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Abstract

Background: A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization

of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers.

Methods: The modified working electrode was characterized by electrochemical and field emission scanning electron

microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of

catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse

voltammetric (DPV) techniques.

Results: The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with

peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be

adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the

transfer of equal number of protons and electrons in the redox phenomenon.

Conclusions: The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear

range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of

the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed.
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Background
Over the past few decades, the rapid progress of science and

technology to fulfil the desire of human beings led to many

advancement as well as became a threat to environment (Xia

et al. 2021; Ali & Jain, 2004; Gupta et al. 2009; Asfaram et al.

2015; Ali et al. 2013). As the proverb says “the science of

today is the technology of tomorrow,” many industries were

established to make the best use of pure science in the

production of applied commercial products (Steven, 1998;

Goyal et al. 2009a, 2009b; Dehghani et al. 2016; Gupta et al.

2014a, 2014b, 2014c; Goyal et al. 2009a, 2009b; Ghaedi et al.

2015; Gupta et al. 2015a, 2015b). These chemical industries

have a fundamental association with the national economy

and people’s lives (Han et al. 2020; Gupta et al. 2015a, 2015b,

2015c; Gupta et al. 2014a, 2014b, 2014c). The industry refers

to the collective name of enterprises and units which are en-

gaged in the manufacture, research and development of the

chemical engineering, lubricant refining, metallurgy, energy

storage, light industry, petroleum products, the environment,

drug, environmental safety and the military division (Gavri-

lescu & Chisti, 2005; Schmid et al. 2002; Goyal et al. 2005;

Gupta et al. 2015c; Karthikeyan et al. 2012; Robati et al.

2016; Saravanan et al. 2015b). However, the waste effluent
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coming out as a side product in all the manufacturing indus-

tries may cause big impact on environmental pollution and

can become toxic to human beings and aquatic creatures

(Ahammad et al. 2011). Therefore, the quantification of the

toxic molecules in the waste sample is of prime concern

(Buleandra et al. 2014; Gupta et al. 2015a, 2015b,

2015c; Gupta et al. 2014a, 2014b, 2014c; Gupta et al.

2012; Saravanan et al. 2013a, 2013b, 2013c). Most

phenolic moieties are toxic, and they are the basic

feed stocks of the manufacturing industries (Wang &

Hasebe, 2011; Saravanan et al. 2013a, 2013b, 2013c;

Saravanan et al. 2015b). Catechol (CC) and hydro-

quinone (HQ) are the isomers of dihydroxy benzene,

which are widely used in paint, leather, pharmaceut-

ical, pesticide, cosmetic and plastic industries, and ob-

viously, the effluent from these manufacturing

industries contain traces of CC and HQ which in turn be-

come toxic to human and animals (Wang et al. 2007a,

2007b, 2007c; Kumar et al. 2017). Due to this these, mole-

cules were recognized as an ecological hazard (He et al.

2014). The drawback of using traditional spectroscopic

methods for their determination is tedious and not con-

sistent (Chao & Suatoni, 1982; Nagaraja et al. 2001; Sun

et al. 2000; Mesa & Mateos, 2007).

The electrochemical sensors are very widely employed in

food safety, dye, pharmaceutical and environmental fields due

to their rapid, simple operation, quick and high sensitivity in

the result (Saravanan et al. 2013a, 2013b, 2013c; Govindhan

et al. 2014; Gupta et al. 2013; Yola et al. 2014; Srivastava et al.

1996; Maleh et al. 2015). Since dihydroxy benzene isomers

are electroactive, electrochemical way is the most accessible

method for electroanalysis (Li et al. 2014). However, the fewer

sensitivity, slow electron transport and contamination of the

oxidation signal by adsorption of products limit the recogni-

tion of these isomers by the bare glassy carbon electrode

(GCE) (Shen et al. 2017). Hence, recently various modification

procedures were reported to enhance the performance of the

GCE to quantify the analytes of interest, such as eosin Y (He

et al. 2014), poly (diallyl dimethylammonium chloride) (Song

et al. 2015), poly (dopamine) (Zheng et al. 2013), poly (gly-

cine) (Wang et al. 2007b), poly (phenylalanine) (Wang et al.

