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Abstract 

We propose a new estimator, ..e_*, of the multinomial parameter vector, 

and show that it is a better choice in most situations than the usual esti­

mator, ..e, (the vector of observed propor~ions). Using squared-error loss, 

we examine the risk functions (expected loss) of these estimators in three 

ways: (a) we compare the exact risk functions for selected small sample 

sizes; (b) we show the equivalence of p* and_e when the sample size tends 

towards infinity and the number of cells remains constant; (c) we appro­

ximate the risk functions in a novel asymptotic framework in which the num­

ber of cells is large and the number of observations per cell is moderate. 

These approximations reveal the general superiority of ..e,*·over fin large 

sparse multinomials. This novel asymptotic framework is also of interest 

in its own right, and may provide insight in other multinomial problems. 
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1. Introduction 

In the analysis of multinomial data, we frequently wish to provide 

a table of smoothed cell frequencies that can be used for other purposes, 

such as creating standardized rates, or that are more suitable for trans­

formation to the various linearizing scales such as. logarithms, logits or 

probits. For many of these purposes, the presence of zero observed counts 

in some of the cells creates serious obstacles. 

In the analysis of binomial data, much attention has been focused 

on devices which eliminate the problematic zero counts. Gart and Zweifel 

[1967] discuss adjustments to the observed cell counts for use in estimates 

of the logit, log (p/q), where pis the binomial probability. These .adjust­

ments are of special interest when the observed proportions, p and q, are 

either 0 or 1, and log {p/q) is either -m or+ m. They typically consist 

of adding a constant (such.as\ or 1) to each observed count, or to each 

zero observed count. Freeman and Tukey [1950] propose yet a different 

approach for use with the arc-sine transformation for variance stabilization. 

In the analysis of multinomially distributed, cross-classified data, 

zero observed counts create problems in the study of loglinear models. 

Goodman [1970, 1971] suggests the use. of techniques analo·gous to those 

for logit analysis in order to replace the logarithms and inverses of 

observed counts for parameter and variance estimation. He suggests adding 

\ count to every cell. In an earlier paper, Goodman [1964] suggested adding 

a count of 1 to each cell for estimating sums of reciprocals of cell pro­

babilities. Grizzle, Starmer and Koch [1969] and Johnson and Koch [1971] 

encounter a different, ·yet related, problem with zero counts. Their analysis 

of loglinear models relies upon a weighted least squares approach which 

requires non-zero counts. These authors replace zero counts 
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by 1/t where tis the total number of cells. Both the Goodman and 

Grizzle-Starmer-Koch suggestions are now widely used in practice. 

The above discussion suggests the need for a general purpose method 

for smoothing tables of observed counts, and thus for eliminating proble-

.·matic zeros. In this paper we discuss such a method, which we yiew in 

terms of the simultaneous estimation of all the multinomial cell probabi­

lities. Our method leads to a class of possible.multinomial estimators, 

and we discuss the properties of some of these estimators. 

1 

In the next two sections, we introduce our class of smoothed multi-

I 

riomial estimators using a heuristic geometrical argument and a two-stage 

Bayesian argument. 

The remaining sections of this paper are organized as follows. 

Section 4 gives two kinds of asymptotic results that help clarify the 

type and extent of the improvement in the estimation of ..e, that is ~ossible 

by use of the estimators developed in Section 2. In Section 5 we give some 

exact comparisons of the risk functions in small samples and small dimen­

sions. Section 6 considers some examples in which we apply a differential· 

smoothing technique that is not constant from sample to sample but depends 

• · on the sample itself. 

.. 
.. 

A striking conclusion of the asymptotic analyses of Section 4 is that 

the method we propose is often superior to the conunon practice of; adding \ 

to the observed count in each cell of a large, sparse table • 
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2. A Class of Smoothed Estimators 

Let!= (X
1

, ... ,Xt) have the multinomial distribution M(n,..e,) where 
t 

n = ~X. and ..e, = (p
1

, •.. ,p) is the underlying vector of cell probabilfties. 
i=l]. t 

The vector£ takes values in the parameter space, St' where 

t 

p . > 0 and ~ p . = 1 } 
]. - i=l ]. 

