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Abstract

Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic ar-

chitecture and prediction analyses of complex traits are usually performed using different

statistical models and methods, leading to inefficiency and loss of power. Here we use a

Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic

variance explained by all variants and prediction of unobserved phenotypes in new sam-

ples. We apply the method to simulated data of quantitative traits and Welcome Trust Case

Control Consortium (WTCCC) data on disease and show that it provides accurate estimates

of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it

can estimate genetic architecture by partitioning variation across hundreds to thousands of

SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the

SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96%) had

small effects, confirming a substantial polygenic component to common diseases. The pro-

portion of the SNP-based variance explained by large effects (each SNP explaining 1% of

the variance) varied markedly between diseases, ranging from almost zero for bipolar disor-

der to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with

major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform

profile scoring or mixed model approaches.

Author Summary

Most genome-wide association studies performed to date have focused on testing individ-

ual genetic markers for associations with phenotype. Recently, methods that analyse the

joint effects of multiple markers on genetic variation have provided further insights into

the genetic basis of complex human traits. In addition, there is increasing interest in using

genotype data for genetic risk prediction of disease. Often disparate analytical methods are
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used for each of these tasks. We propose a flexible novel approach that simultaneously per-

forms identification of susceptibility loci, inference on the genetic architecture and pro-

vides polygenic risk prediction in the same statistical model. We illustrate the broad

applicability of the approach by considering both simulated and real data. In the analysis

of seven common diseases we show large differences in the proportion of genetic variation

due to loci with different effect sizes and differences in prediction accuracy between com-

plex traits. These findings are important for future studies and the understanding of the

complex genetic architecture of common diseases.

Introduction

Genome wide association studies (GWAS) have been used for three different purposes—to

map genetic variants causing variation in a trait, to estimate the genetic variance explained by

all the single nucleotide polymorphisms (SNPs) that have been genotyped, and to predict the

genetic value or future phenotype of individuals. These analyses are usually performed using

different statistical models and methods. To map causal variants usually the SNPs are analyzed

one at a time, consequently the failure to account for the effects of other SNPs increases the

error variance and thus decreases the power to detect true associations [1,2]. The effects of the

SNPs are treated as fixed effects and, to account for the multiple testing, a stringent p-value is

used, resulting in many false negatives but typically over-estimating the effects of SNPs de-

clared significant [3]. For most traits the significantly associated SNPs only explain a fraction

of the heritability, and thus have low predictive power, even when considered in aggregate [4].

To estimate the variance explained by all the SNPs together, all genotyped or imputed SNPs

can be included in the model simultaneously with their effects treated as random variables all

drawn from a normal distribution with zero mean and constant variance. This gives an unbi-

ased estimate of the variance explained, but all the estimated SNP effects are non-zero [5].

The most accurate method to predict genetic value or phenotype based on the SNP geno-

types is to fit all SNPs simultaneously treating the SNP effects as drawn from a prior distribu-

tion that matches the true distribution of SNP effects as closely as possible [4,6]. We do not

know the true distribution of effect sizes but a mixture of normal distributions can approximate

a wide variety of distributions by varying the mixing proportions [7]. Erbe et al. [8] used this

prior and included one component of the mixture with zero variance. A similar model was pro-

posed by Zhou et al. [9] but with a mixture of two normal distributions, one with a small vari-

ance and one with a larger variance.

The models used for prediction can also be used to map variants associated with phenotype

and to estimate the total variance explained by the SNPs. Because they fit all SNPs simulta-

neously and account for LD between SNPs, they should have greater power to detect associa-

tions, find less false negatives and give unbiased estimates of the larger SNP effects. They can

also provide information about the genetic architecture of the trait from the hyper-parameters

of the distribution of SNP effects.

Here we use a Bayesian mixture model (called BayesR [8]) to dissect genetic variation for

disease in human populations and to construct more powerful risk predictors. We show how

this method can shed light on the genetic architecture underlying complex diseases as well as

demonstrating its ability to map SNPs associated with disease and estimate the genetic variance

explained by the SNPs collectively. The approach was evaluated on simulated and real data of

seven case-control traits from the Welcome Trust Case Control Consortium. We assessed the

power to correctly identify causal and associated variants, to estimate SNP-based heritability
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and the accuracy to predict future outcomes. Results from BayesR are compared with a tradi-

tional single-SNP GWAS analysis, a linear mixed-effects modeling approach [5,10–12] and a

Bayesian sparse linear mixed model [9].

Results

Hierarchical Bayesian Mixture Model (BayesR)

In most GWAS studies the number of markers is very large and notably p>>n. This requires

some kind of variable selection, either by discarding unimportant predictors or by shrinking

their effects to zero. We used a Bayesian mixture model and a priori assumed a mixture of four

zero mean normal distributions of SNP effects (β), where the relative variance for each mixture

component is fixed [8]:

pðbjjp; s
2

gÞ ¼ p
1
� Nð0; 0� s2

gÞ þ p
2
� Nð0; 10�4 � s2

gÞþ

p
3
� Nð0; 10�3 � s2

gÞ þ p
4
� Nð0; 10�2 � s2

gÞ:

Here, π are the mixture proportions which are constrained to sum to unity and s2g is the addi-

tive genetic variance explained by SNPs. Sparseness is included into the model by setting the ef-

fect and variance of the first mixture component to zero. Instead of fixing s2

g at a pre-specified

value [8], we estimate a hyper-parameter for the genetic variance from the data. We compare

BayesR with traditional single-SNP GWAS analyses [13], a linear mixed-effects modeling ap-

proach (LMM) [5,10–12] and a Bayesian sparse linear mixed model (BSLM) [9,14].

Results from Simulated Data using Real Genotypes

We used real genotype data of 287,854 SNPs measured on 3,924 individuals to simulate quanti-

tative phenotypes with heritabilities equal to 0.2, 0.5, and 0.8. Causal effects were drawn from

three groups of effect sizes, the first containing 10 SNPs with moderate effects, the second con-

taining 310 SNPs with smaller effect, and a large group of 2,680 SNPs representing a polygenic

component (S1 Fig.), where the definitions of moderate, small and polygenic effect size match

those of the prior assumptions of BayesR. Note that the contribution of each mixture to herita-

bility is not known a priori (S2 Fig.).

