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ABSTRACT

A theoretical analysis for the laminar non-Newtonian
fluid flow in the entrance regién of a flat duct is presented
in this thesis. The non-Newtonian fluid is assumed to be of
the Ostwald-de Waele model and its physical properties are
assumed to be constant. The initial velocity and temperature
profiles of the fluid prior to its entry are considered to
be flat, and the walls of the duct are maintained at uniform
but different temperatures. The momentum and energy integral
method of von Karman and Pohlhausen is applied for the solu-
tion of entrance heat transfer problems. Dimensionless
expressions for velocity and temperature profiles, as well
as pressure loss and Nusselt's modulus are obtained from
numerical methods.

The results of this thesis indicate that, as in the
case of Newtonian fluid, the parameters which influence
entrance heat transfer are L/D ratio, Reynolds number and
Prandtl number, provided these groups are properly defined

for non-Newtonian)fluids.

iii
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The problem to be considered here is the simultaneous
development of velcecity and ftempersiture profiles of a non-
.Newtonian fluid initially at uniform temperature, and with
a flat velocity profile ém+ering a fiat duct. A constant

temperature (but different from the fluid temperature) is

impoged on the walls of the duct., Besides its acadenic
interest, the gtudy of this problem has certain pracitical

believed t0 give a closer approximation of & shori-tube
heat exchanger. Previous work has shown that +he develop-

ment of velocity profile has s profound effect on the heat

transfer characteristics (7, 8, 15).

During recent years, considerable research has been
developed in the study of noun-llewtonian fluids. This is
because an increasing number of fluids treated in industry
behave differently from the well-established Newtonian
theory, Their shear stress (Z&X) is not directly propor—
tional to the velocity gradient (-du/dy). They are referred
o ag non-Newtonian fluids. Eowever9 most of the work done

in the past deals with the physical and chemical properties

of wthe fliuild and the establishment of mathematical models
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to deseibe its behavior. Turther work in the investiga-

N

tion of the flow and heat transfer characteristics of non-

Newtonian fluids would be deSlqulo and most helpful to the

”

engineer,

Theoretical analysgis and experimental work have been

iy

carried out for laminar flow oi various non-Newtonain models

O

(2, 6, 12, 19) whose steady-state relatlon between shear
stresé and veloclty gradient can be represented by empiri~
cal equations. The gtudy of velocity development in the
entrance region has been reported by Bouge (3), Tomaya (18),
and recently by Collinsg and Schowalter r {(5). Heat transfer
gtudy with fully developed flow has been investigated by
Lyche and Bird (11) and Tien (17). However, studies on
simultaneous development of velocity and temperature pro-
files have not yet been published in literature.

Entrance heat transfer studies for Newtonian fluid
have been nade only recently. Based on the results of
Langhaar (10) on velocity profile development, temperature
distribution in the entrance region of a pipe was obtained

by Kays (8) and Goldberg (7) using different techniques.
Similar study for the case of a flat duct was given by
Sparrow (15) in which the integra} method was employed,

The study of non-Newtonian flow is a branch of the
"science of deformation and flow" known as the science of
rheology. As implied by “heir generalized name, non-

Newtonian fluids include all gases, liquids, colloidal
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suspensions, polymeric solutions, and crjstalline materials
which do not obey the Newtonian postulate of viscosity that
viscosity depends only on temperature and pressure and is
independent of the rate of shear. Wilkinson (19) classified
thé non-Newtonian fluids into three broad types:

(1) time-independent fluids for which the rate of shear
at any point ig a function of the shearing stress
at that point.

(2) time-dependent fluids for which the relation be-

o tween shear stress and shear rate depends on its
previous history.

(3) viscoelastic fluids which exhibit partial elastic
recovery after deformation.

The steady-state rheological behavior of the time~

independent fluids may be described by the equation of the

form:

Ty = - 7%;—‘— (1=1)
where 7’§s the non-Newtonian viscosity and may be expressea
as a function of either the shear rate (-du/dy) or the shear
stress (QTyX). N may be representedvby the slope at a
given point of the so-called " flow curve ", i.e. the
diagram relating shear stress and shear rate for non-
Newtonian fluids. Time-independent fluids can further be
divided into thfee diétinct groups: (1) Biﬁgham plastics,
(2) pseudoplastic fluids and (3) dilatant fluids.
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Bingham plastics have a flow curve which, like that of
Newtonian fluids, is a straight line but does not pass
through the origin. The slope of the straight line gives

'the plastic viscosity, o Tne Bingham model which ex-
presses the rheological relation between the shear stress

('Zyx) and the shear rate (-du/dy) may be written as:

_j;_.—_ 0 if /T;e.x/“ Z, (1-3)

-where 7, is the yield stress. When the shear stress is
'less than the yield stress the structure of the fluid
remains rigid, but when the shear sitress exceeds T, the
'structure disintegrates completely, and the fluid flows
like Newtonian. Examples of bingham plastics are oil paints
and pasty materials.
Pseudoplastic fluids have a non-Newtonian viscosity
(7 ) which decreases with increésing rate of shear (-du/dy),
but'for dilatant fluids JZ increases wiﬁh increasing shear
rate. The rheoldgical behavior of both types of fluids can
be described by the following models:
The Ostwald-de Waele model (or the power-law model)

Tyx = ‘M/éﬁ"/n—/‘f?? | (1-4)

The Eyring model

- (= L |
Z'#,x, = /4 arcs_m( Y d/ , (1"5).
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The Ellis model

du Bt ) |
*2;“/%*9?/2;5“ ) G (1-6)
The Reiner-Pnilippoif model
L _ /
B d}’/ - . - Ao = e Zx
| e /(7 x/ﬂ“ : (1-7)

\

With proper choice of the parameter, Egs. (1-4) to (1-7) can
be applied to pseudoplastic, Newtonian, or dilatant fluids.
Approximate values of M, 1, %, %, By s g, aad & for
various fluilds are tabulatved in Bird, Stewart, and Lightfoot
(2).

T

e

me-dependent fluids may be subdivided into two
classes: (1) thixobropic fluids and (2) rheopectic fluids.

5 -

he first class includes fluids whose viscosity (77) de-

R

creages with time under a suddenly applied constant sitress
(Zyx)g whereas the second are those whose ¥ increases with
time, Lven though experimental work and theoretical study
have been ﬁade about time-dependent fluids as well &g visco-
tic fluids nmuch of theilir behavior still remains unknown
to engineers.

Since pseudoplastic fluids are most common in industry,

[&9]

thig thesis will resgtrict its investigation fto them. It 1
also found that the power-~law model 1s besgt adapted because

of its simplicity.
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CHAPTER II
ASSUMPTIONS AND FUNDAMENTAL EQUATIONS

A. Description of Problem
Pig. 1 gives the schematic description of the problem

. under investigation. The fluid before entering the duct

is assumed to have a uniform velocity profile u = U, and

at a uniform temperature T, . The walls of the duct are
maintained at a constant temperature Tw where Ty # Too s
‘and the distance between the walls being 2b. Since the

lower and uppef halves of the conduit are symmetrical to

each other, it is only necessary to study either half.

FPor convenience, the origin of the rectangular coordinates

is taken at the entrance point of the lower wéll with x-

axis parallel to the direction of flowhand y-axis perpen-

dicular to it. The x-component of the velocity vector is

termed u and the y-component v.

B. Assumptions
The assumptions used in this thesis are:
1. The flow is‘two dimensional. |
2. The flow is steady.
3. The fluid is incompressible and has constant
physical properties.
4, The dissipative heat due to friction is negligibdble.

6
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5. The velocity and temperature profiles are flat at
6. There ig a thin layer of fluid zdjacent to the wall
in which the velocivty is zero at the wall, but

approaches to very near main flow velocity at a

distance O from the wall. This fluid layer is
called the velocity boundary layer of thickness S,
and outside this layer, pcoctential flow occurs in
the core and the core velcocity profile is flat,

The velocity boundary layer is assumed to be of
zero thickness at the iniet point. It increases in
thickness with distance from the inlet point until

<

it reaches the centre line of the duct where the

two boundary layers from both walls merge. It is
assumed that the viscous effect is confined within
the boundary layer, and outside the region the forces

due to friction are small and may be neglected.

)
®
H3

h

[©]

re is a transfer of heat between the fluid and
the wall because of the temperature differeunce.

The major part of this transfer takes place in a
thin layer of fluid adjacent to the wall. Within
the layer temperature varies from Ty, at the wall 1o
T 0f the undisturbed flow. In an exactly analo-
gous manner to the velocity boundary layer, this
thin layer is called the thermal boundary layer of

thickness A. Cutside the thermal boundary layer
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the fluid is not materially affected by the heat
transfer and the temperature remains the same as
that of the fluid_before entering. This layer
will grow from zefo thickness at the inlet point
to a value equal to b at the centre line where
the two identical thermal boundary layers from
both walls meet. It is further assumed that the
effect of longitudinal conduction of heat in the
fluid is insignificant. | |

8. The usual boundary layer simplification can be

applied to the egquations of motion and energy.

C. Basic Equations
For the steady-state laminar flow along the flat duct,
the equations of motion, continuity, and energy can be

written as follows:

EY)2 du _ _ /19p 19
“3x * f&; T T pox ,o&/(g’"‘) (2-1)
ob
5% =° (2-2)
Jx ' Jy - (2-3)
=27 27 - oo 227 -
“ox T Yoy TX oy (2-4)

"For a non-Newtonian fluid obeying Ostwald-de Waele

model, its rheological behavior can be described by
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T =~ [M ,/é(A:A)In‘/]A (2-5)
where M = consistency index | .
n = flow behavior index
A = rate of deformation tensor

values of M and n for varlous fluids may be found in Bird,
Stewart and Lightfoot (2), Metzner (12) and St. Pierre
(13). It should be noted that the flow behavior index (n)
is a measure of the degree of non-Newtonian behavior.' The
farther the value of n deviates from unity, the more
pronounced is the hon-Newtonianvbehavior, and for n =1,

(1-4) and (2-5) reduce: to the Newtonian law of
viscosity with M =40 .

