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Abstract

Recent high-throughput single-cell sequencing approaches have been transformative for 
understanding complex cell populations, but are unable to provide additional phenotypic 
information, such as protein levels of cell-surface markers. Using oligonucleotide-labeled 
antibodies, we integrate measurements of cellular proteins and transcriptomes into an efficient, 
sequencing-based readout of single cells. This method is compatible with existing single-cell 
sequencing approaches and will readily scale as the throughput of these methods increase.

The unbiased and extremely high-throughput nature of modern scRNA-seq approaches has 
proved invaluable for describing heterogeneous cell populations1–3. Prior to the use of 
single-cell genomics, detailed definitions of cellular states were routinely obtained via 
carefully curated panels of fluorescently labeled antibodies directed at cell surface proteins, 
which are often reliable indicators of cellular activity and function4. Recent studies5,6 have 
demonstrated the potential for coupling ‘index-sorting’ measurements with single-cell 
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transcriptomics, enabling the mapping of immunophenotypes onto transcriptomically-
derived clusters. However, massively parallel approaches based on droplet microfluidics1–3, 
microwells7,8 or combinatorial indexing9,10 do not utilize cytometry for cellular isolation, 
and therefore cannot couple protein information with cellular transcriptomes, representing a 
significant limitation for these approaches. Targeted methods to simultaneously measure 
transcripts and proteins in single cells are limited in scale and/or can only profile a few 
genes and proteins in parallel11–15 (Supplementary Table 1).

Here we describe Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-
seq), a method that combines highly multiplexed antibody-based detection of protein 
markers together with unbiased transcriptome profiling for thousands of single cells in 
parallel. We demonstrate that the method is readily adaptable to two different high-
throughput single-cell RNA sequencing applications and show by example that it can 
achieve a more detailed characterization of cellular phenotypes than scRNA-seq alone.

We hypothesized that a DNA oligonucleotide conjugated to an antibody could be measured 
by sequencing as a digital readout of protein abundance. We conjugated antibodies to 
oligonucleotides designed to 1) be captured by oligo dT-based RNA sequencing library 
preparations, 2) contain a barcode sequence for identification the antibody and 3) allow 
subsequent specific amplification by PCR (Fig 1a). We adopted a commonly used 
streptavidin-biotin interaction to link the 5’ end of oligos to antibodies, and included a 
disulfide link, which allows the oligo to be released from the antibody in reducing 
conditions (Supplementary Fig. 1a). The antibody-oligo complexes are incubated with 
single-cell suspensions using conditions comparable to staining protocols used in flow 
cytometry, after which cells are washed to remove unbound antibodies and processed for 
scRNA-seq. In this example, we encapsulated single cells into nanoliter-sized aqueous 
droplets in a microfluidic apparatus designed to perform Drop-seq1 (Fig. 1b). After cell lysis 
in droplets, both cellular mRNAs and antibody-derived oligos anneal to polyT-containing 
Drop-seq microparticles (Supplementary Fig. 1b,c) via their 3’ polyA tails. A unique 
barcode sequence on the oligos attached to the Drop-seq microparticle indexes the cDNA of 
mRNAs and antibody-oligos of each co-encapsulated cell in the reverse transcription 
reaction. The amplified antibody-derived tags (hereafter referred to as ADTs) and cDNA 
molecules can be separated by size and converted into Illumina-sequencing-ready libraries 
independently (Supplementary Fig. 1c,d). Importantly, the two library types are designed to 
be sequenced together, but because they are generated separately, their relative proportions 
can be adjusted in a pooled single lane to ensure that the appropriate sequencing depth is 
obtained for each library.

To assess the ability of our method to distinguish single cells based on surface protein 
expression, we designed a proof-of-principle ‘species-mixing’ experiment, leveraging a 
species-specific and highly expressed protein marker CD29 (Integrin beta-1). A mixed 
suspension of human (HeLa) and mouse (4T1) cells was incubated with a mixture of DNA-
barcoded anti-mouse and anti-human CD29 antibodies. After washing to remove unbound 
antibodies, we performed Drop-seq1 to investigate the concordance between species of 
origin of the transcripts and ADTs (Fig. 1c–e, Supplementary Fig. 2a). We deliberately used 
a high cell concentration to obtain high rates of multiplets (droplets containing two or more 
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cells), to correlate mixed-species transcriptome data with mixed-species ADT signals from 
individual droplets. 97.2% of droplets that were identified as having contained either human, 
mouse, or mixed cells by transcriptome (Fig. 1c), had the same species classification by 
ADT counts (Fig. 1d). Cell counts based on RNA or ADT are highly correlated between 
both methods (Fig. 1e), demonstrating low drop-out rate of ADT signals. We performed the 
same experiment using a commercially available system from 10× Genomics and obtained 
comparable results (Supplementary Fig. 2b–e).