Identifying associated SNPs. Comparisons between methods are assessed on their ability

to identify genomic regions of 250kb containing causal SNPs. This was done because the multi-

SNP methods tend to split a QTL effect, even if large, across SNPs in LD with the QTL. More-

over, it may be improper to declare a non-causative SNP in LD with the causal variant a false

positive. However, we loosely use the term causal variant for convenience. Fig. 1 shows that

only the segments harboring the largest SNPs were accurately identified at a meaningful false

positive rate. The ability to accurately locate causal variants decreased with decreasing effect

size of the SNP. The power to map accurately the 2,680 polygenic SNPs was very low. BayesR

yielded more true positive regions than the other methods across the three heritabilities. Quali-

tatively similar results were obtained using shorter and longer genome regions (S3 Fig.). Both

Bayesian approaches outperformed single-SNP analysis at higher heritability (h2 = 0.5 and 0.8).

A likely explanation for the gain of the multi-SNP Bayesian methods is an increase in power to

detect subsequent causal SNPs after the strongest associations have been accounted for.

SNP-based heritability. In general all methods gave unbiased estimates of the true herita-

bility values. The mean estimates (± standard deviation) of the proportion of variance ex-

plained by typed SNPs (h2

g) for heritabilities of 0.2, 0.5 and 0.8 were 0.20 (±0.065), 0.52

(±0.067) and 0.80 (±0.055) for BayesR (Fig. 2A). Estimates of BSLMM and LMM were 14 and

Analysis of Complex Traits Using a Bayesian Mixture Model
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32% less accurate (larger standard deviations) than BayesR. This may reflect the fact that the

assumed effect size distributions of BayesR closely matched those of the true model. The ana-

lyzed simulated SNP sets included the causal variants; hence h2

g equals h
2. The true SNP-based

heritability would be unknown when the causal SNPs were excluded from the panel due to in-

complete LD between makers and causative variants.

Fig 1. Comparison of causal variant identification accuracy of BayesR, BSLM, LMM and single-SNP analysis in simulated data. Shown is the true
positive rate as a function of false positive rate for correct identification of regions (250kb) containing causative SNPs. Simulations are based on real SNP
data of 3,924 individuals genotyped for 287,854 SNPs. The total number of causative SNPs was 3,000 with 10 (solid line), 310 (dotted line) and 2,680 effects
sampled from a zero mean normal distribution with variance 10−2, 10−3, and 10−4, respectively. Trait heritabilities (h2) were 0.2, 0.5 and 0.8.

doi:10.1371/journal.pgen.1004969.g001
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Prediction accuracy. Each data set of the simulation was randomly split into a training

sample containing 80% of individuals and a validation sample containing the remaining 20%.

Prediction accuracy was measured with Pearson’s correlation coefficient between observed and

predicted phenotype in the validation sample. The mean (± standard deviation) correlation co-

efficient for BayesR was 0.13 (±0.041), 0.32 (±0.038) and 0.50 (±0.032) for simulated h2 of 0.2,

0.5 and 0.8, respectively (Fig. 2B). BayesR and BSLMM yielded almost the same accuracies and

their advantage over LMM and GPRS was relatively large. For all heritabilities LMM generated

the lowest accuracies.

Genetic architecture. A feature of BayesR is that it can be used to quantify how many

SNPs affect a trait and their contribution to the total genetic variance (Fig. 3). We calculated

the variance in each mixture component as the sum of the square of the sampled effect sizes of

SNPs allocated to each component. Mean (± standard deviation) contribution to genetic vari-

ance of components with SNP variance 10�4 � s2

g ; 10
�3 � s2

g and 10
�2 � s2

g was 43% (±14.0),

36% (±9.8) and 21% (±8.3) for h2 = 0.2, 34% (±12.6), 45% (±11.9) and 21% (±6.7) for h2 = 0.5

and 30% (±8.0), 49% (±7.6) and 21% (±4.0) for h2 = 0.8. Note that the true underlying mixture

is not identifiable (S2 Fig.), however the proportion of variance explained by each mixture

component showed good correspondence to the simulated genetic architecture. Estimates were

generally not very precise, which is partly due to the large sampling variance when simulating

SNP effects. BSLMM provides an estimate of the relative contribution of SNPs with an effect

above the polygenic component, and this estimate showed a strong increase with increasing

heritability of the trait (Fig. 3).

Sensitivity Analyses

In additional simulations, under models that ranged from very sparse to polygenic and using

alternate parametric models for the effect-size distribution, we assessed how our prior

Fig 2. Comparison of performance of BayesR, BSLMM, LMM and GPRS in simulated data. (A) Distribution of SNP-based heritability estimates. The
horizontal lines indicate the true heritability. GPRS does not provide estimates of heritability. (B) Distribution of the correlation coefficient between true and
predicted phenotype. Simulations are based on real SNP data of 3,924 individuals genotyped for 287,854 SNPs. The total number of causative SNPs was
3,000 with 10, 310 and 2,680 effects sampled from a zero mean normal distribution with variance 10−2, 10−3, and 10−4, respectively. Trait heritabilities (h2)
were 0.2, 0.5 and 0.8. The single boxplots display the variation in estimates among 50 replicates.

doi:10.1371/journal.pgen.1004969.g002
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assumption may affect parameters estimates and interpretation of results (S2 Text). To cover a

wide range of architectures from very sparse to polygenic, we sampled 10, 100, 1,000, 10,000,

and 20,000 causal SNPs either from a standard normal distribution or a gamma distribution

with shape 0.44 and scale 1.66 [15,16]. In general estimates of heritability from all methods

were robust across the wider range of settings (S1 Table). Heritability estimates of LMM were

unbiased, even under scenarios where its modeling assumptions were not met. BayesR and

BSLMM showed a small upward bias under very sparse scenarios and BayesR slightly underes-

timated heritability under highly polygenic models. BayesR estimates had the smallest variance

in the very sparse setting (10 causative variants) despite prior specifications that did not closely

correspond to the true model.

Similar to the previous results using real genotype data, where the prior model closely

matched the analysis model of BayesR, prediction accuracies from BayesR and BSLMM were

highest and both methods performed almost the same across all the scenarios (S2 Table). LMM

was the least accurate method with the exception of scenarios including 10,000 and 20,000

SNPs. BayesR and BSLMM outperformed GPRS, with the exception of the scenarios involving

10 causative SNPs. These results show that the mixture models are more powerful than GPRS,

even in the case of LE markers where the single SNP method might be expected to do very well.