2006), poly (methionine) (Chandrashekar et al. 2019), cassava

starch-Fe3O4 (Mulyasuryani et al. 2019), poly (3,4-ethylene-

dioxythiophene) (Bottari et al. 2019), poly (L-serine) (Hung

et al. 2020), ATNA/Nafion/GCE (El-Shishtawy et al. 2020), 4-

carboxybenzenediazonium (Phal et al. 2020), polyaniline-FSG

(Minta et al. 2020), PVP-GR/GCE (He et al. 2020), PB/ZrO2-

fCNTs/GC) (Jerez-Masaquiza et al. 2020), Azure A-

poly(methacrylic acid)/GCE (Watanabe et al. 2020), pyridine-

2-sulfonic acid/GCE (Xiao et al. 2020), poly(brilliant blue)

(Ganesh et al. 2015), and poly(muroxide) (Kumar et al. 2019).

Allura red AC (ALR) (see Scheme S1, supplementary

file) is one of the azo dyes extensively used in the col-

ouring confectionery, soft and alcoholic drinks, ice

cream, candy and bakery products (Pliuta et al. 2020).

This simple azo dye can be efficiently used to modify the

bare GCE by electropolymerization technique. We

followed a protocol proposed by Mansour et al. for the

electropolymerization of allura red AC on GCE, which

they employed for the flow injection analysis determin-

ation of HQ and CC using a two-line flow injection

manifold with a single-sensor/double-pulse amperomet-

ric detection (Mansour et al. 2019). In this study, we re-

ported the modification procedure for the GCE by

simple electropolymerization of ALR by cyclic voltam-

metric (CV) technique in a basic supporting electrolyte

solution. The fabricated ALR glassy carbon electrode

(ALR/GCE) showed electrocatalytic activity in the dis-

crimination of overlapped signals of CC and HQ in a

binary mixture which is practically not possible at bare

GCE. The ALR/GCE was electrochemically character-

ized; the effect of scan rate showed adsorption kinetics

at ALR/GCE. Mechanism of analytes with varying pH

was proposed, and the fabricated modified electrode was

applied for the tap water sample analysis and good re-

covery results were obtained.

Methods
Main reagents

The allura red AC (ALR), hydroquinone and catechol

were obtained from Himedia, and double-distilled water

was used to prepare standard stock solutions of concen-

trations 25.0 mM, 2.5 × 10−3 M and 2.5 × 10−3 M, re-

spectively. The 0.2 M buffer solution of unique ionic

strength and preferred pH was prepared from a mixture

of NaH2PO4•H2O and Na2HPO4. Before any electro-

chemical measurements, the working electrode was

cleaned with 1 μm, 0.3 μm and 0.05 μm of α-alumina

slurry on the polishing pad and ultrasonicated in an

equimolar mixture of ethanol and water for 15 min, later

rinsed with double-distilled water. All the chemicals

were of analytical grade and used as received without

any additional treatment.

Instrumentation

AUTOLAB potentiostat with PGSTAT 302 was used for

all the electrochemical experiments. The surface morph-

ology of the working electrodes was characterized by

using ultra-high-resolution field emission scanning elec-

tron microscope (FESEM, FEI, & Nova NanoSEM450)

instrument operating at 25 kV. The working electrode

used for this study was glassy carbon electrode with 3.0

mm in diameter. A platinum wire was used as a counter

electrode and Ag/AgCl, saturated KCl, as a reference

electrode. All the electrochemical experiments were car-

ried out at an ambient temperature of 25 ± 0.1 °C; the

corresponding redox potentials were recorded with re-

spect to Ag/AgCl electrode.
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Results and discussion
Fabrication of ALR/GCE and its electrochemical

characterization

In order to boost the performance of the bare GCE, elec-

tropolymerization of allura red was carried out on the

glassy carbon working electrode by preparing 1.0 mM

aqueous solution of ALR monomer along with 0.1 M

NaOH solution as a supporting electrolyte. The potential

window was maintained from − 0.8 to 1.2 V with a fixed

scan rate of 0.1 Vs−1 for ten consecutive cycles as shown

in Figure S1. During the progression of electropolymeriza-

tion, the voltammogram has gradually descended with in-

creased number of cycles, indicating the growth of the

ALR polymer chain on the surface of GCE. After few con-

secutive cycles, the voltammogram tends to be constant

with stable current signal reflecting the achievement of

saturation level in the electropolymerization phenomenon

(He et al. 2014). As the number of cyclic sweeps increases,

a decreased electrocatalytic property was observed at the

fabricated electrode due to the thickness of polymeric film

(Ganesh et al. 2015; Wang et al. 2007a, 2007b, 2007c;

Wang et al. 2006). Therefore, it was concluded that ten

sweep cycles of CV are best suitable to get a strong elec-

trocatalytic response.