We next wanted to characterize the quantitative nature of our CITE-seq ADT protein 
readout. Flow cytometry is the gold-standard for identification and enumeration of cell 
subsets based on quantitative differences in surface markers16,17. We therefore aimed to 
benchmark the sensitivity of CITE-seq protein detection to flow cytometry using immune 
cells as a model system. We prepared a set of CITE-seq antibodies directed against markers 
commonly used in flow cytometry to identify and discriminate relevant immune sub-
populations. We performed multiparameter flow cytometry (Fig. 2a) and CITE-seq (Fig. 2b) 
experiments using the same set of antibodies on aliquots of the same pool of peripheral 
blood mononuclear cells. Using ADT levels we were able to construct cytometry-like ‘bi-
axial’ gating plots (Fig. 2b) and compare these qualitatively and quantitatively to the flow 
cytometry data (Fig. 2a). Cell distribution profiles based on expression of marker proteins 
associated with various T cell subsets, B cells, plasmacytoid, myeloid dendritic cells and 
monocytes were remarkably similar (Fig. 2a,b; Supplemental Fig. 3a,b).

Next, we asked whether relative quantitative differences in expression levels observed by 
flow cytometry can be observed by CITE-seq. For this, we focused on the marker CD8a, 
since it exhibits a wide quantitative range of levels across immune cell populations. We 
incubated cord blood mononuclear cells (CBMCs) with CITE-seq antibody conjugates and 
fluorophore-conjugated antibodies, so that some CD8a epitopes on each cell would be 
labeled by fluorophore and some by oligo. Cells were sorted (by fluorescence-activated cell 
sorting, FACS) into separate pools based on CD8a fluorescence (CD8a very high (+++), 
CD8a high (++), CD8a intermediate(+) and CD8a low(+/−); Fig. 2c,d, Supplementary Fig. 
3c). Each pool was then split and separately reanalyzed by flow cytometry and CITE-seq. 
For each pool defined by FACS, similar relative expression levels of CD8a were observed by 
both methods (Fig. 2e,f; Suppementary Fig. 3d,e). We conclude that CITE-seq ADT levels 
are consistent with gold-standard flow cytometry and can therefore enable high-resolution 
immunophenotyping in concert with transcriptomics.

We next aimed to perform a broad immunophenotypic and transcriptomic characterization of 
a complex immune cell population using CITE-seq. The immune system has been 
extensively profiled by cell surface markers16 and scRNAseq3,6,18, with both methods 
reliably identifying the same cell types at appropriate proportions. It is therefore an ideal 
system to validate the multimodal readout of CITE-seq. We prepared a CITE-seq panel of 13 
well-characterized monoclonal antibodies that recognize cell-surface proteins routinely used 
as markers for immune-cell classification (Supplementary Table 2). Measuring protein 
abundance by antibodies can be complicated by non-specific binding, resulting in higher 
background and/or false positive results. To estimate background of antibody binding within 
experiments, we developed a low-level ‘spike-in’ control. We reasoned that a rare ‘spiked-
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in’ population of murine cells could be easily distinguished transcriptomically but should 
not cross-react with our anti-human antibodies, enabling us to define background ADT 
levels directly from the data. We therefore spiked a low number of mouse fibroblasts (~4% 
3T3) into our CBMCs, incubated the cell pool with our CITE-seq antibody panel and ran the 
10× Genomics single cell workflow to measure cDNA and ADT profiles from 8,005 cells in 
total. Unsupervised graph-based clustering based on RNA expression revealed recognizable 
cell types indicated by expression of select marker genes (Fig. 3a, Supplementary Fig. 4). 
Murine cells clustered separately, and also exhibited low ADT counts for each marker, 
allowing us to set a baseline for signal vs noise to more clearly delineate positive from 
negative cell populations (Supplementary Fig. 5a,b). Through this thresholding step, we 
identified three antibody-oligo conjugates with no specific binding (i.e., no signal over 
background threshold) and excluded these from further analysis (Supplementary Fig. 5b).