Fig 3. Genetic architecture inferred using BayesR and BSLMM in simulated data. Shown is the proportion of total genetic variance explained by each
mixture component for BayesR and the relative contribution of SNPs with an effect above the polygenic component for BSLMM. Simulations are based on
real SNP data of 3,924 individuals genotyped for 287,854 SNPs. The total number of causative SNPs was 3,000 with 10, 310, and 2,680 effects sampled
from a zero mean normal distribution with variance 10−2, 10−3, and 10−4, respectively. The horizontal lines indicate the expected contribution by the 10 (right),
310 (middle) and 2,680 (left) SNPs to the genetic variance. Trait heritabilities (h2) were 0.2, 0.5 and 0.8. The single boxplots display the variation in estimates
among 50 replicates.

doi:10.1371/journal.pgen.1004969.g003
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Inferences of BayesR about the genetic architecture were consistent with the underlying

model and provided insights into the genetic architecture (S4–S5 Figs.). Posterior inference of

the BayesR model for the scenario including 10 causative SNPs, which is poorly supported by

the BayesR prior, provided strong evidence to revise the prior model. As for the 287K data,

BayesR and BSLMM outperformed LMM and GRPS in finding causal variants in all scenarios

(S6 Fig.).

Analyses of WTCCC Data

In addition to simulated data we assessed the performance of BayesR for seven diseases of the

Welcome trust case control consortium (WTCCC [17]). These data were previously used to es-

timate heritability [18,19] and for risk prediction [14,20–22].

SNP-based heritability. We report h2

g for the diseases in WTCCC on the liability scale (S3

Table), but make comparisons on the observed scale since the controls are common between

traits so that comparisons reflect the underlying genetic architecture in the cases samples. For

five of the seven traits (BD, CAD, CD, HT, RA), estimates of h2

g were very similar between

methods with estimates from BayesR slightly lower than BSLMM and LMM (Fig. 4A). For RA

and T1D, which have large associations with alleles in the major histocompatibility complex,

h2

g from the Bayesian methods was much smaller compared to LMM. Estimates of BayesR were

less consistent (indicated by larger posterior standard deviations), particularly for traits with a

large polygenic contribution to variance, such as BD and HT.

Accuracy and bias of prediction. We created 20 random 80/20 splits for each disease and

assessed accuracy by computing the area under the curve (AUC [23]). The predictive perfor-

mance for all seven diseases is shown in Fig. 4B. Mean (± standard deviation) of AUC scores of

BayesR were 0.58 (±0.012) for CAD, 0.58 (±0.017) for HT, 0.58 (±0.017) for T2D, 0.62

(±0.017) for BD, 0.64 (±0.018) for CD, 0.71 (±0.012) for RA and 0.85 (±0.011) for T1D.

Fig 4. Comparison of performance of BayesR, BSLMM, LMM and GPRS inWTCCC data. (A) Estimates of SNP-based heritability on the observed scale.
Antennas are standard deviations of posterior samples for BayesR and BSLMM or standard errors for LMM. GPRS does not provide estimates of heritability.
(B) Distribution of the area under the curve (AUC). The single boxplots display the variation in estimates among 20 replicates. In each replicate, the data set
was randomly split into a training sample containing 80% of individuals and a validation sample containing the remaining 20%.

doi:10.1371/journal.pgen.1004969.g004
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Although BayesR performed well for some diseases, prediction performance assessed in case/

control data suffers from ascertainment bias [24], because the prevalence in the general popula-

tions is much lower than the prevalence in the case/control study, where cases are substantially

overrepresented. We therefore also report prediction performance of the methods while ac-

counting for prevalence (S4 Table). BayesR and BSLMM performed equally well across the

seven traits with a mean AUC of 0.56 and outperformed GPRS and LMM in diseases where the

original study identified relatively strong associations (CD, RA, T1D) [17]. GPRS and LMM

had comparable prediction accuracy for traits where the known risk loci have effects of small

individual magnitude (HT, BD). Prediction accuracy of LMM increased with increasing herita-

bility, but there was no direct relationship between estimates of h2

g and predictive performance

for the other methods.

The regressions of phenotype on predicted value for GPRS were considerably larger than

one (Table 1), showing that the difference in the predictions of a pair of individuals is smaller

than the difference in their phenotypes. Predictions from the other methods showed little or no

bias. An unbiased predictor is necessary when genomic predictions are to be combined with

different information sources (e.g. sex, smoking status, BMI etc.) for risk prediction.

Genetic architecture. A feature of BayesR is that it estimates the number of associated

SNPs along with their variance explained. The posterior mean of the number of SNP fitted in

WTCCC varied considerably between traits (S5 Table). The number of SNPs was comparative-

ly low for T1D, where 2,633 individual SNPs explained the total genetic variance. The largest

number of SNPs was included in the model for BD (N = 9,411) of which more than 99% had

very small effects (effect size10�4 � s2

g).

The proportion of variance explained by each mixture component varied markedly across

the seven diseases (Fig. 5). Large numbers of SNPs with small effects (10�4 � s2

g) contributed

the majority of the genetic variance explained for BD (94.3%), HT (87.6%), CAD (83.5%) and

T2D (77.6%). A substantial proportion of the total variance was explained by a small number

of SNPs with larger effect sizes (10�2 � s2

g) for T1D (71.8%), RA (29.0%) and CD (11.9%). As

might be expected prediction accuracy of BayesR was also the highest for these traits and credi-

ble intervals indicate that genetic trait architecture is inferred with reasonable precision for

most traits (S7 Fig.).

We also assessed the proportion of additive genetic variation contributed by individual

chromosomes and the proportion of variance on each chromosome explained by SNPs with

different effect sizes (Fig. 6). Estimates of the variance explained by each chromosome were

largely related to the length of the chromosome with the majority of variation consistent with a

Table 1. Regression of phenotype on predicted value for BayesR, BSLMM, LMM and GPRS in WTCCC data.