L ( -1 -1 -1) d h " " f s etc= t ,t , ... ,t enote t e center o t· 

We are concerned with the problem of the simultaneous estimation of 

all the components of .f: Let!= (T
1

, ••. ,Tt) denote an estimator of the 

vector parameter, .f: We adopt the squared distance .from,! to _e, as our loss 

function and we judge the ability of.'.!. to estimate ,.e by the expected value 

of the squared distance, i.e. we use the risk function given by 

R(_!_,.P) = nEJI,! - .E]l 2. (2.1) 

Other choices of the risk function R{_!,.£) might be appropriate for some 

problems. A more general risk function of which (2.1) is a special case is 

t 2 
E [ ~ ci(T. - p

1
.) ] 

i=l ]. 
( 2. 2) 

where the c.'s may be constants or they may depend on T, on n, or on both. 
i - 4 

We have chosen (2.1) as our risk function in part for simplicity and by 

symmetry considerations, and in part for mathematical convenience. This 

risk function has also been used in other multinomial studies and in studies 

on simultaneous estimation for the mean of the multivariate normal distri­

bution (see Efron and Morris, 1971 and 1972). It is important to note that 

the techniques suggested in this paper, both for generating estimators a.nd 

for evaluating their properties, can also be used for other risk functions 

such as (2.2). 
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'The usual estimator of .e_ is the vector of cell proportions 

-1 .f = n X. 

The risk function of _p_ is easily shown to be 

(2. 3) 

(2.4) 

Each p. is we.11-known to be the unique minimum variance unbiased 
l. 

estimate of pi. From this fact it follows that if_! is any unbiased 

estimator of 1!. (i.e. E(T) = _e) then the risk function of! is never smaller 

than the risk function of i for any .F. est. Thus, no improvement in the 

estimation of .e, can be achieved unless we leave the class of unbiased 

estimators. Furthermore, Johnson [1971] has shown that _p_ is an admissible 

estimator of .E. with respect to the risk function (2.1) so that there exists 

no biased estimator whose risk function is uniformly smaller than that of 

.f.· Nevertheless, as Johnson points out, the reason! is admissible is not 

because it has small risk everywhere; rather it is due to the smallness of 

its risk on the boundary of the parameter space. The risk of i is smallest 

when.e, has one component near unity. Hence one would expect to be able to 

improve uponf for those values of .e, that are not so extreme. We shall show 

here that there exist estimators which provide a substantial improvement 

over! away from the boundary, and that the region of improvement in the 

parameter space increases as t becomes large. 

To motivate our approach we make use of a heuristic geometrical argu­

ment which we adopt from one given by Stein [1962] for the problem of 

estimating the mean vector of a multivariate normal random variable. Let 

t denote a fixed vector of probabilities, i.e. t e St. A will be our choice 
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of "origin" within the parameter space; often we take 1 = _£, but in thiB 

development we let A denote a general choice of the origin. Now consider the 

triangle whose vertices are the three vectors i, ..e, and i• Let 8 denote the 

angle between the vectors _f-1!_ andl-..e.• Then, if .f. is constrained to li~ 

away from the boundary of St, it may be shown that 

(2.5) 

Because 8 is very nearly a right angle, there are points along the line 

connecting.£ and~ that are closer to .f. than is _i. This fact leads us to 
I 

consider estimates of ..e, that are formed by shrinking i towards the origin,~­

Any point along the line connecting i and~ may be represented as 

W,P_ + ( 1-w)~ for O ~ w ~ 1. (2. 6) 

Expression (2.5) also coincides with the class of Bayes estimators of ..e,, 

arrived at by using the family of Dirichlet prior distributions (e.g. see 

Good, 1965). If we write the Dirichlet prior density as 

t RA -1 
f(K) rr p. i /r(RA.), 

. 1 1. 1. 
1.= 

(2. 7) 

then (2.6) is the form of the posterior mean of ..e,, with 

w = n/(n+K). (2. 8) 

For a geometrical interpretation of K, see Fienberg and Holland [1972]. 