Figure S2A represents the CVs for the [Fe(CN)6]
4-/3- in

the electrochemical cell with 1 M KCl as the supporting

electrolyte at bare GCE and ALR/GCE electrodes with

0.05 Vs−1 scan rate. From the graph, it was observed that

the CV response obtained at fabricated ALR/GCE was

with sharp and static enhancement, and peak potential

separation was observed to be 0.064 V, which was a char-

acteristic voltammogram of [Fe(CN)6]
4-/3- redox couple

(Kumar et al. 2017). The Randles-Sevcik equation was

used to calculate the active surface area of the working

electrodes (Ganesh et al. 2015; Kumar et al. 2019), which

was found to be 0.0289 cm2 and 0.0319 cm2 for bare GCE

and ALR/GCE, respectively. The approximate surface

coverage of ALR deposit on GCE was calculated by Eq. 1

(Wang, 1994; Ganesh et al. 2018).

Ip ¼ n2F2AΓυ=4RΤ ð1Þ

Here, Γ, A, Ip, n and υ represents the surface coverage

concentration, surface area of the working electrode,

peak current, number of electrons involved and scan

rate, respectively. F, R and T have their usual signifi-

cance. The Γ was calculated to be 0.1006 × 10−10 M/cm2

for ALR/GCE electrode. Figure S2B showed the surface

morphology of the bare GCE (a) and ALR/GCE (b),

which showed that the surface imperfections were cov-

ered by a thin layer of ALR, which proficiently dimin-

ished the trapping of analytes at ALR/GCE surface

(Mansour et al. 2019).

Electrocatalytic response of CC and HQ in a binary

mixture at ALR/GCE

The electrocatalytic oxidation of CC and HQ was carried

out by using CV technique. Figures 1 and 2 represent the

CVs obtained for the oxidation of 40.0 μM CC and 40.0

μM HQ in 0.2 M buffer of pH 7.4 at bare GCE (curve a)

and ALR/GCE (curve b), respectively, with a scan rate of

0.05 Vs−1. It can be observed from both figures that the

voltammetric response of CC and HQ at bare GCE (curve

a) was wide, with poor in sensitivity, and the oxidation sig-

nals were located at 0.225 V and 0.182 V, respectively.

However, the ALR/GCE (curve b) favoured the oxidation

Fig. 1 CVs of 40.0 μM CC at bare GCE (curve a) and ALR/GCE (curve b) in 0.2 M buffer of pH 7.4 with 0.05 Vs−1 scan rate
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process of both analytes, and the signals were observed at

0.181 V and 0.108 V, respectively, for CC and HQ. The re-

finement of shift in the oxidation signal was due to the

electrocatalytic capability of the ALR/GCE towards the

electrooxidation of dihydroxy benzene isomers.

The chief task of the ALR/GCE is to resolve the over-

lapped oxidation signals of CC and HQ isomers, which

is practically impossible at bare GCE. Due to the similar-

ity in chemical structure and fouling of the electrode

surface, bare GCE fails in the judgment of oxidation sig-

nals of these isomers. Figure 3 evidently shows the cyclic

voltammograms for equimolar binary mixture (40.0 μM)

of CC and HQ with 0.2 M buffer of pH 7.4 at 0.05 Vs−1

scan rate. At bare GCE, overlain wide voltammogram

was observed at an oxidation potential of 0.208 V which

is of no technical significance. However, at ALR/GCE, a

strong separation was obtained for CC and HQ at poten-

tials which were as similar to their individual determin-

ation. The difference in oxidation peak separation was

calculated to be 0.102 V, which was more adequate for

the interference-free determination of these isomers in a

dual mixture. At fabricated ALR/GCE, the oxidation of

Fig. 2 CVs of 40.0 μM HQ at bare GCE (curve a) and ALR/GCE (curve b) in 0.2 M buffer of pH 7.4 with 0.05 Vs−1 scan rate