Disease BayesR BSLMM LMM GPRS

BD 1.13 (0.280) 1.09 (0.236) 1.12 (0.246) 2541 (1403.5)

CAD 0.96 (0.216) 0.92 (0.179) 0.99 (0.187) 1529 (919.0)

CD 0.98 (0.137 1.01 (0.134) 1.05 (0.341) 35.4 (15.50)

HT 1.08 (0.461) 0.98 (0.313) 1.04 (0.356) 2124 (1041.9)

RA 0.99 (0.080) 0.98 (0.096) 1.07 (0.330) 33.1 (20.2)

T1D 1.00 (0.037) 0.99 (0.096) 1.03 (0.169) 57.3 (14.8)

T2D 0.92 (0.265) 0.94 (0.188) 0.99 (0.322) 1894 (789.9)

For prediction assessment we performed 20 random 80/20 splits for each trait. The values parentheses are standard deviations over 20 replicates.

doi:10.1371/journal.pgen.1004969.t001

Analysis of Complex Traits Using a Bayesian Mixture Model

PLOS Genetics | DOI:10.1371/journal.pgen.1004969 April 7, 2015 8 / 22



polygenic architecture. Differences in the contribution of single chromosomes on individual

traits were mostly due to SNPs with large effect (10�2 � s2

g) and to a lesser extent to SNPs with

smaller effects (10�3 � s2

g). On the whole, regions and chromosomes that explained large pro-

portions of the SNP-based variance coincide well with the regions that showed the strongest as-

sociation signals in the original study (Table 3 and Fig. 4 in WTCCC study published in [17]).

One example is chromosome 9 that harbors SNPs with large effect on CAD and the most sig-

nificant SNP (rs1333049) was located within a 44kb region spanned by 6 SNP with a posterior

inclusion probability of 1.2 (sum of the posterior inclusion probabilities of the 6 SNP). The re-

gion accounted for 27.2% of the genetic variance of chromosome 9. We estimated that chromo-

some 6 contributed 67.2% of the genetic variance in T1D, which is larger than the 47–58%

reported using LMM [11,18]. More than 96% of the variance explained by chromosome 6 in

T1D was due to SNPs with large effects. Chromosome 6 accounted for 28.1% of the genetic var-

iance in RA which is slightly less than*33% using LMM [18].

Computational demand. Computing time is important, particularly with the tremendous

number of markers in many human SNP data sets. The average running time required for each

method to perform prediction analysis for BD and T1D (chosen as examples because of their

different genetic architectures) is shown in Table 2. Computation time depends on a number

of factors, including programming language and software environment, and for the sampling

Fig 5. Genetic architecture underlying seven traits in WTCCC inferred using BayesR. Proportion of
additive genetic variation contributed by SNPs with different effect sizes. The colored bars partition the
genetic variance in contributions from each mixture class. The proportion of variance in each mixture
component was calculated as the sum of the square of the sampled effect sizes of the SNPs allocated to
each component divided by the sum of the total variance explained by SNPs.

doi:10.1371/journal.pgen.1004969.g005
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based methods in particular on the number of iterations used. We did not investigate in detail

how many iterations are sufficient and ran BSLMM with its default value of 1,000,000 sampling

steps and BayesR for 50,000 iterations. We observed only minor differences in the posterior

distributions between replicated chains and interpreted this as evidence that the algorithm

Fig 6. Proportion of genetic variance on each chromosome explained by SNPs with different effect sizes underlying seven traits in WTCCC.
Proportion of additive genetic variation contributed by individual chromosomes and the proportion of variance on each chromosome explained by SNPs with
different effect sizes. For each chromosome we calculated the proportion of variance in each mixture component as the sum of the square of the sampled
effect sizes of the SNPs allocated to each component divided by the sum of the total variance explained by SNPs. The colored bars partition the genetic
variance in contributions from each mixture class.

doi:10.1371/journal.pgen.1004969.g006

Analysis of Complex Traits Using a Bayesian Mixture Model

PLOS Genetics | DOI:10.1371/journal.pgen.1004969 April 7, 2015 10 / 22



converged (S8–S9 Figs.). The requirements of Bayes-R were several orders of magnitude higher

than BSLMM when compared on a per-iteration basis; nevertheless, the run time of BayesR

was competitive for the data sets considered here. LMM was computationally less demanding

than the other methods. LD-based clumping accounted for most of the computational burden

of GRPS and had to be repeated 10 times in our cross-validation scheme. Computing time for

BayesR scales linearly with the number of SNPs and to reduce the computational burden of

BayesR we changed the per-iteration MCMC scheme as follows. For the first 5,000 cycles the

effect of each SNP was sampled per iteration. After this we did not sample all SNPs in each

MCMC iteration, but updated SNP effects (in random order) only until we had sampled 500

SNPs with non-zero effects. SNPs not updated in the current iteration kept their effect sizes

from the previous MCMC cycle. The idea behind this is based on two observations. Firstly,

SNPs with larger effects appear more quickly in the model. Secondly, most of the calculation

time is spent on sampling small SNP effects in and out of the model to mimic the ‘polygenic ‘

component, but which individual SNP is retained in the model has minimal effect on the poste-

rior. We found that the ‘500 SNPs’ strategy generated similar results to the “All SNPs’ strategy

(S6 Table), but that the computational burden was significantly reduced by a factor of 3 to 6

(Table 2).

Discussion

We have presented a single model for analysis of GWAS that maps associated variants, esti-

mates the genetic variance explained by the SNPs collectively, describes the genetic architecture

of the trait and predicts phenotype from SNP genotypes. The framework we present applies a

Bayesian hierarchical model to human complex traits based on the assumption of a prior distri-

bution that SNP effects come from a mixture of more than two normal distributions. The pro-

cedure clusters markers in groups with distinct genetic values where each SNP explains 0.01,

0.1, or 1% of s2

g and a group of SNPs with zero effect. Instead of fixing the variance component

s2

g to a pre-specified value as in Erbe et al. [8] we treat s2

g as unknown and estimate it from the

data. This is because the shrinkage of SNP effects is affected by s2

g and determining the amount

of shrinkage a priori can have negative impact on performance [9,16].

BayesR showed good performance in estimating the SNP-based heritability across a wider

range of simulated genetic architectures (Fig. 2A, S1 Table) and estimates were similar to

BSLMM and LMM for diseases of the WTCCC study (Fig. 4A). If the primary interest is to esti-

mate SNP based heritability, LMM is faster and approximately unbiased under different disease

architectures [9,11,18]. BayesR can provide more accurate estimates under certain architec-

tures, for example when effect sizes follow skewed distributions, which is the case for many

human diseases[4].