We detected strong ADT enrichment for different markers in the correct immune 
populations: We observe CD3e within the T cell cluster (Fig. 3b), and CD4 and CD8a in 
largely non-overlapping T cell subpopulations (Fig. 3b). We observe CD19 ADTs almost 
exclusively in the B cell cluster (Fig. 3b), CD56 and CD8a ADTs in the NK cluster, and 
CD11c, CD14 in the monocyte and dendritic cell cluster, together with CD16, also observed 
in the NK cells (Fig. 3b). We could also correctly identify a rare precursor cell population 
present at less than 2% in cord blood (CD34+ cells; Fig 3b). We observed that the ADT 
levels per-cell exhibited higher counts than mRNA-levels of the same genes and were less 
prone to ‘drop-out’ events. Consistent with this, we find low correlations between mRNA 
and ADT on a single cell basis and higher correlation when averaging expression within 
clusters (Supplementary Fig. 6). We used the ADT levels and clustering information based 
on transcriptome to construct multimodal CITE-seq ‘bi-axial’ gating plots, revealing similar 
profiles that are well-established by flow cytometry (Fig. 3c, Supplementary Fig. 5c). For 
example, we could resolve strong anti-correlation of CD4 and CD8a ADT levels in T cells 
and quantitative differences in marker expression between subsets, such as expression 
differences of CD8a between NK and T cells (blue and red cells; Fig. 3c) or CD4 between 
monocytes and T cells (yellow and turquoise cells; Fig. 3c). In addition to clustering cells 
based on their transcriptome, we performed clustering based on ADT levels, resulting in 
clear and consistent cell type separation (Supplementary Fig. 7).

We next asked whether CITE-seq could enhance our characterization of immune cell 
phenotypes, compared to scRNA-seq data alone. We noted an opposing gradient of CD56 
and CD16 ADT levels within our transcriptomically-derived NK cell cluster, potentially 
corresponding to CD56bright and CD56dim subsets19,20 (Fig. 3b, Supplementary Fig. 6a), and 
therefore sub-divided our NK cell cluster based on CD56 ADT levels (Fig. 3d). When 
comparing the molecular profiles of these groups, we observed protein and RNA changes 
that were highly consistent with literature19,20. We observed an apparent complementarity 
between levels of CD16 (Fig. 3e), and to a lesser extent of CD8a ADTs (Supplementary Fig. 
6b), compared to CD56 ADTs within these two subsets. For 11 genes that have been 
previously characterized as differentially expressed within these subtypes19–21, we detected 
up or downregulation consistent with the literature in 10 cases, including GZMB, GZMK 
and PRF1. This illustrates the potential for integrated and multimodal analyses to enhance 
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discovery and description of cellular phenotypes, particularly when differentiating between 
cell populations with subtle transcriptomic differences.

The ability to layer additional molecular measurements on top of scRNA-seq data represents 
an exciting advance and growing challenge for the single cell community. CITE-seq enables 
multimodal analysis of single cells at the scale afforded by droplet-based single-cell 
sequencing approaches. We demonstrate the value of multimodal analysis to reveal 
phenotypes that could not be discovered by using scRNA-seq alone, and also envision CITE-
seq enabling new studies of post-transcriptional gene regulation at the single cell level. In 
contrast to flow and mass cytometry, detection of oligo-barcoded antibodies is not limited by 
signal collision; a 10 nucleotide sequence can easily encode more barcodes than there are 
human proteins, enabling the potential for large-scale immunophenotyping with panels of 
tens to hundreds of antibodies. In addition, we envision that mild cell permeabilization and 
fixation procedures that are used for intracellular cytometry assays will also be compatible 
with CITE-seq, which may significantly expand the number of markers and biological 
questions that can be interrogated. A modified version of CITE-seq in which only ADTs are 
analyzed on a massively parallel scale without capturing cellular mRNAs (cytometry by 
sequencing) can also be envisaged. A conceptually similar approach, Abseq, has recently 
been described22 which, in contrast to CITE-seq, focuses on the detection of single cell 
protein levels using DNA barcodes using highly advanced custom microfluidics.

