
Simultaneous estimation of unknown parameters using a-priori

knowledge for the estimation of interfacial heat transfer coefficient

during solidification of Sn–5wt%Pb alloy—an ANN-driven Bayesian

approach

P S VISHWESHWARA, N GNANASEKARAN* and M ARUN

Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore,

Karnataka 575025, India

e-mail: gnanasekaran@nitk.edu.in

MS received 18 July 2018; revised 25 November 2018; accepted 28 December 2018; published online 30 March 2019

Abstract. The present methodology focuses on model reduction in which the prevalent one-dimensional

transient heat conduction equation for a horizontal solidification of Sn–5wt%Pb alloy is replaced with Artificial

Neural Network (ANN) in order to estimate the unknown constants present in the interfacial heat transfer

coefficient correlation. As a novel approach, ANN-driven forward model is synergistically combined with

Bayesian framework and Genetic algorithm to simultaneously estimate the unknown parameters and modelling

error. Gaussian noise is then added to the temperature distribution obtained using the forward approach to

represent real-time experiments. The hallmark of the present work is to reduce the computational time of both

the forward and the inverse methods and to simultaneously estimate the unknown parameters using a-priori

engineering knowledge. The results of the present methodology prove that the simultaneous estimation of

unknown parameters can be effectively obtained only with the use of Bayesian framework.

Keywords. Casting; GA; least squares; Bayesian; inverse; ANN.

1. Introduction

A numerical solution that involves a mathematical model

provides a complete insight of solidification problem that

helps in obtaining quality casting products. A fine

numerical model yields an accurate prediction of tem-

perature distribution inside the solidification domain close

to the experimental data. In order to solve numerically, it

is necessary to know all input parameters affecting the

solution significantly. The boundary condition at the

mold–metal interface referred to as interfacial heat trans-

fer coefficient (IHTC) plays an important role in con-

trolling the solidification and development of

microstructure [1]. During solidification of molten metal,

liquid metal shrinks and an air gap exists at mold–metal

interface due to the release of heat to the mold. This

creates a resistance to the heat transfer to the mold

referred to as IHTC. The value of IHTC also depends on

various parameters such as direction of solidification

[2, 3], mold materials and mold coating [4, 5], surface

roughness [6–8], pressure [9, 10], casting geometry, type

of casting, etc. Many researchers explained the formation

of air gap at the mold–metal interface with the assistance

of displacement meters to estimate the values of IHTC

[11, 12]. The thermal field in the solidification domain is

very sensitive to the IHTC values [13]. As information

about the casting and mold surfaces is unknown, locating

thermocouples at the mold–metal interface will distort the

thermal field. An accurate estimation can be performed by

inverse methods where the unknown parameters are esti-

mated with the help of temperatures at several locations in

the domain. Beck’s nonlinear estimation is the popularly

used method to estimate the surface heat flux or heat

transfer coefficients with the aid of temperature mea-

surements available inside the problem domain [14]. A

guess value of the unknown parameter is initialized and in

every iteration, the error between the measured and the

calculated temperatures is minimized using least squares.

The methodology considers the sensitivity coefficients for

each measurement location during the estimation proce-

dure. Rajaraman and Velraj [15] compared two different

methods, Beck’s algorithm and control volume approach,

to obtain the IHTC values for aluminium and sand mold.

A deviation of 57% in the values of IHTC between the

two methods was found. Arunkumar et al [16] estimated

the heat flux variation spatially at the metal–mold inter-

face due to mold filling using a Serial IHCP algorithm.

Sun and Chao [17] used lumped capacitance method to*For correspondence
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find the IHTC values for Sn-20wt%Pb alloy and A356

alloy against green sand mold.

Apart from popularly used Beck’s inverse method,

stochastic methods like Genetic algorithm (GA), Particle

Swarm Optimization and Artificial Neural Network (ANN)

are gaining a huge scope to solve inverse problems. With

stochastic method, the solution will not get trapped in the

local minima but the estimation procedure is time con-

suming. Generally, gradient-based methods have faster

convergence compared with the evolutionary algorithms.