Table 2. Mean computation time (in hours) of various methods for risk prediction in WTCCC.

BayesR BSLMM LMM GPRS

Trait All SNPs 500 SNPs

T1D 17.76 (0.19) 5.94 (1.19) 8.59 (0.63) 0.24 (0.06) 256.5 (10.07)

BD 18.40 (0.17) 3.33 (0.65) 10.27 (3.66) 0.25 (0.02) 202.9 (36.52)

Values are means with standard deviations in parentheses. Computations were performed using a computing cluster with Intel E5-2670 processors with

2.66 GHz CPUs. Shown is the time taken to analyze 10 replicates of the 80/20 split data for BD and T1D. BayesR (All SNPs) samples each SNP effect in

each MCMC iteration. BayesR (500 SNPs) uses a modified sampling scheme.

doi:10.1371/journal.pgen.1004969.t002
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For phenotype prediction BayesR was as accurate as BSLMM which outperformed various

other approaches in the study of Zhou et al. [9]. Qualitatively, the main difference between the

methods considered here is that the BayesR model is sparse, which seems intuitively appealing,

as not every genotyped SNP is likely to be in LD with causative variants. For example, often in

GWAS the primarily focus is not on estimating the relative contribution of each genetic vari-

ant, but whether or not a particular variant contributes at all. Sparseness and good performance

make BayesR an attractive alternative to currently available methods.

The Bayesian framework incorporates model uncertainty by averaging over many different

competing models [25], and this allows for more robust inferences about the genetic architec-

ture. The posterior inclusion probability can be directly interpreted as the probability that a

variant is an risk factor with a certain effect size [26], which is more intuitive to interpret than

an association of zero or one based on a p-value from single-SNP analysis. Our simulations

showed that SNPs with high inclusion probabilities have a high probability of being a causal or

associated variant (Figs. 1, S3, S6) and an increase in performance of BayesR to identify smaller

SNPs that are currently difficult to detect in single SNP GWAS [1,27,28].

Predictions of phenotypes from BayesR, BSLMM and LMMwere unbiased (Table 1). Unbi-

asedness of a disease predictor is important for practical implementations [29,30], yet often ig-

nored when developing GPRS derived from GWAS summary statistics.

We applied BayesR directly to the WTCCC data treating the binary outcome coded 0/1 as

the response in an ordinary linear regression. The predicted phenotypes can then be taken as

the probability of being a case and heritability estimates can be transformed to liability of dis-

ease scale [11]. The model can be extended to binary or ordered categorical traits by fitting a li-

ability model [31], but improvements are expect to be negligible [27,32].

By quantifying the contribution of SNPs and their effect sizes, BayesR can be used to make

inferences about the underlying genetic architecture of complex phenotypes (Figs. 3, 5, 6, S4).

In our analysis of WTCCC, we found that most of the SNPs had a zero effect (>96%), inconsis-

tent with the ‘infinitesimal model’ [33], but that thousands each explain a small proportion of

the total genetic variance and these estimates suggest a substantial contribution of a polygenic

component to these common diseases. However inferences did vary between diseases, with

fewer loci contributing to the genetic variance for T1D and RA than for the other traits. This

difference is mainly a result of large effects associated with variants in the MHC for T1D and

RA. Furthermore the variance explained by larger SNPs (effect size10�2 � s2

g) varied markedly

between chromosomes and between diseases, ranging from 73% of h2

g for T1D to 0.6% for BD.

Consistent with other studies the variance explained by individual chromosomes was largely

related to its length [34–36], although chromosomes of similar length showed large variability

across diseases, which was due to SNPs with larger effects.

We caution against over-interpretation of our results as they relate to genetic architecture

[37]. Inevitably the specified mixture model that effect sizes come from four mixture distribu-

tions is very simplistic. Nonetheless, since the WTCCC diseases all utilize the same control

samples, the differences between diseases allows comparative interpretation and the genetic ar-

chitectures agree well with the findings in the original [17] and subsequent studies [11,18,22].

However, in practice the true effect size distribution is unknown. We used the same mixture

distribution as prior as Erbe et al. [8], where it showed good mixing between SNPs, but alterna-

tive prior distributions may lead to better performance. Priors may be influential, however,

simulating a large number of different genetic architectures, we found that in general results

were not very sensitive to our modeling assumptions and that inferences of BayesR about the

genetic architecture were consistent with the underlying simulated genetic architecture (S4

Fig.). Using a distribution with variance 10�4 � s2

g seemed a reasonable choice for the effect
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size of ‘polygenic’ SNPs (S5 Fig.). How much of the heavier tail of the distribution can be dis-

tinguished from zero effects depends on sample size. For much larger data sets adding more

classes, for example one with variance10�5 � s2

g , might help to interpret the data.

In addition to the caveats relating to the specific mixture model we emphasize that the infer-

ence drawn on SNP effects and genetic architecture is from observed SNPs and not on the

causal variants directly. The true but unknown pattern of correlation between unobserved

causal variants and genotyped SNPs will impact the inference about genetic architecture. Nev-

ertheless, the comparison across the seven diseases, for which the genotyped SNPs are the

same, demonstrates large differences in SNPs effects, variance explained and prediction accura-

cy, reflecting real differences in the distribution of effect sizes at causal variants.

Incorporating markers beyond the small number of risk variants identified at genome wide

significance has the potential to increase the predictive performance of risk models [4,38]. Our

results on predicting disease risk in WTCCC are consistent with recent analysis [9,20–22] that

demonstrated that predictive ability of polygenic models is trait specific, depending on herita-

bility and genetic architecture. Furthermore, our results extend beyond previous reports of the

impact of genetic architecture on genetic risk prediction, most of which have relied on hypo-

thetical effect-size distributions or used results from risk predictions to inform about genetic

architecture [38,39]. Here we infer genetic architecture directly from entire GWAS data, which

can contribute to our understanding of complex disease and our ability to assess the power of

future GWAS depending on the underlying disease architecture. We observed that the pattern

of SNP-based heritability did not follow the same pattern as those of AUC. In particular, herita-

bility was not a good indicator of prediction performance for BayesR and BSLMM. For traits

where common SNP account for a large proportion of the SNP based heritability (T1D, RA,

CD), predictive accuracy was much higher for the two Bayesian methods compared to LMM

and GPRS.

