improving the separation
- 160 efficiency because the organic solvent would change the physicochemical nature of the separation system. However,
- 161 no obvious improvement was observed. So organic solvent will not be added

162 **Optimization of SPE procedure**

163 In this section, the main influence factors (amount of sorbent, kinds of eluent, content of NH₃ • H₂O in eluent

and volume of eluent) on the SPE recoveries (n=3) of ACE, SAC, CYC are evaluated in detail to obtain the optimal

- 165 extraction conditions using simulated samples.
- 166 Firstly, the efficiency of the PAF–6 amount on the recovery of analytes was studied. Five absorbent amounts
- 167 (10, 20, 30, 40, 50 mg) were investigated (Fig. 4A). The results display that the recoveries of sweeteners increased
- 168 with the rise of the PAF-6 amount from 10 to 30 mg. When the amount of PAF-6 was more than 30 mg, the
- 169 recoveries of sweeteners remained almost constant. As a result, 30 mg packing was chosen for the subsequent

170 experiments.

171A proper elution is of great importance to reduce interfering substances and improve the recovery. Thus, the 172influence of the kinds, pH and volume of the elution solution on the extraction of sweeteners was studied. The 173nitrogen character on piperazine of PAF-6 indicates that adsorption of sweeteners may be relative to weak anion 174exchange interactions. So the alkaline environment is good to the process of elution. So we added ammonia into 175eluent solvents. As is shown in Fig. 4B, three kinds of solutions (ammoniation acetonitrile, ammoniation methanol 176 and ammoniation ethanol) all can yield good recoveries. Taking environment protection into account, we chose 177ammoniation ethanol as eluent solvent. 178We subsequently optimized the content of $NH_3 \cdot H_2O$ in ammoniation ethanol. The obtained results (Fig. 4C) 179 showed that 8% ammoniation ethanol yielded the highest recovery. Therefore, the content of NH₃.H₂O need to be

180 adjusted 8% in the actual determination.

181 In addition, various volumes (1 - 9 mL) of ammoniation ethanol were used for the PAF-6 SPE process. The

results (Fig. 4D) showed that when the eluent volume reached 5 mL, the value of recovery was higher than 90%.

183 When the eluent volume was more than 5 mL, the recoveries of sweeteners remained almost constant. Taking

reagent saving into account, 5 mL ammoniation ethanol was chosen in this study.

185 Retention mechanism discussion based on quantum chemistry calculations

186 PAF-6 demonstrated significant enhanced adsorption ability for ACE, SAC and CYC, indicating the crucial

187	role of the PAF-6. According to the studies developed by our group ^{33,34,} PAF-6 has high surface area and the
188	NLDFT pore size distribution exhibited broad mesoporosity (2 - 5 nm) in its framework. So inclusion complexation
189	should be considered during the process of adsorption. From the results (Fig. 1C) calculated using Gaussian 09
190	program, it can be seen obviously that the inclusion complexation existed in host (PAF-6)-guests (ACE, SAC, CYC)
191	as the sizes of ACE, SAC and CYC are much smaller than that of the channel of PAF-6.
192	Method validation
193	Linearity, detection limits, and precision
194	The method validation including linearity range, LODs, LOQs and precision was carried out, and were
195	summarized in Table 2. There was an excellent linearity between the peak area (mV) and the concentration of ACE,
196	SAC in the range of 0.5 – 25 μ M and CYC in the range of 1 – 50 μ M with the correlation coefficients from 0.9949 to
197	0.9973. For the LOD, a signal-to-noise ratio of 3 was evaluated. The LODs were 0.09 μ M, 0.12 μ M and 0.22 μ M,
198	respectively, which were all less than LOD of CZE–UV and common CE–C ⁴ D. For the LOQ, a signal-to-noise ratio
199	of 10 was evaluated. The LOQs were 0.32 $\mu M,$ 0.37 μM and 0.75 $\mu M,$ which were all less than the maximum
200	regulatory limits. The inter-day and intra-day analysis precision was tested at 1 µM levels, RSDs were found below
201	4.3% (n= 6), indicating good repeatability.
202	Accuracy and recovery test