The observations from the works of [18, 19] show that GA

is immune to sensitivity coefficients and prove the robust-

ness of the algorithm compared with the conventional

sequential functional method. The results also depend on

the temperature sensor locations and the future time steps

considered to obtain the stable results. Though the GA is

computationally expensive, it is capable of providing good

results for the problems that are unstable or do not converge

[20]. Wong and Pao [21] used GA to optimize the IHTC for

casting geometry . The works of Ranjbar et al [22] and

Dousti et al [23] emphasise the successful estimation of

IHTC for noisy temperature data. The time of inverse

estimation was found to be 8–9 h. Vasileiou et al performed

several simulations for varying casting geometry using

ProCAST assuming the IHTC correlation with temperature

as stepwise and exponential as well as stepwise function of

time using experimental temperatures to estimate IHTC.

The computational time required was around 10 h using GA

to complete the overall estimation [24]. The application of

PSO algorithm for determining IHTC for a continuous

casting process shows that precise estimation is obtained

with the use of measurement data from experiments [25].

Some research works show that the use of ANN as inverse

method can remarkably overcome the computational cost.

Zhang et al [26] used ANN as inverse method and the

estimated IHTC was validated with a commercial software.

The use of evolutionary algorithms is computationally

expensive as observed in the afore-mentioned literatures.

Therefore, a combination of neural network with evolu-

tionary algorithm has been found to drastically reduce the

computational cost. ANN can serve as a fast forward model

ensuring a reduction in computational time for the inverse

approach [27, 28]. Chanda et al [29] used combined ANN–

GA to estimate the thermal conductivities of composite

materials and close agreements between simulated and

experimental temperatures were observed. Ghadimi et al

[30] estimated the unknown heat flux in a braking disc

using ANN and sequential method where the stability of the

results was dependent on the future time steps and the

location of the sensors. The use of hybrid ANN in various

heat transfer applications can be seen in [31–33]. The

choice of objective function also decides the accuracy of

the estimation. Usually, the selection of regularization term

is crucial in obtaining accurate inverse solutions [34]. Shan

and Shan used regularization method to estimate the IHTC

values for ZL102 casting, which supports the fact that the

regularization method provides effective solution by over-

coming the ill-posed inverse problem [35]. Mota et al [36]

applied Bayesian approach with Markov chain Monte Carlo

(MCMC) for a one-dimensional nonlinear heat conduction

problem to simultaneously estimate the heat flux and

thermal parameters. Yan et al [37] used Bayesian frame-

work for the estimation of Robin coefficient with the help

of temperatures available at the boundaries. The results

from the Bayesian framework in conjunction with Markov

random field (MRF)–MCMC showed the ability in pro-

viding solutions with the uncertainties quantified. Different

sampling techniques for the use of Bayesian framework

prove the efficiency in retrieving the thermophysical

properties using inverse method [38]. The results from the

work of Deng and Hwang [39] give evidence that the

Bayesian method delivers the best training method with the

back propagation algorithm.

Based on the afore-mentioned literature, evolutionary

algorithms are finding a new scope in the area of inverse

problems because of their robustness and capability to

provide stable solutions. The gradient-based methods with

the least squares determine the unknowns without the

quantification of uncertainties in the inverse results. In

order to circumvent the difficulties of the afore-mentioned

methods, in the present study, an attempt is made to exhibit

the potential of Bayesian framework in estimating IHTC

during the solidification of casting. The a-priori informa-

tion, which is provided as a prior distribution, in Bayesian

framework acts as an inherent regularization term, thus

leading to well-posedness of the proposed inverse problem.

Normally, the MCMC method used to explore the sample

space within the Bayesian framework is time consuming

[40, 41]. Therefore, the novelty of the present paper is to

simultaneously estimate the constants appearing in the

IHTC along with modelling error (ME) associated with the

temperature measurements, which is not reported hitherto

in literature. Needless to say, in this paper, to obtain a

feasible and quick solution, ANN-GA is applied with the

Bayesian framework for the benefit of computations and

uncertainty.