Finally, we have shown that the CITE-Seq is fully compatible with a commercially-available 
single-cell instrument (10× Genomics) and should be readily adaptable to other droplet, 
microwell and combinatorial indexing-based high-throughput single-cell sequencing 
technologies2,7–10 with no, or minor customizations. We believe that CITE-seq has the 
potential to advance single-cell biology by layering an extra dimension on top of single-cell 
transcriptome data.

ONLINE METHODS

Conjugation of Antibodies to DNA-barcoding oligonucleotides

Highly specific, flow cytometry tested monoclonal antibodies (see below) were conjugated 
to oligonucleotides containing unique antibody identifier sequences and a polyA tail. We 
adopted a commonly used streptavidin-biotin interaction to link oligos to antibodies23. 
Antibodies were streptavidin labelled using the LYNX Rapid Streptavidin Antibody 
Conjugation Kit (Bio-Rad, USA), according to manufacturer’s instructions with 
modifications. Specifically, we labeled 15 µg of antibody with 10 µg of streptavidin. At this 
ratio, an average of two streptavidin tetramers will be conjugated per antibody molecule, 
which results in 8 binding sites for biotin on each antibody, on average. DNA 
oligonucleotides with a 5’ amine modification were purchased at IDT (USA) and 
biotinylated using NHS-chemistry according to manufacturer’s instructions (EZ Biotin S-S 
NHS, Thermo Fisher Scientific, USA). The disulfide bond allows separation of the oligo 
from the antibody with reducing agents. Separation of the oligo from the antibody may not 
be needed for all applications. Excess Biotin-NHS was removed by gel filtration (Micro 
Biospin 6, Bio-Rad) and ethanol precipitation. Streptavidin-labeled antibodies were 
incubated with biotinylated oligonucleotides in equimolar ratio (assuming two streptavidin 
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tetramers per antibody on average) overnight at 4°C in PBS containing 0.5M NaCl and 
0.02% Tween. Unbound oligo was removed from antibodies using centrifugal filters with a 
50KDa MW cutoff (Millipore, USA). Removal of excess oligo was verified by 4% agarose 
gel electrophoresis (Supplementary Fig. 1a). Antibody-oligo conjugates were stored in PBS 
supplemented with sodium azide (0.05%) and BSA (1 µg/µl) at 4°C. See supplementary 
protocol for a more detailed description.

List of Antibodies used for CITE-seq

See Supplementary Table 2 for list antibodies, clones and barcodes used for CITE-seq.

Antibody-oligo sequences

We leverage the DNA-dependent DNA polymerase activity of commonly used reverse 
transcriptases24 to convert CITE-seq DNA oligonucleotides into cDNA during reverse 
transcription together with mRNAs. The DNA-dependent DNA polymerase activity of 
MMLV reverse transcriptases is well established. All SMART (Switching Mechanism at 5' 
end of RNA Template) library prep protocols (e.g. commercialized by Clontech) rely on this 
activity: The RT enzyme switches at the end of the RNA template to a template switch oligo 
(TSO), which is mainly DNA, for further cDNA synthesis. This activity has been shown to 
be highly sensitive and reproducible. Single cell RNA-seq protocols (including 10× 
Genomics and Drop-seq) also entirely rely on this activity to append a PCR handle to the 
5’end of full length cDNAs which is used for subsequent amplification. Depending on the 
application the PCR-amplification handle in the antibody-barcoding oligos must be changed 
depending on which sequence read is used for RNA readout (e.g. 10× Single Cell 3’ v1 uses 
read 1 while Drop-seq and 10× Single Cell 3’ v2 use read 2). Our proof-of-principle human/
mouse antibody-barcoding oligonucleotide designs included UMIs, which are redundant for 
Drop-seq and 10× protocols due to the UMI addition to the cDNA at reverse transcription. 
UMIs on the antibody-conjugated oligonucleotide may be useful for other iterations of the 
method where UMIs are not part of the scRNA-seq library preparation protocol.