Fig. 3 CVs recorded for the simultaneous determination of equimolar (40.0 μM) binary mixture of CC and HQ at bare GCE (curve a) and ALR/GCE

(curve b) with 0.2 M buffer of pH 7.4 with 0.05 Vs−1scan rate
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HQ becomes easier than CC; furthermore, the oxidation

potential of HQ shifts to negative side and oxidized well

before reaching the oxidation potential of CC which

leads a successful separation of these targeted analytes

(Wang et al. 2007a, 2007b, 2007c). The results obtained

at CV are again confirmed by ultra-sensitive differential

pulse voltammetry (DPV) method due to the absence of

background current as shown in Fig. 4. The distinguish-

able signals were not obtained at bare GCE (curve a),

and a broad overlapped signal was observed at 0.179 V.

However, the ALR/GCE (curve b) showed selectively re-

solved oxidation peaks at 0.147 V and 0.044 V for CC

Fig. 4 DPVs recorded for the simultaneous determination of equimolar (40.0 μM) binary mixture of CC and HQ at bare GCE (curve a) and ALR/

GCE (curve b) with 0.2 M buffer of pH 7.4

Fig. 5 CVs on impact of scan rates on electrooxidation of equimolar (40.0 μM) binary mixture of CC and HQ at ALR/GCE with 0.2 M buffer of

pH 7.4
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and HQ, respectively. The peak potential separation was

determined to be 0.103 V. This peak potential difference

was more sufficient for simultaneous determination of

dihydroxy benzene isomers.

Impact of scan rate and pH

The impact of varying scan rates on the determination of

equimolar (40.0 μM) mixture of CC and HQ in 0.2 M buf-

fer of pH 7.4 was examined. It can be seen from Fig. 5 that

there was an increase in peak current with the increase in

scan rate, and a slight shift in the redox potentials were

observed, which was in accordance with the Randles-

Sevcik equation (Kumar et al. 2019). It can be observed

from Figure S3A and S3B that a good linearity was ob-

served for the plots of anodic peak current (Ipa) versus

scan rate (υ) with correlation coefficient (r2) of 0.9945 and

0.9949, respectively, for CC and HQ. On the other hand,

the relationship between the Ipa and the square root of

scan rate (υ1/2) of CC and HQ gives a r
2 value of 0.9909

and 0.9902, respectively, as shown in Figure S3C and S3D.

According to the previous reported literature, the linear

establishment of Ipa versus υ suggests an electrode

phenomenon dominated by the adsorption-controlled

process at ALR/GCE (Ganesh et al. 2015; Kumar et al.

2019). To calculate the values of rate constant (k0), Eq. 2

was used (Bard & Faulkner, 2001; Avendano et al. 2007).

And the obtained values of k0 for electrooxidation of CC

and HQ were tabulated in Table 1.

ΔEp ¼ 201:39 log υ=k0
� �

−301:78 ð2Þ

The electrochemical experiments performed in aqueous

solutions directly depend on the pH of the supporting

electrolyte. Figure 6a showed the effect of variation of buf-

fer pH on the oxidation of equimolar (40.0 μM) binary

Table 1 k
0 values calculated for the electrooxidation of CC and

HQ

υ

(Vs−1)
ΔEp (V) k

0 (s−1)

Catechol Hydroquinone Catechol Hydroquinone

0.02 0.0362 0.0378 0.4195 0.4121

0.04 0.0372 0.0377 0.8294 0.8248

0.06 0.0407 0.0412 1.1956 1.1887

0.08 0.0407 0.0413 1.5940 1.5830

0.10 0.0407 0.0413 1.9929 1.9792

0.12 0.0407 0.0413 2.3911 2.3746

0.14 0.0407 0.0413 2.7899 2.7707

0.16 0.0440 0.0483 3.0704 2.9228

0.18 0.0442 0.0483 3.4442 3.2877

0.20 0.0478 0.0483 3.6745 3.6534

0.22 0.0478 0.0483 4.0421 4.0188

Fig. 6 a CVs obtained for 40.0 μM CC and HQ binary mixture at ALR/GCE of different pH (5.5 to 8.0) at 0.05 Vs−1scan rate. b Influence of pH on

anodic peak potential of analytes
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Fig. 7 a DPVs of ALR/GCE with different concentrations of CC (0 to 80.0 μM). b Linear plot of Ipa versus concentration of CC