We denote estimators of ..e, that have the form (2.6) with w given by 

(2. 8) as _g(K,1). The risk function of s(K,1) is 

(2.9) 

,-'· ..... 
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Various choices of Kin (2.8) have appeared in the literature. For example, 

K = \t corresponds to adding a pseudo count of \t:Ai to each cell. When the 

Ai are all equal this adds% to each cell and we get the procedure suggested 

by Goodman. The estimator~ = _g(/n,£) is the unique, constant risk, m:inimax 

estimator of g (Steinhaus, 1957; Trybula, 1958). The risk of ~ is 

(/n/(/n+l))
2 

(1 - (1/t)). (2.10) 

The value of w that minimizes the expected squared distance froms to -E. 

is of the form (2.8) with 

(2.11) 

This value of K depends on the unknown..e,. In a previous paper (Fienberg and 

Holland, 1970), we suggested estimating this optimal value of K by its maxi­

mum likelihood estimate 

R = K{~,~) = 

2 
n -

t t t 

~ X7 - 2n ~ X.L + n
2 

~). 7 
i=l 

1 
i=l 

1 1 
i=l 

1 

Our proposed class of estimators of _e is then given by 

2.,* = s (R ,1) = [ n/ ( n+R) Ji + [R/ ( n+R) ]~ 

(2.12) 

(2.13) 

where R is given by (2.12) and the probability vector~ indexes the class as 

it ranges over St. We note that other estimates of K(p,~) are possible, and 

these may lead to further improvements in the estimation of .F: 
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3. Two-Stage Bayes Approach 

In Section 2 we used a geometrical argument to motivate our estimator of 

the multinomial probability ·vector.£· As we pointed out, the class of esti­

mators given by (2.6) coincides with the class of Bayes estimators of .P. where 

the prior density is Dirichlet. Following an argument of Good [1967], when 

! is multinomial with parameters n and ·p, we let£. have a Type II Dirichlet 

-' prior distribution with parameters (K,~ and density (2.7), and then let (K,t) 

have a Type III prior distribution with density function ~(K,!)· Then the 

... 

-
--
_, 

-
'-' 

... 

-
_, 

... 

.... 

-
Im 

conditional expectation of ..e, given!_ is 

where 

E(p\X) = wQ9_p_ + (1-w~))l{X) 

w(X) = n/(n+K(X)), - -

K~) = 
J~(!_,K,~)~(K,~)dK~ 

1 ' 
fn+KH{!,K,~)~(K,~)dKdA 

A. (X) = 
]. -

JAi ~{_!,K,~)~(K,~)dK~ 

J n!KH(X, K,?!._)~(K,~) dK~ . 

and H(!,K,?!._) is the Bayes factor 

H(X,K,~) 
- r (K) r (Xi +KA i) 

- r ( n+K) ~ r (KA i) 

(341) 

(3. 2) 

(3. 3) 

(3.4) 

(3. 5) 

We can use this result to provide additional motivation for our estimators 

..e.*· For suppose we can find a degenerate density ~(K,!) concentrated on a line 

so that A is a constant, and such the !(X) is given by (2.12). Then E<P.I!) = 2* 

and 2_* would be a Bayes estimator using a two-stage prior. The two-stage Bayes 

approach also suggests that we let~ depend on_! as well, and we consider this 

possibility in Section 6. 
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It is not likely that one can find a density ~(K,~) such that 

E~(,!) = 2_*, but this equality holds approximately for some~- Hence, we 

refer to our estimator p* as pseudo-Bayes rather than Bayes. There is other 

work along similar lines by Novick, Lewis and Jackson [1971] and Leonard [1972]. 

These authors transform binomial and multinomial data using arc-sine and log­

odds transformations. They assume multivariate normality for the transformed 

variables, and then use a general approach of Lindley [1971] for normally 

distributed random variables. Efron and Morris [1971,1972] have considered 

similar problems for the normal case in which the prior parameters are 

estimated from the marginal distribution of X. They refer to their esti­

mators as empirical Bayes . 
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4. Asymptotic Results 

The usual asymptotic approach to multinomial problems holds t fixed 

and lets the sample size n tend to infinity. We consider this approach in 

Section 4. 2. 