For Eq. (2-5) the stress component is given by

ty ‘"/M/z /ﬂr/(ja;& %) (2-6)

where I, the second invariant of stress tensor, is given

as:

O)uL o 73 2 | .
[ = ZZ. 3;&] (2-7)

Jx/
In the core, the flow is assumed to be nonviscous and

the equation of motion, Eq. (2-1), reduces to

dU / d
Ua/x ,2‘225‘ (2-8)

Combining Eqs. (2-6), (2-7), (2-8) and (2-1), the equation

of motion can be simplified to
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Ua/[/ /aa/[(au)]
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CHAPTER III
N  DEVELOPMENT OF VELOCITY PROFILE

A. Solution of the Equation of Motion
The momentum integral method of von Karman and
Pohlhausen (14) is ﬁsed for the approximate sdlution of
Eq. (2=9). It has been assumed that there exists a finite
boundary layer of thickness O (x) such that the viscous
effect is within that layer; and for y=9 ; the ﬁelocity
is uniform and is known as the core velocity. Integrating

(2-9) from y =0 to y =48, we have

/ d/*%audy / /"‘9/ /a,/] (3-1a)

From the equation of continuity [Eq. (2-3)],

- Jdu
V= ox
o
Substitute v int6 Eq. (3-1a) and after rearrangement, we

have

£/ ?&w- u/]d/ : ””’/ (U-2)ay
= / / 4

- AQZ
= doy, Ky (9/4,‘, ]

EL =5
But S5y 0O at y .

11
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therefore the momentum integral eguation is obitained in the

form
a ¢ 7/ ¢ M 3
— U -u) ldy + £ — 2 )y .—:.__/.Sﬁ_é.é /
a’x// ([/ /_// 5,/.{,/&/ )0'“)‘/ /° /o?yz,_—o '
? | ¢ (3-1)
A polyromiagl of the fourt  degree 1s assuwmed for the
velocity dis ution, w(y), inside the boundary layer.

This ig given by

W L _z;:'_z _ég*.f? _f/{i¢
T T ) als) a5 alE) (5299

The coe¢f10 ents Cq, Cp, C3z and C, can be determined by

compatibility conditions which are given as

w=0 atb v = 0 (3-3)
u=71U .at v =5 (3-4)
2%= 0 g vy =8 (3-5)

Bouation (3-3) is asutomatically satisfied by Bg. (3-2). Two
additional conditions are regulired for the determination of
. They are obtained fron the following considerations:

1. The velocity boundary layer thickness, 3(x), in-
creases along the down-gitream direction, and when the upper
and lower layers meet, i.e. & = b, the flow isg considered
to be fully developed. For a power-law non-Ngwtonian fluid
in laminar flow along a flat duct, the exact fully developed

city profile (12) is known to be

¥+

- =7/-(/- (f/ (3-6)

ASSHMPTION UNIVERSITY LIBRARY
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It becomes obvious that any properly assumed dxpression for

such as Bg. (3-2) should be reduced o Bg. (3-6) when

and direct way to solve for

o o
1
OJ
oy
e
4]
o]
s
o
<
‘»_J
(}1

C; in Eg. (3-2). However, thig is only possible for n =1,

d,

1/2 and 1/3; for values of n other than these, we have to
seek other means to debermine the coefficients Cy.
Appendix A.1 gives a sample calculation for the determina-—
tion of the coefficients €. by matching Eg. (3-2) with
Bg. (3-6).

2. The total volumetric Tlow rate across the section
of the developed profile as calculated by the approximate

3

velocity expression [Bq. (3-2)] should be the same as that

calculated by the exact one [Eg. (3-6)]. Thus we have
13 z/{ =z pes
[ o) sy a6 a9
b szt
. &
= Z/}.-(7-——- *ZJ/}ﬁ
o/ 5 s (5-7)

%. The kinetic energy of the fluid crossing the section

the developed profile as determined by the approximate and

by

o

exact expressions should be equal, i.e.:
4 ;fd"
[/l sy o)
;'év'-/
/// (1-< /
(3-8)

Hence Equations (3-4), (3-5), (3-7) and (3-8) complete
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the necessary conditions for determinating C4 in the

assumed velocity distribution Ig. (3-2) .

From Ba. (3-4) G+ G 4 G+ & =/ (3-9)

From Ba. (3-5) G #2634+ 4G = 0 (3-10)
2 & Cn o G Coo

From Hge (3= - = e 5E L, e %11

From Eg. (3-8) Jo- B,

/F A 2 +FFn

Appendix A.2 gives a sample calculation for determination
of Cy by Equations (3-8) to (3=12). It should be noted
that the above gguations fail to determine C; for
n < 0.11355, because the fourth power polynomial approxi-
mgtion of the velocity distribution is no longer sufficient
to degcribe the flow behaviore

Numerical values of C; for various values of the flow
behavior index (n) are given in Table 1kand Pig. 2. A
cémparison between the assumed expression for u at fully
developed condition and that of the exact for n = 3/4, 1/4
and 1/5 is shown in Pig. 3. The fully developed velocity
profiles are reproduced in the form v/U vs. n in Figa 4.

The non--Newtowian fluid enters the duct at a uniform

velocity (Uy)e As the fluid moves along the duct,
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the fluid within the velocity boundary layer near the wall
is retarded due to the viscous effect, while the fluid in
' the core will be accelerated frdm the initial uniform
>_velocity to a final velocity which is attained when the two
boundary layers meet at the center line. This continuity

‘requirement can be expressed as

U’""‘/“d}”‘[/(g‘é) (3-13)
- o
~ where U = average velocity of fluid
(-T 7 ay
or - = - u
¢(5-0) = [(U-u)dy
c, & . G &
= UJ(/—}—-"EZ_'"_Z"‘ ’3—4‘/
or ‘Ué =tiy-U |
| '.el( ) (3-14)
_ & _ & & &
where K& = /-5 - % -2 -A£&

When the approximate velocity expression [Eq. (3-2)].
is substituted into the momentum integral equation [Eq. (3-

1).], and after integration, we have

| | . .
& 2 LI = M Unc;’
dx (kZUJ)* Zx (£,U3) L 7 (3-16)
_ & &, & o &Gt
where kz-:-z—-fj +4_+5' 3 5 7
Gt GG _ 264 _ 64 . &G
T e 5 J 3
S 2% | GG - (3-17)
7 P2
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16
Substitute Eq. (3-14) into Eq. (3-16) and carry out the
operation:

’%‘(zu-ﬁ) + t(U-T)

AL =/-M Uzlnénﬁn/
Adx [P 2 (U-U)"
nf/(

or Ax = ’Zgamg*:/?" [(Zszgyu—[&fej 9&_:/‘{0

(3-18)
If the following transformations are made,
= .Y .
v 17 , (3-19)
‘ Fre-n ,
. pblU '
Ry v (3-20)
X * o X
6 Rey (3-21)
§* = 5. '
5 | (3-22)
Eq. (3-18) becomes
dx* _ (U *- /) K, + 24 ¥ K A 7/
T e S b
| (3-23)

Eq. (3-14) can also be written as

§* = ;’-(/"5/-;) I . (3-24)

Eq. (3=~23) was integrated numerically by the method of
Clippinger and Dimsdale over the interval x*= 0 and U= 1
to U™= fully developed value, i.e. 5" = 1. Appehdix B

gives a sample dalculation. Table 2 gives the results of
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U* and §*as a function of x* for n = 1/4, 1/2 and 3/4 ;

and these are. also presented graphically in Pig. 5 and 6.

In the neighborhood of the entrance section, x* =0

and U*= 1 ; Eq. (3-23) is integrated to be
/

U*_/ ___‘[C;nlg"*/(/fn} xi‘/;—m
Kz '

(3-25)
At the fully developed section, 5*= 1 3 BEq. (3-24) becomes.

* . _ L o
v 7% ~ (3-26)

Other expreséions may be assumed for the velocity
distribution.. For example, u may be assumed to have the

following form:

. / - (/-_52‘.)/;”

U (3-27)

If it is substituted into the momentum‘integral equation
and similar operation is carried out as shown previously,

the following equations are derived:

Lx* | (.2n+/)n(//-/}n * /
= St )l = (42 +3)] 550
au* (Fn+2)(n+1)” [( 4 (# jj((/z )
3-28

2xn+/ / ’
5% = = //'2}—9 (3-29)

In the neighborhood of the entrance region the solution

for the velocity is

ARt /)"

(3=30)
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The fully developed vélocity is given by

* _ Znv+/
v nt/ (3-31)

By letting n = 1, Eq. (3-23) to (3-31) will be valid
for Newtonian fluid flow, and the equations reduce to the

forms developed by Sparrow (.15).

| B. Entrance Length
The axial distance from the ihlet to the point where
- the two boundary layers from the walls meet at the center
line is known as the entrance length, Its dimensionless
quantity (x*)ent is obtained as 8° = 1 or U* reaches the
fully developed value as given by Eq. (3-26) or (3-31).

Fig. 7 shows the dependence of (i*) on the flow behavior

. ent
index (n).