Fig. 8 a DPVs of ALR/GCE with different concentrations of HQ (0 to 110.0 μM). b Linear plot of Ipa versus concentration of HQ
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mixture of CC and HQ by CV technique. As the pH of

the supporting electrolyte increases, the redox potential

shifts towards the least potential. A linear graph was ob-

served between oxidation peak potential (Epa) and pH of

the buffer solution, and the slope of the linearity was

found to be 0.0615 and 0.0596 for CC and HQ re-

spectively, as in inset Fig. 6b. The linear regression

equation can be expressed as Epa (V) = 0.6354

−0.0615 (pH), r
2 = 0.9950 for CC, and Epa (V) =

0.5207−0.0596 (pH), r
2 = 0.9912 for HQ. Moreover,

the obtained slope values in both linearities were in

strong agreement with Nernst equation for identical

number of protons and electrons transfer (Ganesh &

Swamy, 2015; Kumar et al. 2019).

Table 2 Comparison of LOD obtained for CC and HQ at ALR/GCE with other modified electrodes, method and pH of the

supporting electrolyte used

Working electrode Limit of
detection (μM)

Linear range (μM) pH of
supporting
electrolyte

Method References

CC HQ CC HQ

Poly(niacinamide)/GCE 0.31 0.24 10 to 120 10 to 160 7.4 CV Kumar et al. 2017

Eosin Y/GCE 0.12 0.14 1.0 to 130 1.0 to 130 5.0 DPV He et al. 2014

c-MWCNTs/CTS/Au /GCE 0.89 0.17 5 to 900 0.5 to 1500 7.0 DPV Shen et al. 2017

PDA-RGO/GCE 0.74 0.62 1.0 to 230 1.0 to 250 6.5 DPV Zheng et al. 2013

Poly(phenylalanine) 0.70 1.0 10.0 to 140.0 10.0 to 140.0 5.0 DPV Wang et al. 2006

BG/GCE 0.20 0.30 1.0 to 75.0 5.0 to 100 5.6 DPV Zhang et al. 2015

Poly(3-thiophenemalonic acid) GCE 3.91 7.81 3.91 to 500 7.81 to 500 6.8 DPV Xu et al. 2015

LRG/GCE 0.80 0.50 3.0 to 300 1.0 to 300 6.5 DPV Lai et al. 2014

Eosin Y/CPE 0.27 0.79 51 to 357 51 to 357 7.4 CV Ganesh & Swamy, 2016

Poly(methionine) MCPE 45.8 55.66 20.66 to 209.92 20.66 to 192.30 7.4 CV Ganesh et al. 2017

Silsesquioxane/MCPE 10.0 10.0 10.0 to 300.0 10.0 to 450.0 7.0 DPV Da-Silva et al. 2013

MWNT/GCE 0.2 0.75 0.6 to 100.0 1.0 to 100.0 4.5 DPV Qi et al. 2005

(LDHf/GCE) 1.2 9.0 3.0 to 1500.0 12.0 to 800.0 6.5 DPV Li et al. 2009

Poly-p-ABA/GCE 0.5 0.4 2.0 to 900.0 1.2 to 600.0 7.0 DPV Yang et al. 2009

MWCNT-modified electrode 0.6 0.6 2.0 to 100.0 2.0 to 100.0 5.5 LSV Ding et al. 2005

PASA/MWNTs/GCE 1.0 1.0 6.0 to 180.0 6.0 to 100.0 6.0 DPV Zhao et al. 2009

Micellar effect/GCE 0.5 0.5 0.5 to 900.0 0.5 to 1400.0 6.8 DPV Peng et al. 2006

Pen-modified electrode 0.6 1.0 25.0 to 175.0 15.0 to 115.0 5.0 DPV Wang et al. 2007c