2. Problem statement

2.1 Forward model

A mold cavity of length 110 mm with 60 mm low-carbon

steel chill is considered for solving horizontal solidification

of Sn–5wt%Pb alloy casting as shown in figure 1. The main

purpose of the design was to ensure a unidirectional

solidification. The heat transfer exists mainly between the

casting and chill with the provision of sufficient insulation

around the mold cavity. The insulation prevents heat loss

through the wall surroundings and the steel chill initiates

the solidification in the horizontal direction. The effects of

flow of the molten metal inside the mold are neglected. As
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the area of the air gap at the mold–metal interface is very

small, the heat transfer at the mold–metal interface is

assumed to happen only by conduction and the effects of

convection and radiation are neglected. Two temperature

sensors T1 and T2, one placed inside the mold cavity at a

distance of 20 mm and other 3 mm in the steel chill,

respectively, from mold–metal interface are used to mea-

sure the temperatures [42]. The domain is discretized as

shown in figure 2. The cast surface node TC and chill

surface node TM at the mold–metal interface are repre-

sented by subscripts ig and ig?1, respectively.

The average IHTC hi in W=ðm2KÞ at the mold–metal

interface is given by

hi ¼
q

TC � TM
ð1Þ

where q is the average heat flux across the mold–metal

interface in W/m2 and TC and TM are the casting and chill

surface temperatures (�C), respectively.

The average heat flux given in Eq. (1) at the mold–metal

interface is calculated using the temperature gradient at the

surface and sub surface nodes:

q ¼ �k
dT

dx
¼ �k

Tp
m � T

p
m�1

dx
ð2Þ

where k is the thermal conductivity of the material (W/

(mK)). Heat transfer occurs mainly by conduction and

whatever heat flux that is released by casting is assumed to

be equal to the heat flux received by the mold.

2.1a Governing equation for heat transfer in the mold:

The unsteady one-dimensional heat conduction equation is

given as follows:

o
2T

dx2
¼

1

a

oT

dt
ð3Þ

where T is the temperature in �C, t is the time in seconds

and a is the thermal diffusivity in m2/s:

a ¼
k

qCp
ð4Þ

where k is the thermal conductivity in W/(mK), q is the

density in kg/m3 and Cp is the specific heat capacity in J/

(kgK).

2.1b Governing equation for the heat flow in the cast-

ing: In a similar manner, the governing equation for heat

transfer in the casting contains heat source term added to

the left hand side of Eq. (3):

k
o
2T

dx2
þ €q ¼ qC

oT

dt
: ð5Þ

The heat source term €q takes the latent heat of solidification

into account given by Eq. (6):

€q ¼ ql
dfs

dt
ð6Þ

where l is the latent heat and fs is the solid fraction of the

casting. A linear form of fs term in the freezing range

Ts � T � Tl is assumed as shown in Eq. (7):

fs ¼
Tl � T

Tl � Ts
ð7Þ

where Tl and Ts are, respectively, the liquidus and

solidus temperature of the casting material. The value

of fs varies between 0 and 1: fs ¼ 1 for T\Ts and

fs ¼ 0 for T[ Tl.

The term dfs
dt

in Eq. (6) can be related to temperature as
dfs
dt
¼ dfs

dT
dT
dt

and substituted back to Eq. (5). The governing

equation takes the final form shown in Eq. (9):

k
o
2T

dx2
¼ qC

oT

dt
� ql

dfs

dT

dT

dt
: ð8Þ

Hence

k
o
2T

dx2
¼ qC0 oT

dt
ð9Þ

where

C0 ¼ C � l
dfs

dT
: ð10Þ

2.1c Boundary conditions: At x ¼ 0, dTC
dx

¼ 0.

At x ¼ ig (casting surface), �kC
dTC
dx

¼ hiðTC � TMÞ.

At x ¼ igþ1 (chill surface), �kM
dTM
dx

¼ hiðTC � TMÞ;

At X ¼ L (chill environment), ¼ haðTM � T1Þ.

Figure 1. Schematic representation of the cast mold system.

Figure 2. Discretization of the mold and metal interface.
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2.1d Initial condition: At t ¼ 0, T ¼ Ti where kM is

thermal conductivity of chill in W/(mK), kC is thermal

conductivity of casting in W/(mK), hi is IHTC in

W=ðm2KÞ, ha is chill-environment heat transfer coefficient

in W=ðm2KÞ, Ti is the initial temperature of the cast and

mold in �C and T1 is the ambient temperature in �C.