203 To further evaluate the reliability of this proposed method, Recovery experiments were performed by adding

204	accurate amounts of ACE, SAC and CYC to the real samples. The standard-spiked samples were subject to the same
205	sample preparation procedure as the real samples. As presented in Table 3, the average recovery data at three
206	different concentrations were in the range of 78.89 - 92.00% with corresponding RSDs of 1.90 - 3.91%. From these
207	results, it was concluded that the developed method was accurate, reproducible and reliable for analysing ACE, SAC
208	and CYC in beverage samples and candied fruits.
209	Analyses of real samples
210	The proposed method allowed the quantification of all analytes in the beverages and candied fruits (Table 4)
211	with RSD values lower than 5%. Typical chromatograms of orange juice drink and candied mango A before and
212	after SPE were shown in Figure 5. It is obviously observed that the matrix interference can be minimized after
213	purification using the PAF-6 SPE sorbent, and meanwhile targets achieved enrichment. The results indicated that the
214	developed method was suitable for the determination of the three artificial sweeteners in beverage samples and
215	candied fruits.
216	Comparison of proposed method with previously reported results
217	To evaluate the analytical performance of the proposed method, a comprehensive comparison of the proposed
218	method with other reported methods for determination of artificial sweeteners is presented in Table 5. As could be
219	observed, the proposed method can directly accomplish the determination of these three sweeteners without
220	derivation. And it reduced matrix interference as well as provided a low LOD after a SPE clean-up procedure. At the

- same time, the prosed method was time saving and cost-effective, it was demonstrated to be rapid, simple, cheap and
- 222 sensitive for determination of artificial sweeteners in beverage samples and candied fruits.

223 Conclusion

224 An analytical method has been developed based on solid-phase clean-up procedure followed by CE-C⁴D for the 225 determination of three high-intensity sweeteners in beverage samples and candied fruits. For the first time, a novel 226 home-made multiple-interaction SPE absorbent PAF-6 was used to purify and enrich these sweeteners in foodstuffs 227 containing complicated matrices. By using the SPE pretreatment technique, matrix interference is minimized and 228 excellent detection limits can be achieved, these were much lower than those normal CZE–UV and CE–C⁴D methods. 229 The method is suitable for use by the food industry for quality control as well as by health and safety agencies for 230 inspections. We also believe that the SPE-CE-C⁴D method can easily be used for analysis of other matrices, such as 231 teas, ice cream, desserts and other foods.

Acknowledgements The authors acknowledge the support of National Natural Science Foundation of China
 (21475119, 21775140).

- 234 Compliance with Ethical Standards
- Funding This study was funded by the National Natural Science Foundation of China (No. 214751119 and
 236 21775140).
- 237 **Conflict of interest** All authors declare that they have no conflict of interest.

- 238 Ethical approval This article does not contain any studies with human participants or animals performed by any of
- the authors.

241 **References**

- 242 (1) Sardesai, V. M.; Waldshan, T. H. J. Nutr. Biochem 1991, 2, 235. doi: 10.1016/0955-2863(91)90081-F.
- 243 (2) Shankar, P.; Ahuja, S.; Sriram, K. Nutrition 2013, 29, 1293. doi: 10.1016/j.nut.2013.03.024.
- 244 (3) Bandyopadhyay, A.; Ghoshal, S.; Mukherjee, A. Drug and chemical toxicology 2008, 31, 447. doi:
 245 10.1080/01480540802390270.
- 246 (4) Burke, M. V.; Small, D. M. *Physiology & behavior* **2015**, *152*, 381. doi: 10.1016/j.physbeh.2015.05.036.
- 247 (5) FAO & WHO (2006) Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food
- Additives (JECFA) 1956–2007 (First through sixtyeighth meetings)
- 249 (6) Renwick, A. G. Food Addit. Contam 2006, 23, 327. doi: 10.1080/02652030500442532.
- 250 (7) Mortensen, A. Scandinavian Journal of Food and Nutrition 2016, 50, 104. doi: : 251 10.1080/17482970600982719.
- 252 (8) GB2760-1996 (1996). Hygienic Standards for Uses of Food Additives. National Standard of the People's
- 253 Republic of China
- 254 (9) Lee, Y.; Do, B.; Lee, G.; Lim, H. S.; Yun, S. S.; Kwon, H. Food additives & contaminants. Part A, Chemistry,
- 255 *analysis, control, exposure & risk assessment* **2017**, *34*, 666. doi: 10.1080/19440049.2017.1284348.
- 256 (10) Li, J.; Liu, Y.; Liu, Q.; Hui, J.; Liu, Y. Analytica chimica acta 2017, 972, 46. doi: 10.1016/j.aca.2017.04.032.