Pt/ZrO2-RGO/GCE 0.4 0.4 1.0 to 400.0 1.0 to 1000.0 7.0 DPV Vilian et al. 2014

TRGO/GCE 0.8 0.75 1.0 to 500.0 1.0 to 500.0 6.0 DPV Li et al. 2012

PEDOT/GO modified electrode 1.6 1.6 2.0 to 400.0 2.5 to 200.0 6.0 DPV Si et al. 2012

Graphene–chitosan/GCE 0.75 0.75 1.0 to 400.0 1.0 to 300.0 7.0 DPV Yin et al. 2011

[Cu(Sal-β-Ala)(3,5-DMPz)2]/MWCNTs/GCE 3.5 1.46 5.0 to 215.0 5.0 to 370.0 6.0 DPV Alshahrani et al. 2014

CNx/GCE 2.71 1.20 0.2 to 1000.0 0.1 to 1000.0 4.7 LSV Dong et al. 2008

MWCNT–NF–PMG/GCE 31.0 18.1 49.8 to 3650.8 49.8 to 3921.0 1.5 CV Umasankar et al. 2011

RGO–MWNTs 1.8 2.6 5.5 to 540.0 8.0 to 391.0 7.0 DPV Hu et al. 2012

IL/CPE ---- 4.0 ---- 10.0 to 1500.0 7.0 DPV Zhang & Zheng, 2007

Poly(benzydamine)/CPE 5.79 3.78 10.0 to 60.0 10.0 to 60.0 7.4 CV Sukanya et al. 2020

Poly(benzoguanamine)/CPE 2.55 3.84 10.0 to 90.0 10.0 to 90.0 7.4 CV Chetankumar et al. 2019

Poly(glycine)/CPE 0.16 0.20 20.0 to 180.0 20.0 to 180.0 7.4 CV Harisha et al. 2018

Poly(direct yellow 11)/MPG 0.11 0.16 10.0 to 60.0 10.0 to 70.0 7.4 CV Chetankumar et al. 2020

Poly(oPD)/MCPE 1.1 2.1 10.0 to 90.0 10.0 to 90.0 7.4 CV Chetankumar & Swamy, 2019

ALR/GCE 0.126 0.132 0 to 80.0 0 to 110.0 7.4 DPV This work
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Concentration study

The concentration studies of both the targeted analytes

were carried out at ALR/GCE by ultra-sensitive DPV

technique. Figures 7a and 8a showed an increment in

the current signal due to the increase in concentration

of CC and HQ. The linearity graphs of Ipa versus con-

centration of CC and HQ were shown in insets Fig. 7b

and 8b, respectively. The linear regression equations ob-

tained are as follows:

Ipa μAð Þ ¼ 0:0386 C0 μM=Lð Þ

þ 0:7751; r2 ¼ 0:9931
� �

and

Ipa μAð Þ ¼ 0:0393 C0 μM=Lð Þ

þ 1:1810; r2 ¼ 0:9898
� �

for CC and HQ, respectively.

The limit of detection (LOD) and limit of quantifica-

tion (LOQ) were calculated by using Eqs. 3 and 4, where

S is the standard deviation of the six blank measure-

ments and M is the slope of the calibration graph (Wang

et al. 1994; Ganesh et al. 2018).

LOD ¼ 3S=M ð3Þ

LOQ ¼ 10S=M ð4Þ

The LOD values of CC and HQ were calculated to be

0.126 μM and 0.132 μM, respectively, which are rela-

tively lower than our own previous reports and available

recent literature reports as tabulated in Table 2 (Kumar

et al. 2017; He et al. 2014; Shen et al. 2017; Zheng et al.

2013; Wang et al. 2006; Zhang et al. 2015; Xu et al. 2015;

Lai et al. 2014; Ganesh & Swamy, 2016; Ganesh et al.

2017; Da-Silva et al. 2013; Qi & Zhang, 2005; Li et al.

2009; Yang et al. 2009; Ding et al. 2005; Zhao et al. 2009;

Peng & Gao, 2006; Wang et al. 2007a, 2007b, 2007c, Vilian

et al. 2014; Li et al. 2012; Si et al. 2012; Yin et al. 2011;

Alshahrani et al. 2014; Dong et al. 2008; Umasankar et al.