Table 11 reports the thermophysical properties of the

materials. The initial temperatures of casting and chill were

assumed as 256 and 27 �C, respectively. The IHTC (hi) is

assumed to vary with time as power law shown in Eq. (11):

hi ¼ at�b: ð11Þ

The values of hi and ha are assumed based on available

literature data [42] as mentioned in Eq. (12):

hi ¼ 18000t�0:47and ha ¼ 5:7t0:15: ð12Þ

The solution of the direct problem (forward model) is

obtained by solving the governing equations subjected to

the known initial and boundary conditions using an Explicit

Finite Difference method that provides the temperature

distribution inside the casting and mold. The value of the

grid size Dx ¼ 1 mm and the time step size is chosen to be

2 ms. Solving the Eqs. (3)–(10) along with the boundary

conditions, the exact temperatures are obtained. Gaussian

white noise is added to these exact temperatures such that

r ¼ 0:01Tmax, r ¼ 0:02Tmax and r ¼ 0:03Tmax as shown in

Eq. (13), as the experimental temperatures are usually

subjected to errors. In order to mimic real-time experi-

ments, the simulated measurements are represented as

YiM ¼ Texactðti; sensorMÞ þ �r ð13Þ

where M is the number of sensors, r is the standard devi-

ation of the temperature measurements and � is a random

number varying between –2.576 and 2.576 for normally

distributed errors with zero mean and 99% confidence

bounds. The term �r represents the temperature measure-

ment error [23]. The noisy data are now considered as

simulated measurements YiM , which in turn are used to

solve the inverse problem.

3. Neural network

Neural network is an artificial intelligence tool developed

based on the biological nervous system. It links a rela-

tionship between the inputs and outputs with the help of

weighted functions. Figure 3 shows insight of layers asso-

ciated in ANN. ANN consists of input, hidden and output

layers. Initially, the input and output data are segregated as

training and testing data to form a network, which under-

goes training until the error is reasonably less. The basic

unit of the network is a neuron that is interlinked by layers

that carry signals, which have to be processed. The

weighted functions provide the strength for the signals to

pass through the neurons. The trained network developed

provides an output for a given input and hence helps in fast

computation. In other words, the trained network provides

the temperature distribution for any set of input parameters

specified within the range. In the present work, the input

layers consist of a set of assumed range of constants of the

hi correlation as given in Eq. (11) and the output layers

consist of corresponding temperature array at the given

location from the available training data. Two hidden layers

are created and the learning process is directed by feed

forward back propagation algorithm. Feed forward back

propagation neural network changes the weights in such a

way that output vector produces the result that is closer to

the target data. The output of ANN is fed in to the objective

function to estimate the unknown parameters by inverse

method. In the beginning, the input parameters are initial-

ized to solve the forward model. In Eq. (11), a and b are the

unknown parameters, within the specified range of a ¼
½1000 30000� and b ¼ ½0:3 0:6�; large sets of numerical

simulations are performed to generate data for neural net-

work and the temperature measurements of the sensor at the

Table 1. Thermophysical properties of the Sn–5wt%Pb alloy and low-carbon steel materials [42].

Properties ks kl Cs Cl qs ql Tl Ts Tf Kp l

Sn–5wt%Pb 64 33 221 259 7720 7380 216 183 232 0.0656 57120

Low-carbon steel 46 7860 527

Figure 3. Representation of ANN.

1SI units: T-�C, q-kg/m3, C-J/(kgK), k-W/(mK), l-J/kg; suffix: l-

liquidus, s-solidus, f-fusion.
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location 20 mm inside the casting for 150 s are used for

developing the trained network. For this, 70% data were

used for training and 30% data were used for testing; 50

neurons were selected to produce a good fit between the

output and the target data as shown in figure 4. The trained

network is referred to as fast forward model due to its

robustness in producing the temperature data for any values

of a and b within the specified range.

4. GA as inverse method

GA is a nature-based optimization algorithm developed by

Holland and Goldberg and is extensively used due to its

robustness in producing the results [43]. GA works on the

principle of survival of the fittest proposed by Charles

Darwin. The solution to a given problem is the one who

survives in generation and the weaker ones are ignored.