- (11) Sargaco, B.; Serra, C.; Vasco, E. Food additives & contaminants. Part A, Chemistry, analysis, control,
 exposure & risk assessment 2017, 34, 883. doi: 10.1080/19440049.2017.1306756.
- 259 (12) Zhu, Y.; Guo, Y.; Ye, M.; James, F. S. Journal of Chromatography A 2005, 1085, 143. doi:
- 260 10.1016/j.chroma.2004.12.042.
- 261 (13) Chen, Q.; Mou, S.; Liu, K.; Yang, Z.; Ni, Z. Journal of Chromatography A 1997, 771, 135.doi:
- 262 10.1016/S0021-9673(97)00067-8.
- 263 (14) Hashemi, M.; Habibi, A.; Jahanshahi, N. Food Chemistry 2011, 124, 1258. doi:
 264 10.1016/j.foodchem.2010.07.057.
- 265 (15) Yu, S.; Zhu, B.; Lv, F.; Li, S.; Huang, W. Food Chem 2012, 134, 2424. doi: 10.1016/j.foodchem.2012.04.028.
- 266 (16) Gan, Z.; Sun, H.; Wang, R.; Feng, B. Journal of chromatography. A 2013, 1274, 87. doi:
- 267 10.1016/j.chroma.2012.11.081.
- 268 (17) Scheurer, M.; Brauch, H. J.; Lange, F. T. Analytical and bioanalytical chemistry 2009, 394, 1585. doi:
 269 10.1007/s00216-009-2881-y.
- 270 (18) Ordonez, E. Y.; Quintana, J. B.; Rodil, R.; Cela, R. Journal of chromatography. A 2013, 1320, 10. doi:
- 271 10.1016/j.chroma.2012.07.073.

- 272 (19) Sakai, H.; Yamashita, A.; Tamura, M.; Uyama, A.; Mochizuki, N. Food additives & contaminants. Part A,
- 273 Chemistry, analysis, control, exposure & risk assessment 2015, 32, 808. doi: 10.1080/19440049.2015.1018341.
- 274 (20) Ordonez, E. Y.; Quintana, J. B.; Rodil, R.; Cela, R. Journal of chromatography. A 2013, 1320, 10. doi:
- 27510.1016/j.chroma.2013.10.049.
- 276 (21) Loos, R.; Gawlik, B. M.; Boettcher, K.; Locoro, G.; Contini, S.; Bidoglio, G. Journal of chromatography. A
- 277 2009, 1216, 1126. doi: 10.1016/j.chroma.2008.12.048.
- 278(22) Arbelaez, P.; Borrull, F.; Pocurull, E.; Marce, R. M. Journal of chromatography. A 2015, 1393, 106. doi:
- 279 10.1016/j.chroma.2015.03.035.
- 280 (23) Lim, H. S.; Choi, E.; Hwang, J. Y.; Lee, G.; Yun, S. S.; Kim, M. Food additives & contaminants. Part A,
- 281 Chemistry, analysis, control, exposure æ risk assessment 2018. 35. 1674. doi: 282
- 10.1080/19440049.2018.1486043.
- 283 (24) Catherine, O.; Thompson, V.; Craige, T.; Bridget, K. Journal of chromatography. A 1995, 704, 203. doi:
- 284 10.1016/0021-9673(95)00210-Е.
- 285 (25) Horie, M.; Ishikawa, F.; Oishi, M.; Shindo, T.; Yasui, A.; Ito, K. Journal of chromatography. A 2007, 1154,
- 286 423. doi: 10.1016/j.chroma.2007.03.094.
- 287 (26) Fernandes, V. N. O.; Fernandes, L. B.; Vasconcellos, J. P.; Jager, A. V.; Tonin, F. G.; Leal de Oliveira, M. A.
- 288 Analytical Methods 2013, 5, 1524. doi: 10.1039/C3AY26187E. 18