Species mixing – Drop-seq (containing Nextera read2 handle)

BC6: /5AmMC12/
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCAATNNBAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

BC12: /5AmMC12/
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTGTANNBAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

Species mixing – 10× (Single cell 3’ version 1, Nextera read1 handle)

BC6: /5AmMC12/
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCCAATNNBAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

BC12: /5AmMC12/
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGTANNBAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA
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CBMC profiling – (Drop-seq and 10× v2 compatible oligos, containing TruSeq small RNA 
read 2 handle)

v2_BC1: /5AmMC12/
CCTTGGCACCCGAGAATTCCAATCACGBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC2: /5AmMC12/
CCTTGGCACCCGAGAATTCCACGATGTBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC3: /5AmMC12/
CCTTGGCACCCGAGAATTCCATTAGGCBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC4: /5AmMC12/
CCTTGGCACCCGAGAATTCCATGACCABAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC6: /5AmMC12/
CCTTGGCACCCGAGAATTCCAGCCAATBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC9: /5AmMC12/
CCTTGGCACCCGAGAATTCCAGATCAGBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC10: /5AmMC12/
CCTTGGCACCCGAGAATTCCATAGCTTBAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAA

v2_BC12: /5AmMC12/
CCTTGGCACCCGAGAATTCCACTTGTABAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC8: /5AmMC12/
CCTTGGCACCCGAGAATTCCAACTTGABAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC11: /5AmMC12/
CCTTGGCACCCGAGAATTCCAGGCTACBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC13: /5AmMC12/
CCTTGGCACCCGAGAATTCCAAGTCAABAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

v2_BC14: /5AmMC12/
CCTTGGCACCCGAGAATTCCAAGTTCCBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA
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v2_BC5: /5AmMC12/
CCTTGGCACCCGAGAATTCCAACAGTGBAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

Cell ‘staining’ with DNA-barcoded antibodies for CITE-seq

Roughly 500,000 cells were resuspended in cold PBS containing 2% BSA and 0.01% Tween 
and filtered through 40 µm cell strainers (Falcon, USA) to remove potential clumps and 
large particles. Cells were then incubated for 10 minutes with Fc receptor block (TruStain 
FcX, BioLegend, USA) to block non-specific antibody binding. Subsequently cells were 
incubated in with mixtures of barcoded antibodies for 30 minutes at 4°C. Antibody 
concentrations were 1 µg per test as recommended by the manufacturer (Biolegend, USA) 
for flow cytometry applications. Cells were washed 3× by resuspension in PBS containing 
2% BSA and 0.01% Tween, followed by centrifugation (~480g 5 minutes at 4°C) and 
supernatant exchange. After the final wash cells were resuspended at appropriate cell 
concentration in PBS for Drop-seq1 or 10× Genomics3 applications. See supplementary 
protocol for a more detailed description.

Drop-seq – CITE-seq

Drop-seq was performed as described1 with modifications. For the human/mouse mixing 
experiment cells were loaded at a concentration of 400 cells/µL to achieve a high doublet 
rate. For PMBC experiments cells were loaded at 150 cells/µL. cDNA was amplified for 10 
cycles and products were then size separated with Ampure Beads (Beckman Coulter, USA) 
into <300 nt fragments containing antibody derived tags (ADTs) and >300 nt fragments 
containing cDNAs derived from cellular mRNA. ADTs were amplified 10 additional cycles 
using specific primers that append P5 and P7 sequences for clustering on Illumina flowcells. 
Alternatively, antibody tags can be amplified directly from thoroughly washed Drop-seq 
beads after RNA-cDNA amplification using specific primers for the antibody oligo and 
Drop-seq bead-RT oligo. cDNAs derived from mRNA were converted into sequencing 
libraries by tagmentation as described1. After quantification, libraries were merged at 
appropriate concentrations (10% of a lane for ADT, 90% cDNA library). Sequencing was 
performed on a HiSeq 2500 Rapid Run with v2 chemistry per manufacturer’s instructions 
(Illumina, USA). See supplementary protocol for a more detailed description.