Initially, a set of population called as number of chromo-

somes is randomly initialized. Every chromosome is made

up of genes, which represent bit strings. The randomly

generated chromosomes are used to calculate the fitness

function/objective function values and are ranked based on

the type of problem (to maximize or minimize). The

ranking helps in preserving the best individual for the next

iteration. Later, the chromosomes undergo crossover, a

process where chromosomes are randomly swapped at

random crossover sites to produce new offsprings. This new

set of chromosomes has a great tendency to produce good

performance in retrieving the solution. In order to prevent

the solution getting trapped in local minima/maxima, the

mutation process is carried out. Thus the newly produced

population is used to find the fitness function and the pro-

cess continues until the stopping criterion is reached.

As mentioned earlier, GA is used as an inverse method.

For the purpose of demonstration, the retrieval methodol-

ogy is attempted using least squares method (LSM).

However, eventually it has been identified that the

methodology fails to obtain proper results when the tem-

perature data contain more noise, which will be discussed

in the later section. The solution to the unknown parameter

estimation using the least squares is achieved by mini-

mizing the difference between the measured and the cal-

culated temperatures obtained by the fast forward model

[44] as shown in Eq. (14):

SðhiÞ ¼
X

M

m¼1

X

N

i¼1

½Yim � TimðhiÞ�
2 ð14Þ

Figure 4. Regression plot between the output and target data:

(a) training, (b) validation, (c) testing and (d) overall.

Figure 5. Overview of the present work.

Figure 6. Minimum values of Rosenbrock banana function.
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where hi is the unknown parameter (includes the constants

of the correlation); Yim is the ith observation from the mth

measurement; M and N are the number of measurements

and observations, respectively. Tim(hi) is the calculated

temperature obtained with the guessed value from the fast

forward model.

The Bayesian framework is a combination of likelihood

function, which is based on the mathematical model, and

the prior information about the parameter to be estimated.

With the help of measurements and the prior information,

Bayesian framework exploits the posterior distribution to

explore the sample space. The conditional probability of the

parameters P given the measurements Y, the posterior

probability density function, can be obtained using Baye-

sian approach [36, 45, 46]. The Bayes theorem to connect

the experimental data Y with the parameter P is given as

pposteriorðPÞ ¼ pðP=YÞ ¼
ppriorðPÞpðY=PÞ

pðYÞ
ð15Þ

where pposteriorðPÞ is the posterior probability density

function (PPDF) (conditional probability of the parameters

Figure 7. IHTC (hi) and chill-environment heat transfer coeffi-

cient (ha) used to solve the forward problem.

Figure 8. Temperatures at the locations of T1 and T2.

Figure 9. Validation of the forward model [42].

Figure 10. Temperature distribution at T1 for % change in

values of a in hi correlation.

Figure 11. Temperature distribution at T1 for % change in

values of b in hi correlation.
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P given the measurements Y), pðY=PÞ is likelihood func-

tion (the likelihood of different measurement outcomes Y

with P given, which is obtained from the forward model),

ppriorðP) is the prior density (information about the

unknown parameters which is available prior to the mea-

surements) and pðYÞ is the probability density of the

measurements (generally a normalizing constant). The

posterior probability is given as

Table 2. Estimated values of a and b using ANN-GA–LSM for different runs for exact temperature data.

Run

a Absolute% b Absolute%

Time (s)

Fitness

(18000) error of a (0.47) error of b value

1 18091.42 0.507 0.471 0.212 86.1 0.01743

2 18092.79 0.515 0.471 0.212 84.5 0.01743

3 18090.86 0.504 0.471 0.212 82.3 0.01743

Average 18091.69 0.509 0.471 0.212 84.3 0.01743

Figure 12. (a) Convergence of ‘a’ value. (b) Convergence of ‘b’ value. (c) Convergence of fitness values for exact temperature data

using ANN-GA–LSM.

Table 3. Estimated values of a and b using ANN-GA–LSM for different runs for r ¼ 0:01Tmax temperature data.

Run

a Absolute% b Absolute%

Time (s)

Fitness

(18000) error of a (0.47) error of b value

1 19389.55 7.719 0.497 5.75 115.2 894.84

2 19376.83 7.649 0.497 5.75 105.45 894.84

3 19400.96 7.783 0.497 5.75 108.52 894.84

Average 19389.113 7.717 0.497 5.75 109.72 894.84
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posterior / prior � likelihood: ð16Þ

Therefore, the posterior probability density function is directly

proportional to the prior probability times likelihood function.