- (27) Vistuba, J. P.; Dolzan, M. D.; Vitali, L.; de Oliveira, M. A.; Micke, G. A. *Journal of chromatography. A* 2015, 1396, 148. doi: 10.1016/j.chroma.2015.03.070.
- 291 (28) Bergamo, A. B.; Fracassi da Silva, J. A.; de Jesus, D. P. Food Chemistry 2011, 124, 1714. doi:
- 292 10.1016/j.foodchem.2010.07.107.
- 293 (29) Stojkovic, M.; Mai, T. D.; Hauser, P. C. Analytica chimica acta 2013, 787, 254. doi:
 294 10.1016/j.aca.2013.05.039.
- 295 (30) Yang, L.; Zhou, S.; Xiao, Y.; Tang, Y.; Xie, T. Food Chem 2015, 188, 446. doi:
 296 10.1016/j.foodchem.2015.04.060.
- 297 (31) Díaz, U.; Corma, A. Coordination Chemistry Reviews 2016, 311, 85. doi: 10.1016/j.ccr.2015.12.010.
- 298 (32) Qian, H. L.; Yang, C. X.; Wang, W. L.; Yang, C.; Yan, X. P. Journal of chromatography. A 2018, 1542, 1. doi:
- 299 10.1016/j.chroma.2018.02.023.
- 300 (33) Yin, D.; Chen, Y.; Zhang, Y.; Yang, Z.; Mao, H.; Xia, S.; Zhang, W.; Zhao, W.; Zhang, S. Chromatographia
- 301 **2018**, *81*, 749. doi: 10.1007/s10337-018-3504-6.
- 302 (34) Chen, Y.; Zhang, W.; Zhang, Y.; Deng, Z.; Zhao, W.; Du, H.; Ma, X.; Yin, D.; Xie, F.; Chen, Y.; Zhang, S.
- 303 *Journal of chromatography. A* **2018**, *1556*, 1. doi: 10.1016/j.chroma.2018.04.039.

- 304 (35) Zhao, S.; Yin, D.; Du, H.; Tian, X.; Chen, Y.; Zhang, W.; Yu, A.; Zhang, S. Journal of separation science 2018,
- 305 *41*, 2623. doi: 10.1002/jssc.201701432.

007	T .	, •
307	HIGHTE	cantions
001	riguit	captions

- 308 Fig.1 Chemical structures of (A) PAF-6 and (B) three sulfanilamide artificial sweeteners and (C) optimized
- 309 geometries of the host (PAF-6)-guests (ACE, SAC, CYC) based on inclusion complexations.
- 310 **Fig.2** Schematic representation of the solid phase extraction of three sulfanilamide artificial sweeteners in foodstuffs
- 311 followed by $CE-C^4D$.
- 312 Fig.3 Electropherogram of standard solution containing 1 µM of each sweetener with SPE-CE-C⁴D. Peak
- 313 identification: 1, ACE; 2, SAC; 3, CYC.
- 314 Other conditions: BGE: 20 mmol L⁻¹ Tris+ 20 mmol L⁻¹ Na₂B₄O₇+50 μ mol L⁻¹ CTAB. Separation voltage: 20 kV;
- 315 Pressure injection: 50 mbar×5 s; silica capillary with 50 µm inner diameter and 50 cm length (41.5 cm effective).
- 316 Fig.4 SPE optimization for three sulfanilamide artificial sweeteners with the PAF–6 sorbent. (A) influnce of PAF–6
- 317 amount; (B) influnce of different kinds of eluent solvents on the recovery; (C) influence of different content of
- 318 NH₃.H₂O in eluent on the recovery; (**D**) influence of different eluent volumes on the recovery.
- 319 Fig.5 Electropherograms of real samples. (A) orange juice drink, and (B) candied mango A with (a) homemade
- 320 PAF–6 sorbent and (b) without SPE.

1 Tables

3

2 **Table 1** The effect of buffer pH and buffer concentration on separation degree.

Na ₂ B ₄ O ₇ Concentration in	pН	Rs1	Rs2
BGE (mmol/L)		(ACE/SAC)	(SAC/CYC)
10	9.59	2.17	6.29
15	9.63	2.33	6.74
20	9.74	2.96	6.88
25	9.79	2.65	6.37

- 4 Table 2 Figures of merit for the ACE, SAC and CYC, based on the areas of the peaks recorded at the CE-C⁴D
- 5 detector (Y and X are expressed in mV and μ M, respectively).

Analytes	Regression	Evaluated range	Coefficient of	LOD	LOQ	RSD (%) (n=6)	
	equation	(μM)	determination, R ²	(µM)	(µM)	Intraday	interday
ACE	y=108.71x+8.573	0.5-25	0.9973	0.09	0.32	3.2	3.9
SAC	y=169.22x-5.835	0.5-25	0.9961	0.12	0.37	3.7	4.1
CYC	y=223.01x-17.63	1-50	0.9949	0.22	0.75	2.9	4.3