2011; Hu et al. 2012; Zhang & Zheng, 2007; Sukanya et al.

2020; Chetankumar et al. 2019; Harisha et al. 2018; Che-

tankumar et al. 2020; Chetankumar & Swamy, 2019).

Because of the similar oxidation potential, an individ-

ual determination of either CC or HQ in a binary mix-

ture is a task with high difficulty and these isomers

interfere each other in their simultaneous determination.

The interference study was performed by keeping the

concentration of one analyte constant and varying the

concentration of the other one by ultra-sensitive DPV

technique. We recorded the DPV in the absence of ana-

lyte (blank reading) to show there is no appearance of

oxidative current signal at ALR/GCE at zero concentra-

tion of the analyte. Figure 9a shows that as the concen-

tration of CC was varied in a linear range of 0.0 to 100.0

μM by keeping the HQ concentration constant (20.0

μM), we can observe an increase in peak current due to

Fig. 9 a DPVs of varying concentrations of CC in presence of 20.0 μM HQ at ALR/GCE. b Linear plot of Ipa versus concentration of CC
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an increase in the concentration of CC only. In case of

HQ too, the concentration was increased in a linear

range of 0.0 to 100.0 μM and that of CC was kept con-

stant (20.0 μM) as shown in Fig. 10a. From both Figs. 9a

and 10a, it can be clearly observed that the increase in

the current signal was due to the increase in concentra-

tion of any one of the analytes and the other one showed

constant signal which indicated that interference-free

simultaneous detection is possible at ALR/GCE elec-

trode. Moreover, in both insets Fig. 9b and 10b, the peak

current relationship with increasing concentration was

linear. Therefore, the results reflect a successful

interference-free and simultaneous determination of di-

hydroxy benzene isomers at ALR/GCE.

Sample analysis

As in the previous literature (Zhang et al. 2019; Alshik-

Edris et al. 2019), to assess the performance of the pro-

posed method for anti-interference determination of the

dihydroxy benzene isomers, the CC and HQ determin-

ation in tap water was tested and the obtained results

were tabulated in Tables 3 and 4, respectively. When a

known amount of CC was added to the tap water sample

containing HQ (10.0 μM), a recovery of 98.0 to 101.0%

was obtained. Similarly, when a known quantity of HQ

was added to the tap water sample containing CC (10.0

μM), a good recovery of 99.2 to 102.0 % was obtained.

Therefore, these results are evident for the analytical ap-

plicability of the proposed ALR/GCE.

Conclusion
In the present study, we demonstrated a simple and con-

venient way of modifying the glassy carbon electrode by

electropolymerization of allura red by cyclic voltam-

metric method. The fabricated working electrode

showed minimization of over potential and excellent

electrocatalytic activity towards the discrimination of di-

hydroxy benzene isomers’ oxidative signals, which is

practically impossible in bare working electrode. The im-

pact of scan rate and pH study reveals the adsorption-

controlled kinetics with equal number of protons and

electrons transfer. The anti-interference study reflects

Fig. 10 a DPVs of varying concentrations of HQ in presence of 20.0 μM CC at ALR/GCE. b Linear plot of Ipa versus concentration of HQ

Table 3 Anti-interference results obtained for CC in tap water sample containing HQ at ALR/GCE (n = 5)

Sample number Tap water containing HQ (μM) CC added (μM) CC found (μM) Recovery (%)

1 10 15 14.7 98.0

2 10 20 20.2 101.0

3 10 25 24.9 99.6

4 10 30 30.2 100.67

Ganesh et al. Journal of Analytical Science and Technology           (2021) 12:20 Page 10 of 14



that the current signal of catechol and hydroquinone

were independent and depend on their individual con-

centration in a binary mixture. The analytical application

of the proposed electrochemical sensor was investigated

by employing it to the water sample analysis by adding a

known quantity of one analyte by keeping the other one

constant, which yielded a satisfactory recovery results.

Overall, a sensitive, selective, cost-effective, analytically

applicable and reproducible electrochemical sensor was

fabricated for the electroanalysis of dihydroxy benzene

isomers.
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