C. Pressure Loss
The pressure drop in the entrance region consists of
the resistanée due to viscous effect and the pressure loss
due to momentumvchange of the accelerating fluid in the
core. The pressure drop between the inlet ( x*= 0 ) and
any point within the entrancehlength [x*é (X*>ehtj can be
obtained by integrating Egq. (2-8) with the lower limit

taken as x*= 0 and U¥: 1. ©This gives

Lo = *2
P IT%2 v / | ' (3-32)
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In the fully developed region, the pressure drop over a

length Ax is given by

44 - 2 ('/ f.Z%}’t(fAQJC ')
*/z n b e
/° b
: (3-33)
The dependence of the pressure drop on x* is given in Fig. 8.
Conventionally, the total pressure drop between the
inlet and any point in the fully developed region

[x* = (x*)entj is given as

b ‘ 7
4 = ,Z(cLiJQ%/ x* + Cor
rIYz ”

| (3-34)
where "Cor." is the excess pressure due to the entrance
effect in addition to the pressure loss from x*= 0 +to the
point at x® if the velocity profile is assumed to be fully

developed. The correction term "Cor." is represented

mathematically by

Cor =[WI, -7 ] - 2(4542) 1x"), ,

(3-35)

Substitution of Eq. (3-31) into (3-35) gives
. nldn+2) _ [+ 2%, . x :
Cor (% +1)% Z( ” / (% e (3-36)

The pressure correction factor (Cor.) is plotted in Fig. 9

as a function of the flow behavior index (n).
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CHAPTER IV
DEVELOPMENT OF TEMPERATURE PROFILE

A. Solution of the Energy Equation

The solution of the temperature distribution is obtained
in a similar way. In addition to the existence of a velocity
boundary layer, a thermal boundary layer with thickness équal
to A is assumed to exist in the neighborﬁood of the wall.
The effect of heat transfer between the fluid and the wall
is confined within this layer and the temperature of the
fluid outside the layer remains unchanged. The energy
integral equation is obtained by integrating the energy
equation (2-4) from y =0 to y =&, and after rear-

rangenment, we have

i) “l(B-T)dy = <(3])

The temperature distribution in the thermal'boundarj\layer

(4-1)

is assumed to have the form:

« _ T -7, 3 / 3
7T = ) 2 (F)

oo = Tw (4-2)
which satisfies the following boundary conditions:
T =T . at y =0 (4-3)
T =T, at Yy =A : (4-4)
27_0 at y =4 (4-5)
%;’ ,
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Eq. (3-2) and (4-2) can be substituted into (4—1) which in
turn will lead to an expression for A. However, the inte-
gral on the left hand side of Eg. (4-1) would yiéld different
expressions depending on the relative magnitude of § and &.
These will be treated seperately:

Case (a) A > &

The velocity profile is given by

24 2 7 AL
Teal)r ) GE) Gy txr 0434
u="U for Jd4£y <A

Hence Eq. (4-1) can be written as

é’%/fim— 7)dy + ”[;L "D [ 5.

4-1b)
Substituting Equations (3-2), (4-2).and (4-6) into (4-1b)

and carrying out the operation, one has

2 sf g% .3, = et
2;[4”5*&[/4 * AULS "aUA_/ Z A
(4-7)
where
=4, %, % b, - _
KL=z *3 1275 -/ A (4-8)
R - >
K¢ Z s /o Z "z (4-9)
= G & ¢z Ca _ 1 -
A =70 72774 77¢ "B (4-10)

.Introducing the following dimensionless forms in addition
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to those given before [Equations (3-19) to (3-22)],
x _ D , ;
A° =7 | (4-11)

‘=%§Aﬁ :

(4-7) becomes

* : 5*2 §*= 3 , rr

//_( ) * AT +-5-A’* /4
5* U ®r3 »
+/K,U**2&FU*+4K5-§—;§- A

s** 5 %4 3 ) *
* K w0z -ka—__-A*‘#'r.é— U «a

= _3 Ax*
a*
2 a* Pr (4_13)

From Eq. (3=-23), we have

w [/ + 2Az k+/<
(L —/) (K, )U ( )/ 2L

*
dx T U*.en

Also, from Eqg. (3-24) we obtain

dé‘*_____ 4(1/* ‘
L U** (4-14)

Substituting Egs.(3-23) and (4~-14) into (4-13) and after
rearrangement, we obtain
' » 2 * L
[3 - x(52)"- ”(L)/U"

Za* P/ C‘”k U"z”

_ a *E 3 2hy 5% 4A}J*’J/
{/{,; *’9 *'{?“73‘ g4 *kj’*ﬁ;‘z Y ATEFTE

(4-15)
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Case (b) 4 < §

Since the ?hermal boundary layer is within the velocity
boundary layer, one single expression is required to describe
the velocity profile [Eq. (3-2)] in the region 0 £y £ §.
Following the same technique as in previous case, we derive

the following equation:

* *\ 2
(569 5G9+ 152" (5 ) o
re plegre <ty / .
ya / 2

ZAFr & kT k2N 245*

- ___L_n. + £ - . wowZ Z
TlTI40 8 B0 %% L0k USTZ 12k U3

Jdo £, U574 2ok U™

(4-16)
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B, Numerical Integration of Temperature Soclutions
Bguation (4-15) or (4-16) will be used in conjunction
with the results obtained from Bgs. (3-23) and (3-24)

[relationship between U®, 3% and x¥] to obtain a relation-

ship between A* and X% Hunmerical invegration of Equations
(4~15) and (4~16) are carried cut using Bunge-~Kutta method
(9). The initial conditions corresponding to xz* =0 or
U* =1 are A%= 5%= 0. However, this leads %o the inde-
terminate forn for A/ 8% or EfﬂAﬁw In order to over—
come thisg difficulty, computation will not gtart exactly at
the entrance point, but a small distance down-siream.

Since in the immediate neighborhood of the enbtrance point
U% is almost unity. Consequently, the flow may be assunmed

t0 be the same as that over a flat plate. The solution of

velocity and temperature digtributions over a fiat plate

(o)

for power-law non-Newtonian fluid has been studied by
Acrivos et al. Their results on heat transfer rate and
shear stress, expressed in terms of thermal boundary layer

thickness and velocity boundary layer thickness, are

/ ' /
J 7) G ITFE 7w ‘
A (4-17)
. L
A*‘ - A G588/ xﬁ'z . for Xi’< X?{ (4-*"18)

NPr

o -
A* = 13395 "‘/ézp” “"3)/ Ak G
/8 x>

for x* > x3  (4-19)
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/7”2

x* - [2658c8/ [HTF (/+z;z/ “G=
/ 13385 (P)E /78 (74 72 (4-20)
where K = /”‘”-
- e zao / /* / (4-21)

Appendix C gives the detailed derivation of these expressions.
In the immediate neighborhood of the entrance region,

(3-25) is valid to determine the starting value of U*:

* C k/'f’t(/ ”}
vo- x / | (3-25)

Equations (4-17) to (4-21) and (3-25) provide suffi-

cient relationships to start the numerical integration of
du*/daa* Computation starts at A¥= 1x10™%. This value of
. A" will give two values of x*, one from Eq. (4-18) and the
other Eq. (4-19). The correct x* should be chosen from

the appropiate equation satisfying the limiting conditiouns,
x* < foor x* > xr. Once the value of x* is known, other
values for 8 and U™ can be calculated. The relative
magnitudes of 3 and A™( A*= 1x107%) will determine either

(4-15) or (4-16) should be used to continue the inte-

gration. In usual cases A* is greater than 5? in the

inlet region so that Eq.(4-15) is infeg?ated first. But
somewhere down-gstream the ratio of 5fﬁA* becomes greater
than unity, and a switch to Eq. (4-16) is necessary. Actual
computation was carried out by a LGP-30 digital computer.

Computation stops when either A*or & reaches unity.

58806
ASSEMPTION
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In cases where & first reaches unity, the subsequent
growth of A* can be obtained from Eq. (4-1) using the fully
developed velocity profile [namely replacing & by b in

(3-2)]. The resultant equation is found to be

% //’?/’"” ) JE/AM” @),/
v 28 fat 07 02 fe s Jf
- —zj;;-/x*" (x2¢___.,/ (4-22)

in illustrative example of the numerical integration

is given in Appendix D. Numerical values of U%as a func-
tion of Af, Pr and n are tabulated in tables ; and if these
values are plotted in graphs, (not shown in this thesis)
they can be matched with Fig. 5 to obtain the corresponding
values of A’*and x*. The final results, A* and x*, are |

given in Table 3 and presented in Fig. 10.
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| CHAPTER V
HEAT TRANSFER CHARACTERISTICS

A. Definition of the Nusselt Number

The Nusselt number is defined as

27
N, - b4 - Aié 0’%,{/-‘-‘0
“ ) (5-1)
07 - 7]
where Tb is the bulk temperature.
.If the following dimensionless quantities are introduced,
L/ /"
b Tee = 7y, , | (5-2)
o o T=Tw o 3y L(F)3
7  Teo = Ty Z(A} Z/A) (4-2)
* L F - |
J b ' (5-3)
the Nusselt number becomes
97*/
= dy* [y*a0 :
/Vu = 174 14 .
- . (5-4
7, (5-4)

Tb can be found from energy balance and is given by

' , x
77 | 7
Tbpp(T-7) = | &(2L) ax
: / b -
A o)//-a (5-5)
The left hand side gives the change of enthalpy of fluid
between the entering point and any point x along the axial

direction. The right hand side represents the total amount

of hesat transferred from fluid to wall in this distance.