A different asymptotic approach lets both n and t tend to infinity, but 

at the same rate so that n/t remains constant. One reason for looking at this 

special type of asymptotics comes from practical considerations. Typically 

multinomial data comes in the formc£across-classification of discrete variables. 

In many situations, there are a large number of variables which could be used 

to cross-classify each observation, and if all of these variables were used the 

data would be spread too thinly over the cells in the resulting multi-dimen­

sional contingency table. Thus, if the investigator uses a subset of the 

variables to keep the average number of observations from becoming too small, 

he is in effect choosing t so that n/t is moderate. If tis large, 

then he is in the special type of asymptotic situation described in detail in 

Section 4.1. 

4.1 Special asymptotics·for sparse multinomials 

The asymptotic set-up that describes a sparse multinomial distribution 

lets t-+ co and sets n = 6 t where 6 = n/t is a constant. The dimension, t, 

varies in this asymptotic se~-up so that St, the parameter space, is also 

varying with t. Instead of having a single fixed probability vector, we must 

consider an infinite sequence of probability vectors whose dimensions increase 

without bound. This type of asymptotic set-up has been treated before, e.g. 

by Morris [1969]. We choose to simpliiy the structure of this situation by 

relating the elements of this sequence of probability vectors through the 

following device. Let p(•) denote a probability density function on [O,l]. 
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For each value oft we let 

pi= (1/t)p(i~%) i = 1,2, ••• ,t. (4.1) 

Strictly speaking p. defined in (4.1) should depend explicitly on t (i.e. pit) 
1 . ' 

but this excessive notation will not be used here. Furthermore, the vector 

_p_ = (p
1

, ... ,pt) defined from (4.1) is not necessarily an element of St since 
t 

~ pi need not be unity. However, if p(•) is sufficiently smooth (for example, 
i=l 
if p(•) has a continuous second derivative) then standard results in numerical 

integration (Davis and Rabinowitz, 1967) show that 

t 

~ p. 

i=l 
1 

t .!_:!i 1 l 
= 6 p(

1
~ ) (1/t) = J p(x)dx + o(t- ) = 

i=l 0 

This will be sufficient for our purposes. 

. -1 
1 + o(t ). 

Let A(·) be a second probability density on [O,l] and set 

Ai= (1/t)A(i~,) i = l, ... ,t. 

(4. 2) 

(4. 3) 

By assuming that both p(•) and A(•) have continuous second derivatives it 

follows that for all a,~~ 0 we have 

(4.4) 

Thus we can replace summations involving p. and A. by integrals involving 
1 1 

p(•) and A(·). For ex~ple, the risk for pin (2.4) may be expressed as follows 

t t 2 1 l 
= E p. - 6 p. = J p ( x) dx + o ( t - ) 

i=l i i=l 
1 

0 

l 2 -2. 
(1/t)J p (x)dx.+ o(t ). (4.5) 

0 

Henceforth, references to x, dx and the limits of integration will be omitted 

in all expressions using integrals, e.g • 
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R(E,_e) = 1 - (1/t}Jp
2 + o(t-

1
). (4. 6) 

Equation (4.6) is prototypic of our expansions of risk functions. The 

expansion for the risk function (2.9) of q(K,~) depends on how K behaves as 

a function oft. If K = ~t 

(
" L . 2 2 2 r 2 -1 

R _gbt,~) ,_e). = w
0 

+ (1-w
0

) D - (1/t)wQJ p + o(t ) (4. 7) 

where 

w
0 

= a/ (6~), n = aJ o" -p} 
2

• (4. 8) 

The reader should note that asp and A vary over all possible density func-

_. tions on (0,1], D varies from Oto~. The risk of the minimax estimator,~, 

given in (2.10) may be expressed as 

... 
1 _1 + 1(3 -1 - .f - - - 1) + o( t ) n t 6 . (4.9) 

... 
For fixed p(•} and 6, the three expansions (4.6), (4.7) and (4.9) give 

-1 
'-' the risk functions of three estimators of R. to order t • We propose to 

_, 

-
... 

... 

... 

-
... 

.. 

compare estimators of _eon the basis of the leading term of these expansions. 

- Our main purpose in developing the asymptotics of sparse multinomial 

distributions is ~o approximate the risk function of'£_* given by (2.13). 