10× – CITE-seq

The 10× single cell run was performed according to the manufacturer’s instructions (10× 
Genomics, USA) with modifications. For the Human/Mouse mixing experiment (ran on 
Single Cell 3’ version 1) ~17,000 cells were loaded to yield around ~10,000 cells with an 
intermediate/high doublet rate. For CBMC profiling (ran on Single Cell 3’ version 2), 
~7,000 cells were loaded to obtain a yield of ~4,000 cells. For CBMC profiling we spiked-in 
mouse cells at low frequency (~4%). This allowed us to draw antibody signal-to-noise 
cutoffs and allowed us to estimate the true doublet rates (4%) in our experiments, and 
compare these to the estimates provided by the equipment manufacturer (~3.1%) (see 
below). cDNA was amplified for 10 cycles and products were then size separated with 
Ampure Beads (Beckman Coulter, USA) into <300 nt fragments containing antibody 
derived tags (ADTs) and >300 nt fragments containing cDNAs derived from cellular mRNA. 
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ADTs were amplified 10 additional cycles using specific primers that append P5 and P7 
sequences for clustering on Illumina flowcells. A sequencing library from cDNAs derived 
from RNA was generated using a tagmentation based approach akin to that used in Drop-seq 
for the Single Cell 3’ v1 experiments, or according to manufacturer’s instructions for the 
Single Cell 3’ v2 experiments. ADT and cDNA libraries were merged and sequenced as 
described above. See supplementary protocol for a more detailed description.

Cell culture

HeLa (human), 4T1 (mouse) and 3T3 (mouse) cells were maintained according to standard 
procedures in Dulbecco’s Modified Eagle’s Medium (Thermo Fisher, USA) supplemented 
with 10% fetal bovine serum (Thermo Fisher, USA) at 37°C with 5% CO2. For the species 
mixing experiment, HeLa and 4T1 cells were mixed in equal proportions and incubated with 
DNA barcoded CITE-seq antibodies as described above. For the low frequency mouse spike-
ins ~5% 3T3 cells were mixed into CBMC pool before performing CITE-seq.

Blood mononuclear cells

Cord blood mononuclear cells (CBMCs) were isolated from cord blood (New York Blood 
Center) as described25. Cells were kept on ice during and after isolation. Peripheral blood 
mononuclear cells were obtained from Allcells (USA).

Comparing flow cytometry and CITE-seq

Cells were stained with a mixture of fluorophore (CD8a-FITC, Biolegend, USA) labelled 
antibodies and CITE-seq oligo labelled antibodies from the same monoclonal antibody clone 
(RPA-T8) targeting CD8a, at concentrations recommended by the manufacturer (1ug per 
test, Biolegend, USA). Cells were also stained with Anti-CD4-APC antibody (RPA-T4, 
Biolegend, USA). Cells were sorted into pools of different CD8a expression levels using the 
Sony SH800 cell sorter, operated per manufacturer’s instructions. Pools were then split into 
two and reanalyzed by flow cytometry using Sony SH800 or processed for CITE-seq using 
Drop-seq as described above. Flow cytometry data was plotted using FlowJo v9 (USA).

Multiparameter flow cytometry

Cells were stained with the following mouse anti-human antibodies, purchased from BD 
Biosciences (USA): CD3e Hilyte 750 Allophycocyanin (H7APC), CD4 Brilliant Blue (BB) 
630, CD8a Phycoerythrin (PE), CD14 Brilliant Violet (BV) 750, CD19 BV570, CD11c 
Cyanin5 PE, CD2 Brilliant Ultraviolet (BUV) 805, and CD57 BB790. After washing cells in 
PBS and fixing in 0.5% paraformaldehyde, samples were acquired on a BD Symphony A5 
flow cytometer and data was analyzed using FlowJo v9 (USA).

Computational methods

Single cell RNA data processing and filtering—The raw Drop-seq data was 
processed with the standard pipeline (Drop-seq tools version 1.12 from McCarroll lab). 10× 
data from the species mixing experiment was processed using Cell Ranger 1.2 using default 
parameters and no further filtering was applied. 10× data from CBMC experiments (v2 
chemistry) was processed using the same pipeline as Drop-seq data. Reads were aligned to 
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the human reference sequence GRCh37/hg19 (CD8a FACS comparison), or an hg19 and 
mouse reference mm10 concatenation (species mixing experiment, CBMCs). Drop-seq data 
of the species mixing experiment was filtered to contain only cells with at least 500 UMIs 
mapping to human genes, or 500 UMIs mapping to mouse genes. For the CD8a FACS 
comparison data, we kept only cells with PCT_USABLE_BASES >= 0.5 (fraction of bases 
mapping to mRNA, this is part of the metrics outputted by the default processing pipeline). 
We further removed any cells with less than 200 genes detected and cells with a total 
number of UMIs or genes (in log10 after adding a pseudo-count) that is more than 3 
standard deviations above or below the mean. The same filtering strategy was used for the 
CBMC data, the only difference being a gene threshold of 500.