27
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After rearrangement, Eq. (5-5) becomes
/S /'(97 I
- o
Teo ” U/ofé A 4
Q7 *
P//( ;ﬁ
7, T

= -t = Iw
/

Too = Ty
= / — 72
(5-6)
or x *
7-‘* - // o7 d w |
e 7 (7. o
and -
(// *o 0 Z0™% (5-8)
Combining Bquations (5-4), (5-7) and (5-8), we have
3
Wy, = —22% |
a7 it o (5-9)

B. Calculation of the Local Nusselt Number by Eq. (5-9)

The integral ‘// “ﬁc in Eq. (5-9) can be evaluated as

» a»

dx*i/ﬂuxx-f » dx
» *

4 (4 4 [7] /0

for x1 < 1x10° (5-10)

follow:
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» . /o FY
X dxt Zx* X" A *

* * b
AT A fa “

| for x7 2 1x107%  (5-11),
where x? is determined by Eq. (4-20).
The last integral in both equations can be obtained gra-
phically. However, for the other integrals, A*-*:O as
x* - 0, or 1/a* -+ OC; and graphical integration becomes
unreliable. On the other hand,‘in the intervél, 0= x*:s10;?'
flow can be assumed as that of a flat plate, and the solu-

tions for flat plate given by Eq. (4-18) and (4-19) can be
utilized. For 'x; < 1x10™%, the Eq. (5-10) becomes

x* x,*
u/” dx® =‘/// "SR Ax*
A A% [, ZE5868//XF
' F 4

u/f ka’"ﬁ%({:fh&/at k//nx Zx™
*
,r /3395 (x’y&n*'u e 4

dtl /0

» ‘ ' a
Yt (P x*)?
A /329340
o VT2
” P/(/fﬂ/ // /i{/-fnj
/3375 /*+2n
x* *
+ “/f‘
Fo-< A ' (5-10a)
For x1 = 1x10 4, Eq. (5-11) is given by
. . e
dx S Pr Lx ™
- * (5-11a)
ya\ /32 T34 - A%

o /0
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If a graph gf ép'vs. x* for each Pr and n is plotted, the

X dx™
integralv/; —~= can be integrated from the graph, and hence
/0

the local Nusselt number is obtained. Appendix E gives a
sample calculation. The values of Nux and x™ are given in

Table 4 and also presented in Fig. 11.
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CHAPTER VI
' DISCUSSION OF RESULTS
A. Velocity Profile

In this thesis the velocity distribution given by
Eq. (3-2) coincides with the fully developed profile when
d = Db, but its approach is not asymptotic. It is believed
that the boundary layer approach is not suitable as velo-
city becomes fully developed. Cpllins and Schowalter (5)
used another method to obtain more exact expressions. No
apparent difference between their results and those obtained

in this work is detected when compared.
B. Entrance Length

It has been pointed out that a fully developed velo-
city profile is defined in this thesis as the profile when
5' = b. This means that the velocity approaches its fully
developed value finitely. But the actual approach should
be asymptotic. Some.éuthors define entrance length dif-
ferently. ‘They choose the distance required for the center-
line velocity to reach an arbitrary percentage (usually
99%) of its fully developed value as the entrance length.
This gives an entrance length larger than that obtdined by

the "finite" definition. In Bogue's work (3) on non-

31
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Newtonian fluid flowing in the envrance of a pipe, it was
found that the values of entrance length obltained by the

"finite" definition are about half of those by the "asymp-

*

totic" definition. Similar remark may be said about flow
in a duct, but’the ratio between the values of the entrance
length wmay not be half. In Colling and Schowalter's work
they used the Y"asgympitotich definition for entrance length
'and their values are deflinitely higher than those obtained
here.

It is known in Newbonian fiuid flow that 95% of the
additional pressure loss is accomplished in onme half of
the entrance length. Since a2 pseudoplastic flﬁid has a
flatter profile, its fully develoned fAIm i1s established
more quickly than that for a Newbtonian fluid. As a resulst
the distance for the velocity development should be shorter.

»

Therefore the "finite" definition of entrance length should

be more appropiate when applied to a pseudoplastic f£luid.
C. Pressure Drop

Values of the entry pressufe drop correction factor
"Cor." for different n are lower than those obitained by
Colliné and Schowalter. This 1is contrary‘to expéctationa
Por g given n, their value of entrance length is higher
end should give a smaller "Gor, ! according to (3-36). For
Newtonian fluid, ¥YCor." was found to be 0.584 compared with

their value 0.67 and 0.60 reported by Schlichiing (14).
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D, Temperature Profiles

A ol 3“2 - .
The smoothness of the A vs. x° curves in PFig. 10

indicates that there is no sudden change of slope when

H
O]

Bgs. (4-15) and (4-16) are joined together. This shows
that even though each set of these equations is appliceble
within certain ranges, it will not break down completely if
they were used beyond their applicable ranges. Since the
velocity and thermal bcundary layers are analogous to each

other, their growth should follow a general shape, which is

guite evident when Pig. 6 and 10 are compared.

O

)

Ho other regults are available to test the accuracy of
Egs. (4-15), (4=-16) and (4-22). It has been discusscd that
the boundary layer analysis is not suitable to the develop-
ment of velocity profile for the region when 5 > 1. Can
the same be said about boundary layer calculaticn for A
when A approaches b? No conclusive answer has been found.
It is a general belief that the boundary concept will give
good results if the interaction of heat ftransfer between

the two walls is negligible.
E. Heat Transfer Characteristics

From Pig. 11, it may be concluded for a fixed value of
x*; the Nussel?t number increases with increasing Prandtl
number, but decreases with increasing "n"., The Iusselt

number reaches the same value (about 0.199) when A = 1,
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>

regardless of the values'of Prandtl number and "n". <chis
means that the Nusselt number is independent of the Prandtl
number and the flow behavior index (n) once the temperature
profile is fully developed. Another observation is that
the values of x*’decreases With decreasing Prandtl number

for fully developed heat transfer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VI
CONCLUSION

Laminar flow behavior and heat transfer of pseudo-
plastic fluids obeying the power law in the entrance region
of a flat duct have beeﬁ studied. Boundary layer theory is
applied in the simultaneous development of velocity and
temperature profiles, and solutions are obtained with sin-

plicity by the approximate method of von Karman and

Pohlhausen. Numerical values for U¥, 5% A® and Nusselt
nunber as a function of x* are tabulated and plotted for
n=3%/4, 1/2 and 1/4 over the range of Prandtl number from

‘{ to 200. Other results include entrance length and pressure
loss. Comparison between results of this thesis and those

of other theoreticael analyses reported in the literature is
favorable, The simplicity of the approximate method em—
floyed here ie obvious and certainly an advantage over the
time consuming end laborous exact method. HNo effort is made
to compared the theoretical results with those obtained by
experimental work since no such findings have ever been

published.

35
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NOMENCLATURE

Equation numbers given after description refer to

equations in which the symbols are first used or thoroughly

defined.

Dimensions are given in terms of mass (M), length

(L), time (t), and temperature (T).

A

=" = K

= N

51

]

constant in Eyring model, Egq. (1-5).
constant in Eyring model, Eq. (1-5),
half-spacing between parallel walls in the duct, L.
29 03 & 04

coefficients of the polynomial expression for
velocity distribution, Eq. (3-2).

Entry Pressure Drop Correction, Eq. (3-35), M/Ltz.
heat capacity at constant pressure, L2/t2T.

heat transfer coefficient, or increment.

second invarisnt of stress temsor, Eq. (2-7).
constant, Eq.. (3-15).

constant, Eq. (3-17).

constant, Eq. (4-8).

constant, Eq. (4-9).

constant, Eq. (4-10).
constant, Eq. (4-21).
thermal conductivity, ML/t°T.

correction term in Appendix D.
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consistency index, Egs. (1-4) & (2-5).

the Nusselt number, Bq. (5-1).

the local Nusselt number, Eq. (5-9).

flow behaviér index, Eqs. (1-4) & (2-5).
(C¢,pb T )/(k Rey ), the Prandtl number for
flow in duct, or

( Cpf b Uo )/( k Rey ),‘the Prandtl number for
flow over flat plate.

fluid pressure, M/Ltz.

fluid pressure at entrance point, M/It2.

( e p? g2n Y/ ( M ), the Reynolds number for
flow in duct, or ‘

( e bt Ui‘n ) /( M) , the Reynolds number for

flow over a flat plate.

~temperature, T.

dimensionless group, BEg. (4-2).

bulk temperature of fluid, T.

dimensionless bulk temperature of fluid, Eg. (5-2).
temperature at wall, T.

temperature of fluid at entrance point of a duct,
or temperature of fluid far from surface of a |
flat plate, T. X

velocity of fluid in the core, L/t.

average velocity of fluid, L/t.

dimensionless velocity component, -Eq. (3-19).
velocity of fluid at entrance point of a duct or

free-stream velocity of a flat plate, L/%t.
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u = x-component of fluid velocity vector, IL/t.

v = y-component of fluid velocity vector, L/t.

X = rectangular'coordinate in the direction of flow,
L.

x™* = dimensionless distance, Eq. (3-21).

y = rectangular coordinate perpendicular to the

direction of flow

vy* = y/b, dimensionless distance.

« = k/pC,, thermal diffusivity, 12 /3.

2 = parameter in Ellis model, Eq. (1-6).

A = thermal boundary layer‘thickness, L.

A* = A/b, dimensionleaa thermal boundary layer thick-
ness.

A = rate of deformation tensor, Eq. (2-5), t—1.

8 = velocity boundary layer thickness, L.

5* = 0 /b, dimensionless velocity boundary layer
thickness.

¥ = non-Newtonian viscosity, Eq. (1-1), M/Lt.

M = Newtonian viscosity, M/Lt.

Mo = parameter in Binghém model, Eq. (1-2), and

Reiner-Philippoff model, kq. (1-7), M/Lt.

[ = Dparameter in Reiner-bPhijippoff model, Eq. (1-7),
M/Lt. .

p = fluid demsity, M/L°.

Tij = shear stress tensor, Eq. (2-6), /142,

7, = parameter in Bingham model, Egq. (1-2), M/t .
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7, = parameter in Reiner-Philippoff model, Eq. (1=7),
/5.

Zyx = shear stress exerted in the x-direction on a
fluid surface which is perpendiculat to the
y-direction.