-1 
Holland and Sutherland [1971]' have shown that, to order t , the risk 

function of _e* is 

1 lJ 2 6 2 -1 
R(E_* ,_£) = So(D) + ;:81 (D) + t p S2(D) + ~3(D)a (p-A) + o(t ) (4.10) 

where 

S
0

(D) = (D
2
+3D+l)/(D+2)

2 

s
1

(D) = 2(D+l)/(D+2)
3 

(4.11) 
S

2
(D) = -(D

4
+6n

3
+7D

2
-6D-2)/(D+2)

4 

s
3

(D) = 4(D
2
+3D-1)/(D+2)

4
, 
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c?(p-A) = J [p-A-µ, (p-A)] 
2
p, 

µ,(p-A) = j(p-A)p. 

and Dis defined in (4.8). 

(4.12) 

(4.13) 

For comparison we collect all of the leading terms of the risk function 

expansions given in this section in Table 4.1. 

Table 4.1 goes here 

It is evident that s
0

(D) in (4.11) satisfies the inequality 

\ ~ s
0

(D) < 1 (4.14) 

for all D ~ O, no matter what the choice of A(·). Hence this first order analysis 

shows that p* has a risk function whose leading term is uniformly smaller than 

that of .e_ for all p( •). This implies that, for all fixed p( •) and 6, if t is 

large enough the risk of R_* is less than that of i• Thus the maximum likelihood 

estimator, p, is "asymptotically inadmissible" in the framework of our special 

a.symptotics for sparse multinomia.ls. This "asymptotic inadmissibility" is not in 

conflict with the "regular admissibility" of p, as proved by Johnson [1971] for . 

fixed dimensionality, but merely reflects the fact that.£_ gains its regular 

admissibility only from its behavior on the boundary of the parameter ,pace. 

The special asymptotic analysis for sparse multinomials emphasizes the interior 

of the parameter space, and, in ef~ect, ignores the boundary. 

Figure 4.1 graphs the leading terms in Table 4.1 for 6 = 5, n = 100. 

Here 2_*, our pseudo-Bayes estimator, has smaller risk than..9.(\t,~); the 

estimator formed by adding\ to each cell, when tis large, for any p(•). 

Figure 4.1 goes here 

4.2 Standard asymptotics for multinomials 

In this section we regard t as fixed and study p* and pas n~ =. In 

order to allow for the situation described in Section 6 we modify our notation 

for A somewhat. we·shall let~ depend on! and denote this by f = ~(!_). Fur­

thermore, we assume that there is a function of _f, A* = ~*(i) such that /"n(A-~*) 
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has an asymptotic, possibly degenerate, multivariate Normal distribution.with 

mea.n zero as n-+ ex,. In Section 6 the choice of A that receives the most atten-

It is well-known 

in this case that /n(f_-~*) doe·s have an asymptotic multivariate Normal 

distribution. If f. is a constant (i.e. non-random) then/n(f-~*) = 0 which we 

shall interpret as degenerate asymptotic Normality. Thus our present notation 

will not conflict with our previous assumption that~ is non-random. 

Let·wn = n/(n+t) where R is given by (2.12). Since f. converges in 

probability to A* we have the following lennna, given here without proof. 

Lennna 4.1: If .e, ~ 1 *(p_) then R converges in probability to (1-ll_pJI 
2

) /II~ *-.1~JI 2 

d 1 1 ~ 0 (n-1). an consequent y - wn = p 

Now let U = / n(A -'J... *) , V = / n(n-n) and assume that (U , V ) converges in 
-n -- -n ~ ...c. --n-n 

distribution.to (£,Y) which has a possibly degenerate multivariate Normal dis-

tribution with zero mean. The next lenuna compliments Lennna 4.1 when_e~*· 

Lemma 4.2: If .e, = ~*(e) then wn converges _in distribution to the random variable 

11.!! - -~)I 
2 

w=---------
1 - 11.PJI 

2 
+ II~ - .Yil 

2 
. 

(4.15) 

These leim11as may be used to show that if .P. ~ ~* then.e_* is asymptotically 

equivalent to _e and therefore that Jl* is a consistent estimate of .e_ as n-+ ex,. 