BayesR has proved feasible in the WTCCC data set with*300,000 markers, but much larg-

er data sets are currently being collected. Computing time increases linearly with the number

of SNPs, however, runtime for large SNP sets can be reduced by avoiding redundant computa-

tions through filtering of SNPs that are in perfect or high linkage disequilibrium with at least

another SNP. The savings can be quite substantial, ranging from 9–22% (r2 = 1) to 34–58%

(r2>0.80) for the Hapmap3 panel [40], depending on the ancestry of the population [41]. Com-

puting performance can further be improved by running multiple MCMC chains instead of a

single long chain. Moreover, computing time of the ‘500 SNPs’ implementation does not in-

crease linearly with the number of SNP after the first 5,000 cycles, thus reducing computational

burden even more for larger data sets. However, less arbitrary approaches should be developed.

For very large datasets Bayesian-like estimation using MCMCmight be infeasible altogeth-

er, and fast alternative Bayesian estimation procedures are required [42,43]. On the other

hand, the use of a simple Gibbs sampling scheme provides great flexibility in effects size distri-

butions by selecting the number and the variances of the mixture. We illustrated the flexibility

of the method by partitioning the genetic variance into contribution of SNPs with different ef-

fect sizes by chromosomes. This model can easily be extended to allow for different prior prob-

abilities of the mixture distribution for each chromosome [44], to include dominant genetic

variation [28], to partitioned variance attributable to SNPs by annotation [34], or to include

prior biological knowledge in genomic analysis and prediction [45].

We found little difference between BayesR and BSLMM in prediction performance, howev-

er, differences seem likely when individual effects sizes can be estimated more accurately with

increase in sample size. For instance, as sample size increases and genome sequence data is ana-

lyzed, causal variants explaining only 0.1% of genetic variance will be identified. An advantage
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of BayesR is that most SNPs have near zero effect and so could be deleted from prediction of fu-

ture phenotype in practice. Improvements can also be expected when the prior induced mix-

ture distribution more closely captures the actual distribution of effect sizes. It has been shown

in simulation studies [46] that models that include all genetic variants do not take full advan-

tage of high-density marker data if the number of causal SNPs is small, while approaches with

an implicit feature selection do.

In conclusion, we proposed and applied a flexible Bayesian mixture model that simulta-

neously estimates effect size of all SNPs, the genetic variation captured by SNPs and maximizes

prediction accuracy. We demonstrate the ability of such a model to dissect genetic architecture

and partition genetic variation. The method is highly flexible, can be applied to sequence data

and can incorporate prior biological knowledge.

Materials and Methods

Statistical Framework

Phenotypes are related to markers with a standard linear regression model

y ¼ 1nmþXbþ �;

where y is a n-dimensional vector of phenotypes, 1n is a n-dimensional vector of ones, μ is the

general mean, X is an n×pmatrix of genotypes encoded as 0, 1 or 2 copies of a reference allele.

The vector β is a p-dimensional vector of SNP effects and � is a n-dimensional vector of residu-

als, � � Nð0; Is2

eÞ with I being a n×n identity matrix.

BayesR

The BayesR model assumes that the SNP effects come from a finite mixture of K components

so that the probability of the β effects conditional on the variance of the components s2 ¼

ðs2

1
; . . . ; s2

KÞ and the mixture proportions π = (π1, . . ., πK) which are constrained to be positive

and to sum to unity:

pðbjp; s2Þ ¼

X

K

k¼1

pkNðbj0; s2

kÞ;

where Nðbj0; s2

kÞ denotes the density function of the univariate normal distribution with mean

0 and variances2

k . The Bayesian approach requires the assignment of prior distributions to all

unknowns in the model. We followed Erbe et al. [8] and a priori assumed a mixture of four

zero mean normal distributions, where the relative variance for each mixture component is

fixed:

pðbjjp; s
2

gÞ ¼ p
1
� Nð0; 0� s2

gÞ þ p
2
� Nð0; 10�4 � s2

gÞþ

p
3
� Nð0; 10�3 � s2

gÞ þ p
4
� Nð0; 10�2 � s2

gÞ:

Here, s2

g is the additive genetic variance explained by SNPs. Sparseness is included into the

model by setting the effect and variance of the first mixture component to zero. A key differ-

ence in our implementation of BayesR from previous application [8] is that we estimate a

hyper-parameter for s2

g from the data, rather than fixing the marker variance at a pre-specified

value. MCMC estimation of the unknown parameters ðm; p; b; s2

g ; s
2

eÞ used a Gibbs scheme to

sample values from each unknown parameter’s conditional posterior distribution. Details of

the sampling procedure are outlined in S1 Text.
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Simulated Data

Simulations were used to assess the accuracy of estimates of model parameters and of infer-

ences provided by BayesR. The first study represents a typical genome-wide association study

and uses real genotype data to capture the correlation between SNPs. Moreover, in GWAS

most SNPs are not in LD with causative variants and effect size distribution of causative vari-

ants is skewed toward smaller effects.

Here we used genotype data of 3,924 Australian individuals [5]. After quality control, impu-

tation of missing genotypes at each loci and removal of SNPs with a minor allele frequency less

than 1%, 287,854 measured SNPs remained. The effects sizes of causal SNPs were assumed to

come from a series of three zero mean normal distributions with the number of SNPs in each

class falling in inverse proportion to the size of the effect. First we randomly selected 3,000

SNPs to be causal. Large effect sizes were drawn for 10 SNPs by sampling from a normal distri-

bution with variance σ2 = 10−2, moderate effect sizes were generated for 310 SNPs by sampling

from a N(0,10−3) distribution and the effects of the remaining 2,680 SNP were generated from

a N(0, 10−4) distribution. Residual effects for each individual (ei) were obtained by sampling

from a normal distribution with mean 0 and with variance chosen to accomplish heritabilities

of 0.2, 0.5 or 0.8. The simulated phenotype for a single individual was then obtained as follows:

yi ¼

X

10

j¼1

wij � bj þ

X

310

j¼11

wij � bj þ

X

2968

j¼311

wij � bj þ ei;

where wij ¼ ðxij � 2pjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pjð1� pjÞ
q

the centered and scaled genotype and xij is the number

of copies of the reference allele (0, 1, 2) at SNP j for individual i with pj being the frequency of

the reference allele in the sample. Sampling from this mixture distribution resulted in a fat-

tailed distribution of effect sizes (S1 Fig.), where large, moderate and small effects contributed

around 14%, 46% and 40% of the total genetic variance. Fifty replicates were analysed for each

of the three heritabilities and a different set of 3,000 SNPs was selected for each replicate. In

each replicate the sampled 3,000 SNP effects were randomly assigned to the selected markers.