# = parameter in Ellis model, Eq. (1-6), Lt/ u.

# = parameter in Ellis mode, Eq. (1-6), L t° ~'/i .

ASSUMPTION URIVERSITY LIBRARY
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APPLNDIX A
SAMPIE CALCUIATION TOR DETERMINATION
OF COEFFICIENTS C.

i

IN EQ. (3-2)

1. By matching Bq. (3-2) with (3-6)

L - glf) ra(E)ralE) ol (3-2)

If n=1/2., Bg. (3-6) is equal to

w3
A=
sty o) )
(4-1)
Comparing with Eq. (3-2), we have
Cq =3
R (A=2)
Cz =1
Cqs =0

2. By Eq. (3-9) to (3-12)
Bg. (3-9), (3-10) and (3-11) can be rearranged to the

form
C1 + Cp + Cg =1 =Cy (4-3)
Cq + 205 + 305 = -4C, (4-4)
o C C n C :
1 2
....+»—-—-§-—-Z)-=1_W“‘“"AL (A"S)
2 3 4 1 +2n 5 :
42
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AApplying the method of determinant to the above equations,
one can obtain expressions for 01, 02 and 03 in terms of 04

and n. These are

/Zn £
= -z A A-6
¢ ¢ /It 2R S ‘e ( )
¢, 7 + e T 3 &, _ (A-T)
= /Zn /2
= /+ Bn S Ce (4-8)

Substitution of Eq. (4-6), (4-7) and (4A-8) into (3-11) gives.

04 in terms of n:

C. = 7875 /7 . »
< AL 178 T 1ps(1+2n)

/7 n /48)1 _ »n “Lr 3
[/7.5' /75(/7*,2:4} 7875 5(/;&2»4}2 2+3n ~ 35(/+2n) ? 375
(4-9)

Therefore, once the value of n is chosen, 04 is first
obtained by (A-9), then G, , C, and C; can be found by
(4~6), (4-7) and (a-8).

For example, if n = 1/4, we have

7 3 78 25
C‘ =
“ /4(75 */7$/A£y/
48(25)% _ .28 _ _/ 3
/"d' /70'// 5) /870’ 38 (1.57% 275 350/5) T35

-2 27642 o ~23.95 948 (ravaliz)

L
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J LE3HLO

i

= _ IR CLRS) . 4z
s 4 = L2 27642)

It

LELES) Lizzjs4z) = R07755

2 =757

= f - LR2(CES) 2 - .
< v L(227642) = 4-7/056
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APPENDIX 3B
NUMERICAL INTEGRATION OF EQ. (3-23)
BY THE METHOD OF CLIPPINGER & DIMSDALE"

Sample calculation is based on n = 1/2, and Eq. (3-23)

becomes

Zx* Ik // 257‘2/ 107/43)], /4 /.,sz Jo]7/ 4 //

AU* —y (75)%
= ([/*-//‘”T/z-/44447 - /-5407576/

(B-1)
The solution is required over the interval U= 1 +to
U = fully developed value which>is 4/3 by Bq. (3-24) given
that U*= 1 at x*= 0.
The expressions involved in the Clippinger and

Dimsdale method are listed below:

XMUS) = xNUS) + 2h XT(US) (-2)

* ) _ - * > * _é_ *p k) xR
LYY = ™)+ % (Uz/ 4[“1/4/ X [U‘?/(B-"j)
Simpson's rule,
X*UN = x XY +§4 LAY + ax (U)X "‘?zy;"//
| (B-4)

*Method given in reference (9), pp 206-208.
45
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where x*(U;) = value of x *when U™ is equal to U;
x*zU;) = value of AxX/aU* when U* is equal %o U;
h = increment of U”

The first few results of iEgq. (B-1) are given in

Table B.1 where h is chosen to be 0.01.

Table B.1 Partial Solution of Eq. (B-1)
U (- )F| 2.144449 - 1843570 | gxyay® x*

1.01 | 0.10000 0.51125 0.51125 | -1.8641x10™ %
' 3,2993%10™%

1.02 | 0.14142 0.52726 0.74656 0
8.3560x10 4
1.0% | 0.17321 0.54296 0.094046 | 6.4288%x10~4
1.6802x10~4
1.04 | 0.20000 0.558%6 0.111672| 1.4913x10™4
2.7095x10™4

The computing procedures are:

1. Prom Eq. (B-1), find dx¥/dU™ at U"= 1.0 which is O.

2. Applying Eq. (B-2), the first value of x(1.02) is
found to be O.

3, Use Eq. (B-3) to obtain a first approximation to

x*(1.01), namely, -1.8641x107%.
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4, Use Simpson's rule, Eq. (B-4), to get a better value
for x*(1.02) which is 8.3560x107%,

5. Using x*(1.02) = 8.3560x10% instead of the old
value, x#(1.01) is recomputed by Eg. (B-2) to obtain
3.2992x10™4,

6. Successive approximations to x*(1.01) and x*(1.02)
by the‘above procedure are terminated when no fur-
ther change takes place.

7. The next two values x*(1.03) and x*(1.04) are
obtained in exactly the same way from the knowledgé
of only x*(1.02). Thus, each step involves a cal-
culation of two new values and entails exactly the
same procedure.

Actual computation was carried out by an LGP-30 digital

computer. The results are tabulated in Table 2 and presented

graphically in Fig. 5.
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analysis for fiow in the duct. The cox "e velocity is cons-

ree stream velocity (U,). An express—

c.,
\Y]
i
<t
©
;
f},ﬂ
)

fe]
<
Ay}
fd
[}
ch
Ing
el
2]
}.

ion for wveloclty distribution within the veloeity boundary

layer is assumed and the momentum integral method is used

<

(\

) 1,

o obtain relation for velocity boundary thickness. The

velocity distribution is given by

¢ o v o
ixc’(;*"“’(ﬁ_)"( (é._é./ for 0 £y £6§
(c-1)
u =, for y = &

The nomentum integral equstion is given by

:0/ (¢c-3)

When Eg. (Cwi) is substituted into Egq. (C=3), we have

%(Z/ - &g)aﬁf =

dbc

522
5n+/ _ (/+>2)qu ~

/z/o (6“4)

Transforning Eq. (C~4) into dimensionless quantities as

e

tefined before except where U dis replaced by U, in the

o

[a2

dimengionless forms gives

48
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. K
—t
5* ='0+n34”uxi/*“‘
A2

(4-17)
Acrivos et al. (1) have investigated the heat transfer

problem for non-Newtonian fluid flow over a flat plate.

For n< 1 and x — o9 their result, expressed in terms of

present variables, is given as
2+

’ % F o A i)
[&7' _ / A7 Br /fzfz/ X
QY fyeo 0.8930 /8 / * 4 (C-5)
37 s ] .
where Ay 520 (/7‘)22/ (4-21)
If'a temperature profile is assumed of the form
¥ o T=Tw 2(£) - _/_(f_/é’- |
Too - 7, AP z\a/ (C-6)
we obtain
(09 7y 3
OF o XB (¢-7)

Therefore, combining Equations (¢-5) and (C-7), we have in

dimensionless form

L L
A = /,3375//(6” y 274 /%Z;z/-/‘i‘x*%

/8 / *
for x*> x{" (4-19)
For n < 1 and x -~ 0, the velocity distribution in the

boundary may be disregarded and the resulting expression
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for A%

* 3 [ *Z _ 285868/ x 3
= RSN S AE z ,x
4 2N JSFr

for x*< x (4-18)

At some point x the two equation for A* will be joined.

By equating Bquations (4-18) :nd (4-19) we can solve for
; _

X1,

é /+n

. |
¥ = [ 265868/ A" /,‘z)
/ 1.3395 (7 )% [/ /8 /+)z - (4-20)
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APPENDIX D
NUMERICAL INTEGRATION OF EQ. (4~15) AND (4-16)
BY RUNGE -KUTTA METHOD®

As it has been noted in Ch. 4, integration will not
start at the entrance point, but a small distance down-
stream. In the immediate neighborhood of the entrance point,
the flow is aésumed to be the same as that over a flat
plate. Therefore computation is made to start at A= 1074
which is selected because it will give a corresponding wvalue
of x* so small that within this distance the assumption of
flat plate behavior is applicable. However, for O%= 10-4,
two values of x*, one from Eq. (4-18) and the other from
(4~19) may bve ovtained. The starting values for integration
depend on the correct choice of x* among these two values.
Sample calculation is based on n = 1/4 and Pr = 100.

From Eq. (4-21)

/'f'n
Ke = 280 /+ndy

_ %s
B zea /ZJJ/

= 0.67738

*Mev.0od given in reference (4), pp 61-78.

51
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Prom Eq. (4-18)

* 2 -t PA
2 85868/. 265868/

From Eq. (4-19) 30t

¥ /&tpr (222 #)Ern
/3375 18 \rn

= 107% (6??33) /oo /-3 225‘ = -7
/5-3375 / ,za- / /71705 % /0
From Eq. (4-20) S

‘*)‘t
o =/2 65848/ /7‘3///
i 13375 ()% /m
_ /2-45353/ /( £9938) ( // e
/3355 (100)%

- 587376 x 1077

Values of x™ from Eq. (4-18) and (4-19) are both smaller

than X:‘ Since Eq. (4~18) is applicable for x"< xfﬂ its

*

x” value is the correct choice.

From Eq. (4-17)

14
C® _ x]7R
£,

/ /.25 (4.9/056)%F
cops7]l3

=4 R7Z56 x /o0~

In the neighborhood of the entrance point, U* is given by

Eq. (3-25)

/
U* -/C}n/e/,(:"q(/*n) x:l\'//*”’_/_/
z

v
125

(/ 1427/ x 1077)
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, ) -
s _ UL 91058V 166£77) %% (125) . T
0757713 (1. 2/271 %1077 > 7

= J.oooo0]/

b ""ZL -~ 4 “‘E @ -
Since A" = 10 > o = 4.29256x1077, Bg. (4-15) should be
integrated first, For n = 1/4. Bg. {4-15) reduces to

ZAT* U’Z@W%amﬂh&% 5)~a35%0dL§J/

“at _///‘5([/&‘ /)az/z.aa;)//{/wz - .U/Z///

a%¥ Py

Pd
¢/-/5aé//a‘ o 523/
=7

(D-1)

i/i'jzfA '*Z%“ - 435547—5;—-¢ azyyasv

If the values of &% §° and U® are subgtltu 5ed into Eq. (D-1),

we have

—G-/:Q;_ = 8-/4E4ELSE x /o7
&4

Hence gll the starting values are obtained and we are ready

o proceed to the integration of Eq. (4-15).