Single cell ADT data processing and filtering—Antibody and cell barcodes were 
directly extracted from the reads in the fastq files. Since the antibody barcodes were 
sufficiently different in the species mixing experiment, we also counted sequences with 
Hamming distance less than 4. For the CBMCs we counted sequences with Hamming 
distance less than 2. Reads with the same combination of cellular, molecular and antibody 
barcode were only counted once.

We kept only cells that passed the RNA-specific filters and had a minimum number of total 
ADT counts (species mixing: 10, CD8a FACS comparison: 1, CBMC: 50).

CBMC RNA normalization and clustering—After read-alignment and cell filtering, 
we assigned the species to each cell barcode. If more than 90% of UMI counts were coming 
from human genes, the cell barcode was considered to be human. If it was less than 10% the 
assigned species was mouse. Cell barcodes in between were considered mixed species. The 
resulting assignment was human: 8005, mouse: 579, mixed: 33. Unless stated otherwise, 
analysis was performed on only the human cells and genes from the human reference 
genome.

We converted the matrix of UMI counts into a log-normalized expression matrix x with 

, where ci,j is the molecule count of gene i in cell j and mj is the sum 
of all molecule counts for cell j. After normalization each gene was scaled to have mean 
expression 0 and variance 1.

We identified 556 highly variable genes by fitting a smooth line (LOESS, span=0.33, 
degree=2) to log10(var(UMIs)/mean(UMIs)) as a function of log10(mean(UMIs)) and 
keeping all genes with a standardized residual above 1 and a detection rate of at least 1%.

To cluster the cells, we performed dimensionality reduction followed by modularity 
optimization. We ran principal component analysis (PCA) using the expression matrix of 
variable genes. To determine the number of significant dimensions, we looked at the percent 
change in successive eigenvalues. The last eigenvalue to feature a reduction of at least 5% 
constituted our significant number of dimensions (in this case the number was 13). For 
clustering we used a modularity optimization algorithm that finds community structure in 
the data26. The data is represented as a weighted network with cells being nodes and squared 
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Jaccard similarities as edge weights (based on Euclidian distance of significant PCs and a 
neighborhood size of 40 (0.5% of all cells)). The clustering algorithm, as implemented in the 
“cluster_louvain” function of the igraph R package, find a partitioning of the cells with high 
density within communities as compared to between communities. For 2D visualization we 
further reduced the dimensionality of the data to 2 using t-SNE27,28.

CBMC ADT normalization and clustering—Since each ADT count for a given cell can 
be interpreted as part of a whole (all ADT counts assigned to that cell), and there are only 13 
components in this experiment, we treated this data type as compositional data and applied 
the centered logratio (CLR) transformation(Aitchison 1989). Explicitly, we generated a new 
CLR-transformed ADT vector y for each cell where 

 and x is the vector of ADT counts 
including one pseudocount for each component, and g(x) is the geometric mean of x. We 
noticed that the ADT counts were on slightly different scales for the different antibodies, 
perhaps due to differences in antibody specificity and/or epitope abundance. To compensate 
for the resulting shifts in the non-specific baseline ADT signal, we examined the density 
distribution of the CLR-transformed ADT counts of all antibodies separately for human and 
mouse cells (Supplementary Fig. 5a,b). For each ADT we determined the mean and variance 
of the mouse cells and defined the species-independent cutoff (separating ‘off’ state from 
‘on’ state where protein is present) to be one standard deviation larger than the mean.

To cluster cells based on ADT counts, the same general approach as for the RNA data was 
taken, except no dimensionality reduction was performed. Instead we subtracted the mouse-
derived cutoffs from the CLR-transformed ADT counts for each antibody. Cell-to-cell 
weights were squared Jaccard similarities based on Euclidean distance and neighborhood 
size of 0.5% of the total number of cells.