Note that the contribution of each causal SNP to heritability depends on its frequency, so that

the true number of SNPs in each mixture component of the BayesR model and the contribution

of each mixture to heritability are not known a priori (S2 Fig.).

Sensitivity Analysis

In the simulation using real genotype data, phenotypes were generated under a model that very

closely matched the prior specifications for BayesR. To investigate how the prior assumption

may affect parameters estimates and interpretation of results we performed additional simula-

tions, including scenarios where we created mismatches between modeling assumptions and

simulated genetic architectures. To avoid the problem of differentiating between causal vari-

ants and non-causal SNPs in LD with causal variants we simulated 20,000 independent SNPs

in a sample of 5,000 individuals. Genotypes of SNP j were generated by sampling from a bino-

mial distribution with n = 2 (number of successes) and success probability pi, where pi was

sampled from a univariate distribution with interval [0.05, 0.5]. We simulated 10, 100, 1,000,

10,000, and 20,000 causal SNPs to cover a wide range of architectures from very sparse to poly-

genic. Effect sizes were sampled either from a standard normal distribution or a gamma distri-

bution with shape 0.44 and scale 1.66 as in [15,16] and residual effects were added to achieve a

heritability of 0.5. Sampling from a gamma distribution generates fewer large and more small

effects than the standard normal [16].
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WTCCC Data

We analyzed 7 traits of the Welcome Trust Case Control Consortium (WTCCC) study [17].

Following previous analyses of the data [11,18] we performed strict QC on SNP data using

PLINK [13]. First, we removed individuals with> 2% missing genotypes. For each of the 7

case and the two control data sets we removed loci with frequency of the minor allele< 0.01

and SNP with missingness> 1%. After combining each case and the two control sets into

7 trait case/control studies, SNPs significant at 5% for differential missingness between cases

and controls and SNP significant at 5% for Hardy-Weinberg equilibrium were removed. Relat-

edness testing was performed using a pruned set of SNPs with LD of r2 <0.05, pairs of subjects

with estimated relatedness> 0.05 were identified and one member of each relative pair was re-

moved at random. Principal components of the genomic relationship matrix were estimated

with the same set of pruned SNP using the software GCTA [10] and all phenotypes analyzed

were the residuals of case-control status following linear regression on the first 20 principal

components. After QC the data included 1,851 cases of bipolar disorder (BD), 1,906 cases of

coronary artery disease (CAD), 1,731 cases of Crohn’s disease (CD), 1,905 cases of hyperten-

sion (HT), 1,837 cases of rheumatoid arthritis (RA), 1,953 cases of type 1 diabetes (T1D), 1,902

cases of type 2 diabetes (T2D), and 2,910 to 2,918 controls depending on the trait. The number

of genotypes ranged from 296,718 for BD to 305,967 for CD.

Other Methods

Single-SNP GWAS analysis. Single SNP-trait association analyses were performed using

a linear regression model in PLINK [13]. A commonly used method to build prediction models

from single-SNP GWAS analyses is genomic risk profiling [38], where SNP effect sizes estimat-

ed in one population are used to build a multi-SNP prediction model to generate a genomic

profile risk score (GPRS) for each individual in another population. Applying GPRS requires

the choice of an appropriate p-value threshold used for selecting SNPs into the predictor. We

used 10-fold cross-validation to derive the optimal p-value threshold for each replicate of the

data used for prediction analyses. First, the training data (80% of the total sample for each rep-

licate) was divided in K = 10 non-overlapping folds of equal size. Then GWAS was performed

using K-1 folds of data and later SNPs were pruned for independent associations using the

“clump” procedure in PLINK, with a pairwise linkage disequilibrium cutoff of r2<0.25 within a

500kb window. Based on various p-value thresholds (0.001, 0.005, 0.01, 0.05, 0.10, 0.15,. . ., 1.0)

an increasing number of SNPs were selected in the predictor. At each value of the threshold the

accuracy of predicting the phenotypes in the left-out fold was recorded. This process was re-

peated K times so that every fold was left out once. The p-value threshold that yielded the high-

est average accuracy of prediction in the K test sets was then used for the prediction model

after estimating SNP effects from the full training set.

Linear mixed model (LMM). We used the software GCTA [10] for linear mixed model

analysis. LMM assumes that all SNP effects are drawn from the same normal distribution. In

GCTA this is implemented by an equivalent model in which a genomic relationship matrix es-

timated from the SNPs describes the covariance between the genetic values of individuals [5].

The method is often referred to as GBLUP (genomic best linear unbiased prediction) when

used to estimate breeding values of related individuals from marker data in plant and animal

breeding, assuming that variances are known without error. However, it is less commonly used

for prediction of unrelated individuals in humans [12]. We will refer to the method as LMM as

in Zhou et al. [9], but note that its main motivation in human applications is estimation of indi-

vidual SNP effects and not prediction of aggregate genomic values of individuals. For predic-

tion we estimated genetic values directly fitting the covariance between the genetic values of
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training and validation individuals. For the mapping of causal variants we used the—blup-snp

option in GCTA to transform the BLUP solutions for individuals into the BLUP solutions for

SNPs.

Bayesian sparse linear mixed model (BSLMM). BSLMM [9] is a hybrid of the classical

polygenic model and sparse regression models. It assumes that effects come from a mixture of

two normal distributions, with each genetic variant having at least a small effect on phenotype

(polygenic component) and only a fraction of these having an additional effect (sparse compo-

nent). We fit BSLMM using the GEMMA software [14].

Identifying Causal SNPs

We compared the ability of BayesR, BSLMM and LMM and single-SNP to identify causal vari-

ants. For the simulated 287K data we focused on the SNPs with large and moderate effect sizes

sampled from N(0,10−2) and N(0,10−3), respectively. Although, small effects together contrib-

uted*40% to genetic variance, power to identify ‘polygenes’ with our sample size was ex-

pected to be effectively zero. Similar to Guan and Stephens [27] we computed a measure of

evidence of association between a genome segment and phenotype. This was done because the

multi-SNP methods have the tendency to dilute a QTL effect across SNPs in LD with the QTL.