Gg. {D-1) can be written as
—e e = 4 ¥ & *

and the computing procedure for its integration by Runge-

Kutta method may be summarized in the following tables
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Table D.1 Runge-Kutta Scheme for the Differential
Equation du*%/aa* = £(U* 3%, &%

Step | At u* 5%  |&2-L24U555)|  Correction
1|45 u® 5, £ /2
. ¥ _ ) / /
2|2 rgh (O rgh KOG Gle | sk 4
* , / ey / s £ J'Z T2

3 A tFA | Us t5ke | £/~ 73) 2/2

4 |a)+4 Uk, | % (/-F) ke /2

S |A7=87+4 | U =04 3= £0- i)

where kv is thé correction and h is the increment.

The values in Step 1 are the starting values which
were found previously. The increment h should be small but
its value may be increased later to speed up the integratiqn.
Por this example the first increment h is set to be 5x10'4;
10'3, 5x10’3, 10'2, and 2x10™° as integration proceeds.

The values in Step 1 are:

A: = /o0~ % ‘ éo* = 4.2?254 xs0-%5
U = loooooy/s
A |

dA* - 5'/4{4445)‘/0‘2

L)z = 81444648 x /o™

The values in Step 2 are:

A5 +Fh = 107Fr F2xs0™%)
= Zx /o~#
Z/::‘éé, = 1.00000]! + B-/LGLLLSE x j07¢

/-0000/85 3
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from Eq. (3-24)

§* = —-(/—--

] -—-—-—/.—_____ — /
°/666//_(/ ﬁaoaa/SJ/)
= 21773805 x /0°%
from Eq. (D=1) |

. | .

,é /2 = /[ Ro7R3Z0 x /O~
The calculation for the other steps follows the same pro-
éedure. The actual results of the calculation are given in
Step 5 whereas the steps in between are for better approxi-
maﬁion. These results in Step 5 serve as starting value
for the next ,zx; in the continuation of the solution.
 When A*becomes less than S*, integration is switched

to Eq. (4-16). Por n = 1/4, Eq. (4-16) reduces to

F * x>
atz/" ol 9820555 11279 . £ 39720 2w/
// S (0" 1% (20071 R LIEET)]

[+ 122276( ;f—'jz/ |

-*2 WL '*'d’
/ 47/056;,—;— # . 3770445 - /5773.-4—3 #. 02845, J‘f/

[T ) ]
D-3
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In this example,

growth of A% is obtained by
The actual computa
digital conmputer.
v @
Al

of the correct

(4-15) or

1itlid

w - ¥ -
9 first reaches unity and the subsequent

(4-22).
was carvyied out by an LGP-30
the selection

the choice of

Bq. (4-16) %o be integrated, and the use of
Eg. (4-22) to0 calculate the continued growth of A% are
done automatically. Table 5 shows a sample computer results

of the integration of
and Pr = 100.

Bg. (4-15) and (4-16) for

1/4

n
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APPENDIX E
SAMPLE CALCULATION FOR THE LOCAL NUSSELT NUMBER, Nu

In order to find the Nu at certain value of x s the
-I

integral J/ . must be determined first., This integral
can be calculated either by Eq..(5—10a) or (5-11a) depending

whether x7 € 10™% or x¥ > 107™*. If n = 3/4 and Pr = 100,

xf’ as computed by Eq. (4-20) is

/f‘n

L . [265868/ (L2 )// 75
! /- 3395 (Pr)¢ /+n

2
2.65848/ /{ 40/54)3*25/ o
/-3395 (/00)% /8 178

= $5.1/87 x /0~*%

Since x; = 5.1187x10~25 < 10~4» Ea. (5-10a2) is used to
determine the integral. Hence

¥ +2
* ax - JPr X *2 " J A P// /7# fo% x 3;”»))'
a* /) 32934 13395/ 18 _/ /f'.é’

o
x* *
b A
-4 A

lo

v
_ o5 (5-1187 x Jo~ %)%
/32934

| 25
# 4”’54/:?/0/ 125)%, 5_”5/”0/425
73375

x* *
+/ “’/’i
- A

/0

57
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x* * . - -
‘Z"i L= 5.32565x /0% 4 L 5fe]7x fo 2
(2] : x‘ .
AxX™
+ TR ‘
/0“4 A xa
. . F 4
= 257677 x 10°% —-5"’—/—?——
, S ey A
70 .

(B-1)
The last integral in Eq. (Z-1) is found by graphically
integration. vThe figure below shows a schematic diagram
of 1/o* vs. x™ (the diagram drawn to scale is not presented

in this thesis):

ot !

Amp.

/

O omd EmP. x s

Pig. E.1 Schematic Diagram of 1/a*vs. x*

where m.p. 1is the mid-point between 104 ana x*.

Therefore,
x*
: "
U//A __féﬁﬁ_~ -~ area of shaded section
AK
0~ %
=L _(x*-/07%) (E-2)
Dowm ‘ ,
# «
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The width of the shaded section should be kept small enough

to give good approximation. If x *= 2x10'4, the mid-point '

xg .= 1.5x10~% and the corresponding value for 1/A*

is found to be 97.0874. By Eq. (E-2),

Zxto™% )
/ AT 97 0874 (2x /0" =10

x
70™% A

m.p.

- 970874 x /077
Therefore the integral of Eq. (E-1) is

2x/07% : -
/ i" - 25767970 %+ 970874 /0"

o

= F5676C x107%

At x*= 2x10~4, the value of A®= 0.0147, and the local
Nusselt number by Eq. (5-9) will be

/
- ZP
/Vu.x“'- 2xr0-* / ¥/0"
= 0/47
J - Ix 3 56766 X fo™*
2 x /o0
= JC5.-04663

If the next value of Nu, is wanted at x *= 4x10™%, the

integral of Eq. (E-1) can be written as

-4 Y
/4x/o A JG .Zx/o f | a{ X X
o

™
- A

2X/0

4x/o'4

= 3-5C784 x)0°% ,:/ _Ax*

Zxfo"%
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Following the same procedure as illustrated in the graphi-

cal integration for Nu, at x*= 2x10™4, the integral

&£x/o
2

-4

F 4
. i%— is found to be 1.36054x10™%.
2x/07

Hence P

gx/o” »
/ ‘j’; = 3858766 X/07% #+ .3L054 % Jo~F
o ) '

= 492820 x/0°%

At x*= 4x107%, A"= 0.0170; and the Nu, is

4i( A )
Nw o - Z\l.0/170
.X'- 41‘/0-4 / _ 2 4X/a'4dxﬂ‘
ZFr A A%
- 88-3/38

Other Nuyx at higher values of x™*is found in the same way;
and the calculation is simplified‘by the additive property

of the approximate graphical integration of the integral

/x“dx*
o A‘ L3
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APPENDIX F
FIGURES
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FOR Pr = |)

( SCALE
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Table I

The Coefficients C; for Velocity Profile

80

n Cq Co C3 04
1.00000  2.00000  =1.00000 0 0
0.80000  2.23%169  -1.27335 -0.148%6 0.19002
0.75000 2.31379  =1.41205  -0.11727 0.2155%
0.60000  2.65392  -2.12448  0.28718 0.18337
0.50000  3.00000  =3.,00000 1.00000 0
0.40000 3.51043  -4.46358 2.39589 ~0. 442753
0.%%33%  4,00000  =6.00000  4.00000  -1.00000
0.25000  4.91056  -9,09755 T 46340  ~2.27642
0.20000  5.74544  =12.14018  11.04406  =3.6493%1
0.11355

-28.90242

32038726 "12029070
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Table

2

Dimensionless Velocity (U") and Dimensionless Velocity
Boundary Layer Thickness (&') as Function of

Dimensionless Distance (x")

For n = 3/4
x” U 5"
0.00000000 1.00 0.00000000
0.00029538 1.02 0.06535948
0.00113981 1.04 1 0.12820512
10.00243930 1.06 0.18867922
0.00418350 1.08 0.24691354
0.00637040 1.10 1 0.30303026
0.00900079 1.12 0.35714281
0.01207633 1.14 0.40935667
0.01559882 1.16 0.45977005
- 0.01956984 1.18 0.50847449
0.02399056 1.20 0.55555547
0.02886175 1.22 0.60109281
0.03418370 1.24 0.64516119
0.03%995630 1.26 0.68783058
0.04617899 1.28 0.72916655
0.05285088 1.30 0.76923066
0.05997071 1.32 0.80808069
0.06753691 1.34 0.84577102
0.07554764 1.36 0.88235281
0.08400084 1.38 0.91787426
0.09289418 1.40 0.95238082
0.10222519 1.42 0.98591536
0.10705399 1.43 1.00233090
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Table 2 (cont'd)

=

For n= 1/2
x* v 5

0.00000000 1.00 0,00000000
0.00083559 - 1.02  0.07843138
0.00270952 1.04 0.15384614

~ 0.00527146 1.06 0.22641507
0.00845992 1.08 0.29629625
0.01224573 1.10 0.36363632

 0.01661232 1.12 0.42857137
0.02154915 1.14 0.49122800
0.02704892 1.16 0.55172406
0.03310614 1.18 0.61016939
0.03971637 1.20 0.66666657
0.04687582 1.22 0.72131137
0.05458108 1.24 0.7741934%
0.06282895 1.26 0.82539670
0.07161637 1.28 0.87499986
0.08094034 1.30 0.923%07679
0.0985%935 1.335 1.00374520