P in Eq. (15) is the unknown parameter to be estimated and Y

is the temperature vector. In general, the measurement errors

are Gaussian random variables, with known means and

covariances, and also the measurement errors are additive and

independent. Using these hypotheses, the likelihood function

can be expressed as Eq. (17) [36]:

pðY=PÞ ¼ ð2pÞ�
M
2 jWj�

1
2

� exp �
1

2
½Y� TðPÞ�TW�1½Y� TðPÞ�

� �

ð17Þ

where M is the number of measurements and W is the

covariance matrix of the measurement errors. The Gaussian

prior can be given as

pðPÞ ¼ ð2pÞ�
N
2 jVj�

1
2 exp �

1

2
ðP� lÞTV�1ðP� lÞ

� �

ð18Þ

where l is the known mean and V is the co-variance matrix

for P. Therefore, the posterior probability density function

becomes

pðP=YÞ ¼ ð2pÞ�
M
2 jWj�

1
2

� exp

�

�
1

2
½Y� TðPÞ�TW�1½Y� TðPÞ�

�

� 2pÞ�
N
2 jVj�

1
2 exp �

1

2
ðP� lÞTV�1ðP� lÞ

� ��

ð19Þ

Applying ln on both sides gives

� lnPPDF ¼
X

M

m¼1

X

N

i¼1

½Yim � TimðhiÞ�
2

2ðME � TmaxÞ
2
þ
ða� laÞ

2

2r2a

þ
ðb� lbÞ

2

2r2b
þ
ðME � lMEÞ

2

2r2ME

ð20Þ

where hi is the unknown parameter and Yim is the ith

observation from the mth measurement; M and N are the

number of measurements and observations, respectively.

TimðhiÞ is the calculated temperature obtained from the fast

forward solution, a and b are the range of values generated

by GA, ME is the modelling error associated with the

temperature measurement, la ¼ 18000 and lb ¼ 0:47; ra
and rb are taken as 0.01la and 0.01lb, respectively. Fig-

ure 5 shows an overview of the present work.

5. Results and discussion

Before attempting the inverse method, validation of in-

house code is performed by solving a benchmark problem

using GA. Rosenbrock banana function [47] was consid-

ered as the benchmark problem, which is given by Eq. (21):

f ðxÞ ¼ 100 ðy� x2Þ2 þ ð1� xÞ2: ð21Þ

Figure 13. (a) Convergence of ‘a’ value. (b) Convergence of ‘b’ value for r ¼ 0:01Tmax temperature data using ANN-GA–LSM.

Table 4. Estimated values of a and b using ANN-GA–LSM for

different runs for r ¼ 0:02Tmax temperature data.

Run

a Absolute% b Absolute%

Time (s)(18000) error of a (0.47) error of b

1 11392.7 36.70 0.3 36.17 120.2

2 11392.7 36.70 0.3 36.17 99.5

3 11392.7 36.70 0.3 36.17 110.8

Average 11392.7 36.70 0.3 36.17 110.17
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A range of x, y between –5 and 5 was chosen. Figure 6

shows the successful retrieval values of x and y from the in-

house GA code, proving the robustness, where the mini-

mum of the banana function lies at (1, 1). Thus, the inverse

code is validated and proved to be a robust method for the

estimation purpose. Figure 7 shows the transient IHTC (hi)

and chill-environment heat transfer coefficient values (ha)

variation of pre-assumed values from Eq. (12). Using these

pre-assumed values, the forward model is solved and the

temperature distribution inside the casting and chill is

obtained as shown in figure 8. The hi possess higher values

during the initial stages of the solidification due to the good

contact of the molten metal and chill surface at the inter-

face. Later due to the heat release from the liquid metal to

the chill, an air gap is formed; hence the values of hi
decrease. As the chill continuously receives heat, the tem-

perature of the chill increases and the values of ha gradually

increase. The temperature distribution at the sensor location

Figure 14. (a) Convergence of ‘a’ value. (b) Convergence of ‘b’ value. (c) Convergence of � lnPPDF for exact temperature data using

ANN-GA–Bayesian framework.