For single-SNP analyses we used the minimum of the p-values of the SNPs within a region as

evidence of association. The sum of the absolute effect sizes of SNPs within a region was used

for LMM. The GEMMA software that implements BSLMM outputs the posterior probability

of a SNP to have an effect above the polygenic background and we summed these probabilities

over the SNPs within a segment. BayesR provides separate inclusion probabilities for an indi-

vidual SNP to fall in each mixture component. We used the sum of the posterior inclusion

probabilities that SNPs are allocated to effect size classes 10�2 � s2

g and 10
�3 � s2

g as evidence

measure. In BayesR the polygenic component is ‘mimicked’ by SNPs assigned to the mixture

class with small effects size (10�4 � s2

g) and was therefore not included in the calculation. We

divided the genome in non-overlapping segments of* 250kb size. For each method we select-

ed a series of cutoff values for the evidence measure and considered all segments containing a

causative variant that exceed the cutoff value as true positives and all other regions exceeding

the cutoff value as false positives. We then plot the true positive rate against the false positive

rate averaged over two different starting positions for the first window (0, 125kb). In the simu-

lations using uncorrelated SNPs we assessed the methods on their ability to identify individual

SNPs rather than regions. We used similar measures of evidence of association, except for

BayesR where we used the posterior probability of the SNP being included in the model (i.e.

1- posterior inclusion probability of class0� s2

g).

Accuracy and Bias of Prediction

We assessed predictive performance in the simulated data and the WTCCC data. In the simu-

lated data, each replicate was randomly split into a training sample containing 80% of individu-

als and a validation sample containing the remaining 20%. For the WTCCC data we generated

20 random 80/20 splits for each trait. We use Pearson’s product moment correlation statistic as

measure of predictive ability in the simulated data. The accuracy of risk prediction in WTCCC

was assessed by the area under the curve (AUC) [23]. We also report the slope of the regression

of phenotypes on the predictions. A slope different from one indicates bias in the prediction. A

slope of unity from a regression of phenotype on predictor implies that the predictor is calibrat-

ed correctly on the scale of absolute risk, which matters in genomic medicine applications, in
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particular when the genetic predictor is combined with non-genetic factors (e.g. gender, smok-

ing status, BMI etc.) for risk prediction.

Implementation

For BayesR, BSLMM and LMM we centered and scaled each column of the genotype matrix to

have mean zero and unit variance in all analyses. The data was analyzed using our BayesR soft-

ware implemented in Fortran. The software is available at http://www.cnsgenomics.com/

software/. Prior assumptions for BayesR were as described above (see also S1 Text). For all

analyses a chain length of 50,000 was used with the first 20,000 samples as burn-in. Posterior

estimates of parameters are based on 3,000 samples drawing every 10th sample after burn-in.

GEMMA was run with its default setting of 1,000,000 sampling steps using the first 100,000 as

burn-in. The only default parameter we changed was lowering the minor allele frequency

threshold to 0.001, to ensure that no SNP was deleted from the model when 80% of the data

was used for training.

Web Resources

The URLs for data presented herein are as follows:

BayesR, http://www.cnsgenomics.com/software/

GCTA, http://www.cnsgenomics.com/software/

GEMMA, http://home.uchicago.edu/xz7/software.html

PLINK, http://pngu.mgh.harvard.edu/*purcell/plink/

Supporting Information

S1 Text. Detailed description of BayesR.

(DOCX)

S2 Text. Sensitivity analysis.

(DOCX)

S1 Fig. Probability density function of the mixture distribution (red) used to sample SNP

effects and probability density function of a normal distribution with the same mean and

variance (black).

(PDF)

S2 Fig. Contribution of causal SNPs to heritability in the simulation scenario using real ge-

notypes. SNPs are ranked according to their contribution to heritability calculated as 2p(1 – p)

β
2, where p is the allele frequency and β the effect of the SNP. The total number of causative

SNPs was 3, 000 with 10, 310 and 2,680 SNP effects sampled from a zero mean normal distri-

bution with variance 10−2, 10−3, and 10−4, respectively. Trait heritabilities (h2) were 0.2, 0.5 and

0.8.

(PDF)

S3 Fig. Comparison of causal variant identification accuracy of BayesR, BSLM, LMM and

single-SNP analysis in simulated data using 100kb and 500kb regions. Shown is the true pos-

itive rate as a function of false positive rate for correct identification of 100kb (A) and 500kb (B)

regions containing causative SNPs. Simulations are based on real SNP data of 3,924 individuals

genotyped for 287,854 SNPs. The total number of causative SNPs was 3,000 with 10 (solid line),

310 (dotted line) and 2,680 effects sampled from a zero mean normal distribution with variance

10−2, 10−3, and 10−4, respectively. Trait heritabilities (h2) were 0.2, 0.5 and 0.8.

(PDF)
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S4 Fig. Proportion of total genetic variance explained by each mixture component for dif-

ferent simulated genetic architectures. The proportion of variance in each mixture compo-

nent was calculated as the sum of the square of the sampled effect sizes of the SNPs allocated to

each component divided by the sum of the total variance explained by SNPs. Genotype data

was simulated for 20,000 uncorrelated SNPs and 5,000 individuals. Genetic architectures rang-

ing from very sparse to highly polygenic were generated by sampling 10, 100, 1,000, 10,000, or

20,0000 SNP effects either from a standard normal distribution or a gamma distribution with

shape 0.44 and scale 1.66. Trait heritability was 0.5. Results are based on 50 replicates for

each scenario.

(PDF)

S5 Fig. Posterior inclusion probabilities (PIP) of SNPs for different simulated genetic ar-

chitectures. SNPs are ranked according to their contribution to heritability. Genotype data was

simulated for 20,000 uncorrelated SNPs and 5,000 individuals. Genetic architectures ranging

from very sparse to highly polygenic were generated by sampling 10, 100, 1,000, 10,000, or

20,0000 SNP effects either from (A) a standard normal distribution or (B) a gamma distribu-

tion with shape 0.44 and scale 1.66. Trait heritability was 0.5. Results are based on 50 replicates

for each case.

(PDF)

S6 Fig. Comparison of causal variant identification accuracy of BayesR, BSLM, LMM and
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