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2 (cont'd)

Por n =
x* v* o
0.00000000 1.00 0.00000000
0.00257890 1.02 0.11764472
0.00698142 1.04 0.23076460
~ 0.01231706 1.06 0.33961581
0.01846890 1.08 0.44443549
0.02538204 1.10 0.54544356
0.0%302495 1.12 0.64284420
0.04137727 1.14 0.73682726
0.05042480 1.16 0.82756954
0,06015701 1.18 10.91523579
0.07056568 1.20 0.99997985
0.07327274 1.205 1.02072630

mm
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Table

3

Dimensionless Thermal Boundary Layer Thickness (A') as

Function of Dimensionless Distance (x*)

and Prandtl Number (Pr)

84

A For n = 3/4
Pr
< \1 20 50 75. 100 150 200
.:0.,0001 0.0430 0.0145 0.0105 0.0092 0.0083 0.0072 0.0065
0.0002. 0.0615 0.,0206 0.0150 0.,0128 0.0120 0.0102 0.0094
0.0004 0.0872 0.0295 0.0215 0.0185 0.0170 0.0148 0.0134
0.0006 0.1070 0.0360 0.0268 0.0230 0.0210 0.0183 0.0164
0.0008 0.126 0.0420 0.0310 0.0271 0.0243 0.0212 0.0190
0.0010 0.142 0.0470 0.0347 0.0304 0.0273 0.0236 0.0214
0.0020 0.200 0.0660 0.0490 0.0425 0.0385 0.0335 0.0300
0.0040 . 0.275 -0.0920 0.0675 0.0580 0.0530 0.0471 0.0425
0.0060 0.330 0.110 0.0800 0.0700 0.0640 0.0570 0.0512
0.0080 0.375 0Q.125 0.0920 0.0810 0.0730 0,0660 0,0580
0.0100 0.420 0.139 0.103 0.0830 0.0815 0.0710 0.0635
0.0200 0.580 0.190 0.141 0.123 0.111 0.0980 0.0870
0.0400 0.785 0.253 - 0.187 0.165 0.149 0.13%1 0.119"
0.0600 0.930 0.298 0.222 0.194 0.176 0.154 0.140
0.0715 1.000 - - - - - -
0.0800 0.333 0.248 0.218 0.198 0.173 0.157
0.1000 0.362 0.270 0.237 0.215 0.188 0.172
0.2000 0.447 0.327 0.286 0.260 0.227 0.216
0.4000 0.556 0.407 0.354 0.322 0.280 0.253
0.6000 0.638 0.465 0.404 0.365 0.318 0.287
0.8000 0.707 0.512 0.444 0.402 0.350 0.316
1.0000 0.766 0.551 0.479 0.433 0.377 0.340
0.985 0.705 0.608 0.549 0.475 0.430

2.0000
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Table 3 (cont'd)

85

A* For n = 3/4
Pr

%" 20 50 75 100 150 200 .
12,0758 1.000 - - - - -
4.0000 ‘ © 0.905 0.780 0.701 0.608 0.547
5.2197 1.000 - e - -
6.0000 0.904 0.813 0.700 0.630
7.8440 1.000 - - -
8.0000 | 0.904 0.778 0.700
10.0000 0.984 0.846  0.760
10. 7401 1.000 - -
15,7230 | 1.000 -
20.0000 0.981
20.9771 1.000
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" Table 3 (cont'd) - 86

A" Porn=1/2

Pr

i, 1 20 50 75 100 150 200

0.0001 0.0345 0.0105 0.0077 0.0067 0.0060 0.0053 0.0048
0.0002 0.0485 0.0150 0.0113 0.0098 0.0088 0.0076 0.0069
0.0004 0.0708 0.0218 0.0164 0.0143 0.0128 0.0112 0.0100
0.0006 0.0870 0.0273 0.0205 0.0179 0.0162 0.0141 0.0124
0.0008 0.103 0.0323 0.0242 0.0211 0.0192 0.0166 0.0146
0.0010 0.116 0.0365 0.0275 0.0240 0.0216 0.0187 0.0167
0.0020 0.168 0.0540 0.0403 0.0346 0.0313 0.0272 0.0242 .
0.0040 0.240 0.0770 0.0576 0.0492 0.0443 0.0385 0.0345
0.0060 0.294 0.0940 0.0702 0.0600 0,0540 0.0473 0.0426
0.0080 0.335 0.1070 0.0806 0.0693 0.0615 0.0550 0.0494
0.0100 0.372 0.1220 0.0890 0.0776 0.0702 0.0610 0.0554
0.0200 0.508 0,1665 0,1217 0.1060 0.0965 0.0847 0.0754
0.0400 0.702 0.229 0.168 0.146 0.133 0,116 0.105
0.0600 0.840 0.272 0.200 0.174 0.158 0.138 0.125
0.0800 0.955 0.%07 0.226 0.198 0.179 0.156 0,142
0.0900 1.000 - - - - - -

0.1000 0.337 0.248 0.216 0.196 0,170 0.156
0.2000 0.410 0.305 0.265 0.240 0.208 0.189
0.4000 0.527 0.382 0.333 0.301 0.261 0.237
0. 6000 0.612 0.440 0.382 0.345 0.300 0.271
0.8000 0.680 0.488 0.422 0.381 0.330 0.299
1.0000 0.740 0.529 0.456 0.412 0.356 0.323
2.,0000 0.964 0.681 0.586 0.526 0.454 0.411
2,1892 1.000 - - - - -

4.0000 0.884 0.758 0.680 0.585 0.526

]

ASSEMPTION 1"
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8
Table 3 (cont'd) 7

A¥ For n = 1/2

|

Pr v
< 1 20 50 75 100 150 200
5.4658 | 1.000 - - - -
6.0000 s 0.884 0.790 0.680 0.611
8.0000 : 0.991 0.884 0.758 0.679
8.2064 . 1.000 - C- -
10.0000 .. : 0.964 0.824 0.739
10.9480 1.000 - -
16.4306 ' 1.000 -
120.0000 0.963

21.9144 o C ~1.000
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Table 3 (cont'd)

$

A" Por n = 1/4
o |

<* 1 20 50 75 100 150 200
0.0001 0.0300 0.00860 0.00644 0.00570 0.00492 0.00415 0.00360
0.0002 0.0417 0.0130 0.00960 0.00840 0.00715 0.00610 0.00528
0.0004 0.0625 0.0198 0.0142 0.0119 0.0104 0.00900 0.00780
0.0006 0.0782 0.0252 0.0177 0.0148 0.0130 0.0113 0.00975
0.0008 0.0920 0.0300 0.0208 0.0174 0.0153 0.0132 0.0115
0.0010 0.104 0,0380 0,0236 0.0197 0.0173 0.0150 0.0131
0.0020 0.155 ,0.0510 0.0355 0.0295 0.0262 0.0226 0.0202
0.0040 0.217 0.0730 0.0508 0.0430 0.0384 - 0.0330 0.0288
0.0060 0.265 0.0884 0.0622 0.0533 .0.0474 0.0407 0.0356
0.0080 0.305 0.101 0.0707 0.0612 0.0548 0.0470 0.0416
0.0100 0.344 . 0.111  0.0790 0.0684 0.0612 0.0527  0.0475
0.0200 0.490 0.157  0.113  0.0990 0.0885 0.0768 0.0700
0.0400 0.646 0.217  0.158  0.137  0.124  0.108  0.0975
0,0600 0.742 0.260  0.188  0.164  0.149  0.130  0.118
0.0800 0.835 0.287  0.206  0.179  0.162  0.139  0.128
0.1000 0.950 0.310  0.223  0.194  0.174  0.150 0,137
0.1103 1.000 - - - - - -
0.2000 0.392  0.278  0.243  0.220  0.188  0.171
0.4000 0.505  0.356  0.306  0.275  0.237  0.214
0. 6000 0.593  0.413  0.354  0.318  0.274  0.247
0.8000 0.669  0.461 0.394  0.353  0.304  0.274
1.0000 0.735  0.502  0.428  0.383  0.331  0.296
1.9416 1.000 - - - - -
2.0000 0.662  0.562  0.501 0.417  0.383
4.0000 0.907  0.752  0.666  0.561 0.199
4.8732 1,000 - - - -
6.0000 0.910  0.795 0.663 0.587
7.3172 1.000 - - -
8.0000 0.906  0.751  0.662
9.7624 1.000 - -
10.0000 0.830  0.730
14.6530 1.000 -
19.5443 1.000
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Table 4

-

89

The Local Nusselt Number (Nux) as Function of Dimensionless

For

n = 3/4

Distance (x*) and Prandtl Number (Pr)

Pr

-x‘

1

20

50

75

100

150

200

0.0001
0.0002
0.0004
0.0006
0.0008
0.0010
0.0020
0.0040

0.0060 -

0.0080
0.0100
0.0200
10.0400
0.0600
0.0715
0.0800
0.1000
0.2000
0.4000
0.6000
0.8000
1.0000
2.0000
2.0758

35,1786 103.5662

24.6669
17.5073

14.2791 .