Estimation of doublet rate using low frequency mouse spike-in—Spiking-in 
mouse cells at low frequency allowed us to estimate the true doublet rates (4%) in our 
CMBC profiling experiment, and compare these to the estimates provided by the equipment 
manufacturer (~3.1%). For estimation of the doublet rate in our experiments we modeled the 
droplet cell capture process as a Poisson distribution with a loading rate lambda and a fixed 
mouse fraction of 6.5%. We optimized lambda so that simulated data would most closely 
match the observed species distribution. The resulting lambda was 0.068 and the doublet rate 
(fraction of droplets with more than one cell of all droplets with at least one cell) observed in 
the simulations was 4%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CITE-seq enables simultaneous detection of single cell transcriptomes and protein 
markers

(a) Illustration of the DNA-barcoded antibodies used in CITE-seq. (b) Schematic 
representation of CITE-seq in combination with Drop-seq1. Cells are incubated with 
antibodies, washed and passed through a microfluidic chip where a single cell and one bead 
are occasionally encapsulated in the same droplet. After cell lysis mRNAs and antibody-
oligos anneal to oligos on Drop-seq beads, linking cell barcodes with cellular transcripts and 

antibody-derived oligos. (c – e) Analysis of mixtures of mouse and human cells that were 
incubated with oligo-tagged-antibodies specific for either human or mouse cell-surface 

markers (integrin beta CD29) and processed by Drop-seq. (c) Quantification of the number 
of human and mouse transcripts associating to each cell barcode. Green: >90% human reads, 

Red: >90% mouse reads, Blue: >10% human and mouse (multiplet). (d) Quantification of 
antibody tags (ADTs) associated with each cell barcode. Points are colored based on species 

classifications using transcripts in (c). (e) Quantification of human, mouse or mixed-cell 
barcodes based on RNA transcripts, or ADTs.
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Figure 2. Qualitative and quantitative comparison between CITE-seq and flow cytometry

(a–b) Comparison of qualitative readout of flow cytometry to CITE-seq. Aliquots of cells 
from the same pool were processed for flow cytometry (a) and CITE-seq (b). Functionally 
important immune subsets were selected based on their established flow cytometry 
expression patterns and their relative frequencies compared to the entire population, and 

within the CD3e, CD4 and CD8a positive subsets. (c) Illustration of experiment for relative 

quantitative comparison of flow cytometry and CITE-seq. (d) Profile of CD4 and CD8a 
fluorescence in CBMCs. Colored boxes are gates set to sort cells with different levels of 

CD8a expression. (e) Flow cytometry of cells sorted in panel d. Merged histograms of CD8a 

levels in the four different pools of cells. (f) CD8a levels of the different pools of cells sorted 
in panel d, as measured by CITE-seq. Merged histograms of four CITE-seq runs of the 
separate pools.
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Figure 3. CITE-seq allows detailed multimodal characterization of cord blood mononuclear cells

(a) Clustering of 8,005 CITE-seq single-cell expression profiles of CBMCs reveals distinct 
cell populations based on transcriptome. The plot shows a two-dimensional representation 
(tSNE) of global gene expression relationships among all cells. Major cell types in cord 
blood can be discerned based on marker gene expression (Supplementary Fig. 4). Putative 
doublets co-expressing multiple lineage markers (*) are indicated. The mouse control cell 

population was excluded from the clustering. (b) mRNA (blue) and corresponding ADT 
(green) signal for the CITE-seq antibody panel projected on the tSNE plot from panel a. 

Darker shading corresponds to higher levels measured. (c) Multimodal bi-axial plots. 
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Pairwise comparison of different ADT levels in single cells for select markers (see 
Supplementary Fig. 5c for all markers). ADT counts were centered log-ratio transformed 

and plotted with colors based on RNA clusters shown in panel a. (d–f) NK cells were split 
into CD56bright and CD56dim groups based on CD56 ADT levels. Histogram of CD56 (d) 

and CD16 (e) levels in the CD56bright and CD56dim groups. (f) Differential gene expression 
analysis between the CD56bright and CD56dim cells. Genes known from literature to be 
higher expressed in CD56bright are marked in red, genes known to be higher in CD56dim are 
marked in green.
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