		Cola drink A			Orange juice drink			Candied mango A		
Analyt	Spiked									
		Found	Recovery	RSD	Found	Recovery	RSD	Found	Recovery	RSD
es	$(\mu g/g)$									
		$(\mu g/g)$	$(\mu g/g)$	(%)	$(\mu g/g)$	$(\mu g/g)$	(%)	$(\mu g/g)$	$(\mu g/g)$	(%)
	100	262.31	88.02	2.58	194.06	86.96	2.18	191.28	79.88	2.33
ACE	200	332.07	78.89	1.99	291.11	92.00	2.25	277.83	83.21	2.08
		<		• • •			• • •			• • • •
	500	600.77	85.30	2.92	559.66	90.51	2.63	561.45	90.01	2.86
	100	211 72	94 22	2 70	97.20	97.20	2.22	152 70	01 20	2.01
	100	211.73	84.32	2.78	87.20	87.20	2.55	152.79	81.28	5.91
SAC	200	292.86	82 73	3 31	177 68	88 84	1 90	244 32	86.40	3 18
brie	200	272.00	02.15	5.51	177.00	00.04	1.90	244.32	00.40	5.10
	500	538,99	82.32	2.85	455.00	91.00	2.59	512.37	88.17	3.72
	100	193.97	80.70	3.55	90.26	90.26	3.22	80.18	80.18	2.91
CYC	200	282.91	84.82	2.84	175.96	87.98	3.90	172.84	86.42	2.30
	500	512.25	79.80	2.69	458.97	91.79	2.28	427.95	85.59	3.55

7 **Table 3** Recoveries of spiked-standard in real samples.

Samples	Average concentration detected ($\mu g/g$)				
	ACE	SAC	СҮС		
Cola drink A	174.29±0.45	127.41±0.28	113.27±0.40		
Cola drink B	175.02±0.43	240.26±0.55	640.59±1.55		
Orange juice drink	107.10±0.38	n.d.	n.q.		
Blueberry juice drink	67.66±0.25	n.d.	245.40±1.14		
Grape juice drink	19.64±0.09	n.d	283.15±0.85		
Red wine	n.d.	n.d.	n.d.		
Plum grape wine A	8.51±0.03	n.d.	123.56±0.34		
Plum grape wine B	7.28±0.02	n.q	131.29±0.33		
Candied mango A	111.40±0.32	71.51±0.18	n.q.		
Candied mango B	120.20±0.35	n.d.	n.q.		
Candied plums A	49.11±0.16	n.q.	87.82±0.29		
Candied plums B	51.25±0.17	n.q.	621.18±1.43		
Candied kumquat A	60.61±0.23	n.d.	n.d.		
Candied kumquat B	70.36±0.18	n.q.	n.d.		

9 Table 4 Assay results of three sulfanilamide artificial sweeteners in real samples (n= 3).

10 Note: n.d.= not detected (below LOD); n.q. = detected but not quantified (concentration below LOQ).

Matrix	Analytes	Sample preparation	Determination	Run time	LOD	Reference
			technique	(min)		
beverages	СҮС	HS-SDME ^a	GC-FID	5	5 μmol/L	[14].
Waste water and surface water	ACE, SAC, CYC, SUC	without pretreatment	HPLC-MS	18	0.5-5.0 ng/L	[17]
		SPE			river water: 0.001-0.04	[22]
river water and wastewater	ACE, ASP, CYC,NHDC,SAC,SUC ^b		HPLC-MS	13	μg/L	
					waste water:	
					0.01-0.5 μg/L	
beverages	ASP, CYC, SAC, ACE	without pretreatment	CZE-UV	6	0.5-12.0 mg/L	[26]
soft drinks and tabletop sweetener formulations	ASP,CYC,SAC,ACE	without pretreatment	CE-C ⁴ D	6	1.4-4.2 mg/L	[28].
food samples	ASP,CYC,SAC,ACE	without pretreatment	CE-C ⁴ D with	3	3.8-6.5 µmol/L	[29]
			Hydrodynamic			

			pumping			
Beverages and candied fruits	ACE,SAC,CYC	SPE	CE-C ⁴ D	8	0.09-0.22 μΜ	Present work

12 **Table 5.** Comparison of different methods for the determination of artificial sweeteners.

13 Note: ^aHS-SDME, headspace single-drop microextraction; ^bACE: acesulfame-K; ASP: aspartame; CYC: sodium cyclamate; NHDC: neohesperidin

14 dihydrochalcone; SAC: sodium saccharin; SUC, sucralose.

1

5

PAF-6 adsorbent 🔶 Artificial sweeteners • Impurities

CE-C⁴D Analysis Elution

* *

https://mc06.manuscriptcentral.com/cjc-pubs

Figure 3

7

Figure 4

11