12.1580

10.8129
7.7463
5.7074
4.8064
4.2678
3.8413
2.8733
2.2300
1.9617
1.8648°

T72.9290
50,9567
41.7749
35.8208
32.0210
22.8327
16.4106
13.7456
12.1116
10.9042
8.0138
6.0922
5.1727
- 4.6518
4,2982
3.5489
2.9455
2.6389
2.4424
2.3083
1.9936
1.9786

142.9454 163.1204 180.7933
100.0849 117.2641

69.8494
56.0496
48.4659
43%.3058
30.6894
22.3009
18.8%17
16.3868
14.6457
10,7248
8.1160
6.8723
6.1538
5.6658
4.7260
3.8628
3.4293
3.1556
2.9683
2.4457

81.1548
65.2893
55.6265
49.1125
35.3627
25,9328
21.5004
18.5904
16.9247
12.2711

9.1728

7.8999

6.9720
6.4244
5.4238
4.3900
3.8891

- 3.5740

3.3434
2.7406

125.0663

88.3005 101.4088

71.5885
61.7922
55.0081
40.5843
28.3654
23.5021
20.6136
18.4710
13.5755
10.1419
8.6019
7.6587
7.0635
5.8778
4.7958
4.2690
3.9078
3.6555
2.9779

82.0234
70.8104
63.6150
44.8308
31.9695
26.3708
22,7823
21.1841

15.3657

11.5159
9.8097
8.7430
8.0544
6.7034
5.4779
4.8564
4.4397

4.1454

3.3714

208.3952 230.8259
147.1190 159.6286
111.9929

91.5155
78.9991
70.1446
50.0654
35.3444
29.4630
25.9143
23.6754
17.2974
12.6643
10,7770
9.6198
8.7890
7.1263
6.0382
5.3529
4.8866
4.5631
3.6812

§Value of Nuy when

AY = 1.
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Table 4 (cont'd)

90

Nu_ For n = 3/4
Pr ' .

x* 20 50 75 100 150 200
4,0000 2.0960 2.2806 2.4593  2.7407 2.9892
5.2197 1.9933 - - - -
6.0000 ‘ 2.0847 ' 2.2221 2.4637 2.6692
7.8440 1.9808 - - -
8.0000 2.0850 2.28T7 2.4645
10.0000 1.9951 2.1672  2.3247
10.4701 1.9836 - -
15.7230 1.9837 -
20,0000 2.0017
20.9771 1.9837

P e ——
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Table 4 (cont'd)

91
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Nu For n = 1/2
Pr
x* 1 20 50 75 100 150 200
0.0001 43.9556 143.0781 196.24%1 224.0241 250.1322 285.8296 315.8948
0.0002 31.3800 100.2135 132.8834 153.1960 170.5786 169.4445 217.8071
0.0004 21.6029 68,9996 91.6019 105.0219 117.3048 134.2712 150.8509
0.0006 17.6487 55.1406 73.3054 83.9202 92.7043% 106.4816 121.0610
0.0008 14.9552 - 46.6286 62.1150 7T71.2081 T78.2326 960.4570 102.8303%
0.0010 13.3%206 41.2810 54.6738 62.6150 69.5543 80.3078 89.9082
0.0020 9.2937 27.9487 37.3410 43.4615 48.0234 55.2352 62.0665
0.0040 6.6052 19.6448 26.1730 30.5932 33.9574 39.0526 43.5584
0.0060 5.4573 16.0960 21.4954 25.1048 27.8741 31.7970 35.2898
,.0.0080 4.8387 14.1842 18.7367 21.7492 24.4878 27.3562 30.4419
- 0.0100 4.3976 12.4558 16.9804 19.4336 21.4626 24.6739 27.1528
0.0200 "3.3431  9.2745 12.4530 14.2572 15.6411 17.7942 19.9745
0.0400 2.5595 6.7360 9.0797 10.3552 11.4037 13.0748 14.3670
0.0600 2.2428 5.7040 7.6339 8.7192 9.5975 10.9922 12.0646
0.0800 2.0590 5.0781 6.7750 7.7102 8.5057 9.6965 10.6793
0.0900 2.0067 - - - - - -
~ 0.1000 4.6425  6.1901  T7.0637 7.7632 8.9204 9.7346
0.2000 3.8980 5.0895 5.8064 6.3841 T.3297 8.0445
0.4000 3.1384  4.1376  4.6843 5.1481 5.8941  6.4608
0.6000 2.7832  3.6470 4.1313  4.5349 5.1656  5.6827
0.8000 2.572%3  3.3353  3.7792 4.1420 4.7280 5.1788
1.0000 2.4233  3.,1166 3.5315 3.8610 4.4089 4.8255
2.0000 2.0759 2.5591 2.8648 3.1288 3.5475 3.8675
2.1892 2.0405 - - - - -
4.0000 2.2037 2.3708 2.5580 2.8698 3.1268
5.4658 2.0251 - - - -
6.0000 2.1532 2.3113 2.5596 2.7110
8.0000 2.0354 2.1581 2.3727 2.5609
8.2064 2.0284 - - -
10.0000 2.0643 2.2535 2.4124



Table 4 (cont'd)

Nu For n = 1/2.
Pr - o
x® 1 20 50 75 100 150 200
10.9480 - . 2.0296 - -
16.4306 ' o 2.0341 -
20.0000 2.0652
21.9144 ‘ ' - - 2.0279
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Table 4 (cont'd)

93

Nu For n = 1/4
. & 1 20 50 75 100 150 200
X

0.0001 50.5706 174.6970 233.1681 263.3440 305.0068 361.6526 416.8668
1 0.0002 36.5324 115.6485 156.4740 178.7746 210.0048 246.0896 284.2748
0.0004 24.5147 75.9996 105.8383 126.2425 144.2687 166.8378 192.4802
0.0006 19.6785 59.7538 84.9417 101.5361 115.5712 132.9050 154.0110
0.0008 16.7872 50.2206 72.3344 86.3856 98.2184 113.3639 130.5926
" . 0.0010 14.8969 39.6654 63.7433 T6.3164 86.8796 100.1523 114.6564
0.0020 10.1150 29.6060 42.4184 51.0049 57.4061 66.5078 7T4.3894
0.0040 7.3468 20.7334 29.683%38 35,0297 39.1976 45.5797 52.2073
0.0060 6.0961 17.1535 24.2688 28,2838 31.7820 36.9767 42.2547
0.0080 5.3571 15.0376 21.3704 24.6501 27.5065 32.0356 36.1743%
0.0100 4.7982 13.7024 19.1406 22.0690 24.6428 28.5822 31,6917
0.0200 3.5056  9.7420 13.4230 15.2839 17.0750 19.6849 21,5321
0.0400 2.8250 7.1052 9.6730 11.0815 12.2702 14.0633 15,4863
0.0600 2.5459 5.9684 8.1105 9.2535 10.1927 11.6489 12.8137
0.0800 2.3766 5.4379 7.4265 8.5242 9.3932 10.9111 11.8272
0.1000 2.1859 5.0771 6.7751 7.8018 8.7360 10.1250 11.0930

0.1103 2.1237 - - - - - -
0.2000 4.0926 5.6000 6.3507 6.9824 8.1263 8.9067
0.4000 3.2392  4.4595  5.1192 5.6466 6.5078 7.1733
0.6000 2.8919  3.9083%  4.4815 4.9423 5.6744 6.2562
0.8000 2.6348  3.5538  4.0724  4.4942 5.1512  5.6731
1.0000 2.4600 3.3084 3.7883 4.1783  4.7624  5.2802

1.9416 2.0036 - - - - -
2.0000 2.6127 3.0148 3.3128 3.8866 4.1756
4.0000 2.12%4 2.4176 2.6406 3.0195 2.3239

4.8732 2.0033 - - - -
6.0000 o 2.1212  2.3236 2,6511  2.9143

T.3172 2.0013 - - -
8.0000 2.1314  2.4204 2.6107

9.7624 2.0027 - -
10.0000 - 2.2593  2.4716

14.6530 2.0034 -
19.5443 2.0036
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Tabie 5 .
Sample Computer Results of Integration of Equations (4-15)
and (4-16) by Runge-Kutta Method
For n=1/4 & Pr =100

0.00200

N u* 5" K, /2 & k
1072 1072
—0.00010 1,0000071  0.0042925611 0.00081464648
0.00020 1.0000153  0.0091773805 0.0012072320
0.00020 1.0000192 0.011533191  0.0011617075
0.00030 1.0000304 0.018229595  0.0014393288
| k = 0.0023306181
93 0.00030 1.0000305  0.018274297  0.0014388085
¥/ 0.00040 1.0000448  0.026904047  0.0016466046
@Y 0.00040 1.0000469  0.028151268  0.0016368211
0.00050 1.0000632  0.037912014  0.00181250%6
‘ X = 0.0032727211
0.00050 1.0000632  0.037907543  0.0045313122
0.00075 1.0001085  0.065088773  0.0054095627
b—0.00075 1.0001173  0.070356938  0.0053711390
0.00100 1.0001706  0.10234366  0.0042930455
k = 0.010128590
—0.00100 1.0001645 0.098660193  0.0060845330
0.00125 1.0002253  0.13515291  0.0049369985
JP  0.00125 1.0002138  0.12826875  0.0046036933
é:é 0.00150 1.0002565  0.15387870 0.0048344087
R k = 0,010000108
N . 0,00150 1.0002645 0.15863279 0.0050582373
0.00175 1.0003150  0.18896329  0.0054283667
0.00175 1.0003187 0.19118053  0.0055146731
1.0003748  0.22476312  0.0059285411

k = 0,010957619
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7able 5 (cont'd)
For n=1/4 & Pr = 100
L v* 5" k /2 & k
1072 10”
——0.00200 1.0003740  0.22433398 0.0059143098
10.00225 1.0004332  0.25978960 0.0063219337
0.00225 1.0004373  0.26223258 0.0063912083
. 0.00250: 1.0005019  0.30095818 0.0068128806
~ k = 0.012717825
N I I I
YS :
N;g 0.14000 1.1639869  84.528050 1.7159599
A 0.15000 1.1811466 92.016551 1.7855563
0.15000 1.1818425 92.315683 1. 7849031
0.16000 1.1996850 99.866056 1.8646692
| k = %,5707100
0.16000 .1.1996940  99.869825 1.8552415
0.17000 1.2182465 107.48596 1.9266213
0.17000 12189603 107.77435 1.9257606
L—0.18000 1.2382093 115.42616 1.9983201

k = 3.8527751
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