The easy proof of this result is given in Fienberg and Holland [1970]. 

Theorem 4.1: (a) 

(b) If .e_ = ~ *, then/ n(p*-_£) converges in distribution to 

(1-w)(U-,Y) where w is given .QY (4.15). 

Corollary: :2,* is a consistent estimator of .e, as n-+ ex,. 
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From part (a) of Theorem 4.1 we see that if£_;~* then_f* is asymptoti­

cally equivalent to _p_ in the sense that they have the same asymptotic distri­

butions. Hence the ratio of the risk of p* to that of .E. approaches unity as 

n~ ~. The situation is more complicated when~="!!_*· From part (b} of the 

theorem it. follows that if ..e, ="!!_*then the ratio of the risks converges to 

the value of 

(4.16) 

When[:~*= .e, = ~, .!!_; 0 and (4.16) becomes 

E [ ( tiljl 

2 

) 

2 

~l~I 
2 

) • 

tll~l2+t-l t 1 
(4.17) 

Using the asymptotic (as n~ ~) multivariate Normality of J_, and a standard 

-1 
orthogonality_ argument, we can expand (4.17) directly to order t yielding 

-1 
\ + (3/B)t + o(t ). (4.18) 

Professor R.R. Bahadur {personal communication) has pointed out that 

both the upper and lower bounds for (4.17) are given by 

1+_3 __ 
4 S(t-1) 

1 + 8 9 [ 1 + _2_1, 

2(t-1)
2 

4(t-1)
2 

t-l 

where O < 9 < 1. To order t-l (4.19) is consistent with (4.18). 

(4.19) 

If we divide the expansion (4.10) from Section 4~1 by R(i,_p) and set 

D equal to zero, A equal to 1 and let 6 go to infinity, then we also obtain 

(4.18). From (4.18) we see that when..e_ = 1 = _£ the ~symptotic risk ratio 

converges to .25 from above as t gets large. The actual rate of this 

convergence is indicated in Section 5.3. 



... 

... 

-
... 

-
... 

-
... 

-
-
lal 

-
-
... 

.. 
Im 

-
... 

-

i 

- 15 -

5. Some Small Sample Results 

As noted in Section 4, the risk of ..e.* does not have a convenient 

algebraic closed-form due to the dependence of Ron!. We have already noted 

that as n--+ (X) and t--+ (X) with n/t fixed, ..e.* provides an almost uniform improve­

ment over p. Two questions remain: 

(a) 

{b) 

Does this large sample improvement carry over into small samples 

in any.way? 

How large don and t have to be, before the special asymptotics 

are meaningful? 

Here we give some exact comparisons of the risk functions of i and ..e.* in an 

attempt to answer these questions. In all our examples we take~=£: The 

exact values of R(1!,*,j~) were evaluated numerically by high-speed computer. 

5.1 Binomial Case 

Figure 5 .1 shows the risk of £*, _e and the minimax estimator, ~' for 

t = 2 (the binomial case) and n = 15. Here ..e.* has smaller risk than_g for 

p
1 

(and thus p
2

) between 0.33 and 0.67 and has larger risk elsewhere. The 

minimax estimator,~' is superior to _e between 0.2 and 0.8, but is dominated 

by .E.* between 0.42 and 0.58 and near the boundary where p
1 

is near O or 1. 

The behavior of .lM and g* near the boundary deserves further comment. 1 

dominates _e* near the boundary, but both of their risks tend to Oas p
1 

approaches zero or one. Thus, the behavior of .,e* near the boundary is at 

least satisfactory. On the other hand, the ratio of the risk of .fM to either 

that of ..e,* or that of .E_ tends to <X> as we near the boundary, and for some pur­

poses this may be unacceptable. This behavior of~ near the boundary is 

typical of all true Bayes estimators of the form (2.6) where w is constant. 

We do not consider~ in the subsequent examples. 
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Finally we note that, as n-+ a, with t = 2 fixed, the "ears" of the risk 

function of~* rising above the risk function of .f move toward each other and 

the difference between the functions disappears, except at ,.e. =(\,%)where 

the risk of ~* is strictly less than the risk of _p_. 

Figure 5.1 goes here 

5.2 Trinomial Case 

A three-dimensional picture is required to display the risk functions 

of _e* and .f fort= 3. In Fienberg and Holland [1970], rather than looking 

at these functions as they sit over the two-dimensional probability simplex, 

s
3

, we presented sections along the two lines in s
3 

defined by [p
1

, (1-p
1
)/2, 

{l-p
1
)/2] and [p

1
, 1-p

1
, O]. Here we consider the ratio of the risks of R...* 

andj, and plot contours of constant risk ratio, i.e. contours for which 

P <.e) 
R{_f* ,j!) 

= R(p,1_) 

is constant. When this ratio is less than 1, ,.e.* is superior to.£· 

(5.1) 

Figures 5. 2 and 5. 3 give contours of p {_f) in s
3 

for n = 15 and n = 30 

respectively. As before the greatest improvement of J_* over _E occurs at the 

pointg =~ = (1/3,1/3,1/3), wher·e the value of p{j!) equals 0.42 and 0.39 for 

n = 15 and n = 30. Over a large section of the parameter space 1_* has smaller 

risk than l· Although_£ has smaller risk near the vertices of s
3

, the value 

of p (J_) near the vertices reaches maxima of 1. 25 and 1.17 for n = 15 and n = 30, 

and then decreases. Interestingly, _e* dominates _£ for sizeable segments of 

the one-dimensional boundaries. 

Figures 5.2 and 5.3 go here 

5.3 Keeping 6 fixed 

To check on the rate of approach to· the special asymptotic.behavior of 

p (1_) described in Section 4.1, we focus on _e = ~ = ~ and examine values of p (~) 
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as t increases for various fixed values of 8. Figure 5.4 displays exact 

computations of p(c) for 5 = 1,2,3,5,10. By the time t reaches 13, p(c) 

is less than 0.30 for all integral values of 8, and we have come close .to 

the asymptotic value of 0. 25. The l.arger the value of 8, the -faster p (c) 

approaches the asymptote for increasing t. We conjecture that similar rates 

of approach to asymptotic values occur for other values of _p_. 

Figure 5.4 goes here 
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6. Random"-' s -
For regular multinomial data it was natural for us to choose A=_£ 

by synnnetry considerations. When the multinomial represents cross-classified 

data such a choice is not the most natural, and it is quite reasonable for 

us to find a 1 which either (a) reflects some prior knowledge about the 

cross-classification structure, or (b) represents some special cross-classi­

fication structure which can serve as a "null" model for ,.e., often characterized 

by symmetry considerations. 

In Section 3 we saw that a two-stage Bayesian argument leads to esti­

mators of the form (2.6) with w given by (2.8) and with both Kand~ as 

functions of X. If our choice of such- a random~ is judicious,~ may remain 

close to ..e, for a large portion of St~ and particularly for those points away 

from the boundary where i gains its admissibility. 

In this section we consider an rxc cross-classification (i.e. a contin-

gency table with r rows and c columns) so that t = re. Although probabilities 

and other quantities for two-way contingency tables are normally doubly 

subscripted, they can still be strung out in vector form, so we need not 

change the notation established in earlier sections, except in that we 

replace single subscripts by double ones. 

We continue to work with an estimator of the form 

..e.* = [ n/ ( n+R) Ji + [R/ ( n+R) li (6.1) 

where 

2 
r C 2 

n - 6 6 xi. 

R = K(_p_,~) 
i=l i=l J 

= 
r C 2 r C 2 r C 2 
~ 6X .. - 2n~ 6 X •• A •• - n 6 z::; A •• 
i=l j=l l.J i=l j=l l.J l.J i=l j=l l.J 

(6. 2) 
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First we decompose~ into three components: (a) the row totals Ai+, 

(b) the column totals A+j , and (c) the .cross-product ratios: 

yij = Aili+l,j+lAi+l,li,j+l 
(6.3) 

for i = 1,2, •.• ,r-l; j = 1,2, .•• ,c-l. A natural choice for the row and 

column totals of A is 

Ai+= Xi+/n i = 1,2, ••• ,r, 

A +j = X + / n j = 1, 2 , ••• , c , 

(6.4) 

because of the interest in margin preservation (see Mosteller, 1968). 

Choosing y .. = 1 for all i and j corresponds to the independence of the 
l.J 

variables corresponding to rows and columns, and leads to the usual "ex-

pected values" for computing chi-square, i.e. 

:\.-I:. = X.+X+./n
2

• 
l.J 1; J 

(6.5) 

Other values of y_ may be suitable and we can combine them with the margins 

(6.4) via the Deming-Stephan iterative proportional fitting procedure to 

yield~ (see Mosteller, 1968, and Fienberg, 1970). 

We now report on some exact comparisons of p and 2,*, where 2,* is the 

estimate formed by using the random A* given by (6.5) in the case of a 2x2 

table with n = 20. The parameter space s
4 

is now a tetrahedron, and we 

choose to view it as being composed of surfaces on which the cross-product 

ratio, a= p
11

p
22

/p
12

p
21

, is a constant (Fienberg and Gilbert, 1970). Due 

to synnnetry considerations it suffices to look only at values of a~ 1. Each 

of the surfaces of constant a can be mapped one-to-one onto a square (see 

Fienberg, 1970), for which the coordinates of any point are given by the 

marginal totals of the probabilities in the 2x2 table. 

Figures 6.1, 6.2 and 6.3 go about here 
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Figures 6.1, 6.2 and 6.3 give contours of constant risk ratio, 

i:i<.e> 
R(i* ,_p) 

= R(p,.e,) 
(6.6) 

for a= 1, 3 and 5 respectively. Recall that~* has smaller risk than _e 

when p(p) is less than unity. For a= 1 (Figure 6.1) we see that p(_f) has 

a minimum value of .76 when Pl+= P+l = 0.5, and nowhere is it greater than 

one. For a= 3 (Figure 6.2), p(..e_) is still less than unity everywhere, but 

the minimum value is approximately .92 at four synnnetrically placed points, 

corresponding roughly to Pi+= 0.50 and P+l = 0.15. For a= 5 (Figure 6.3) 

£ begins to show some superiority over i* near the center of the surface, 

although there still remain values of ..e. for which p(_e,) < 1 and .e,* is 

superior top. 

For other values of a> 5 (not shown here) it appears that P(f) has a 

maximum value of slightly more than 1.22, and, for surfaces corresponding to 

a> 20, the maximum value of p(e) appears to be decreasing, tending to 1 as 

a-+ co. 

For a sizeable amount of the tetrahedron surrounding the surface of 

independence (a=l) our weighted biased estimator, i*, has smaller risk than 

p, the unrestricted maximum likelihood estimator. As the dimensions of the 

table increase so that rc/n remains constant, we conjecture that the hyper­

volume of region in which£* is superior top to increase relative to the 

• hypervolume of the entire simplex. 

-
_. 

-
~ 

' .. 
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·Table 4.1 

Estimator 

q(~t,~) 

. Leading term 

1 

2 
1 - /n 

w~ + (1-wo) 2n 

(D
2
+3i>+l) / (D+2) 

2 

Leading term in expansion of risk function for four 

estimators of .P.· 
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Legends for Figures 

Fig 4.1 

Fig 5.1 

Fig 5.2 

Fig 5.3 

'-t Fig 5.4 

- Fig 6.1 

Fig 6.2 

Fig 6.3 

Leading terms of risk functions (6=5, n=lOO) for four estimators of 

__e. 1=.p_, 2=.9_(\t,~), 3=q(/n,~)=pM, 4=t*· 

Risk of i, lM and ,.e* for t•2 and n=15. 

Contours of constant risk ratio (.f* over p) for t=3 and n=15. 

Contours of constant risk ratio (.e_* over .P_) for t=3 and n=30. 

Risk ratio (.F.* over p} at the center of the simplex for various 

values of t and 6·. 

Countours of constant risk ratio (l* over _f) in the 2x2 table. 

n=20, a=l. 

Contours of constant risk ratio (i* over!) in the 2x2 table. 

n=20, a=3. 

Contours of constant risk ratio (e* over f) in the· 2x2 table. 

n=O, a=5. 
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