Table 5. Estimated values of a and b using ANN-GA–LSM for

different runs for r ¼ 0:03Tmax temperature data.

Run

a Absolute% b Absolute% Time

(s)(18000) error of a (0.47) error of b

1 17005.28 5.526 0.3 36.17 104.3

2 17949.17 0.282 0.31 34.04 101.2

3 17584.88 2.306 0.307 34.68 107.5

Average 17513.11 2.704 0.306 34.89 104.3

Table 6. Estimated values of a and b using ANN-GA–Bayesian framework for different runs for exact temperature data.

Run

a Absolute% b Absolute%

Time (s) � lnPPDF(18000) error of a (0.47) error of b

1 18001.41 0.0078 0.469 0.21 85.6 0.002275

2 18001.41 0.0078 0.469 0.21 88.74 0.002275

3 18002.41 0.0133 0.469 0.21 94.15 0.002275

Average 18001.74 0.0096 0.469 0.21 89.49 0.002275
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20 mm inside the mold cavity used for the inverse analysis

is validated as shown in figure 9.

Choosing an appropriate value of hi for the numerical

simulation is the most important decision because a random

or guess value of hi always results in different temperature

distribution during the solidification. A common practice in

industries is to use trial and error method to choose hi. In

order to show this, a sensitivity study at the sensor T1 is

carried out where a change of 10% from the actual value of

constants of the hi correlation a and b is chosen and plotted

in figures 10 and 11.

Now the process of estimation of unknown parameters is

carried out using GA. The input parameters for GA such as

number of population = 20, iterations = 200 and mutation

rate = 0.06 were initialized. The range of the values of

a ¼ ½1000 30000� and b ¼ ½0:3 0:6� were selected based on

the work of Santos et al [42], where a wealth of information

is available on the solidification of Sn–Pb alloys. The

inverse estimation was performed on a 12-GB RAM,

INTEL i5 Core, 1.70-GHz computer. Three runs were

carried out with the same initialized input parameters, and

the estimated values are collected and reported in table 2.

For the exact temperature data, ANN-driven GA provides

good estimates of a and b with LSM as objective function.

The average values a ¼ 18091:69 and b ¼ 0:471 were

obtained with an absolute % error of a and b as 0.509 and

0.212, respectively. The minimum fitness value was found

to be 0.01743. The ANN-driven GA took around 83.4 s,

which shows a huge reduction in the computational cost

compared with conventional model, i.e., without ANN.

Figure 15. (a) Convergence of ‘a’ value. (b) Convergence of ‘b’ value. (c) Convergence of ‘ME’ value using ANN-GA–Bayesian

framework for r ¼ 0:01Tmax noisy temperature data.

Table 7. Estimated values of a and b using ANN-GA–Bayesian framework for different runs for r ¼ 0:01Tmax temperature data.

Run

a Absolute% b Absolute%

ME

Absolute%

Time (s) � lnPPDF(18000) error of a (0.47) error of b error of ME

1 17984.31 0.0871 0.4708 0.1702 0.0101 1 83.32 67.54

2 17984.14 0.0881 0.4708 0.1702 0.0101 1 85.48 67.54

3 17983.69 0.0906 0.4708 0.1702 0.0101 1 85.48 67.54

Average 17984.04 0.0886 0.4708 0.1702 0.0101 1 84.76 67.54
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Figure 12(a) and (b) shows the estimation of values of

a and b using LSM for exact temperature data, respectively.

Figure 12(c) provides the corresponding fitness values

convergence for exact temperature data using LSM.

The estimation is now extended to noisy temperature

data with r ¼ 0:01Tmax; similarly three different runs are

carried out and reported in table 3. It was observed that the

estimated values had a large deviation from the actual value

with an absolute % error of 7.717 and 5.75 for the estimated

a and b values, respectively. The average fitness value was

found to be 894.84. Figure 13(a) and (b) shows the con-

vergence of a and b values for r ¼ 0:01Tmax temperature

data, respectively. Table 4 provides the details of the esti-

mated unknown parameters for r ¼ 0:02Tmax noise data.

The ANN-GA with LSM showed an unusual estimation

with a very large absolute % error of 36. Hence, in order to

check the accuracy of estimation for larger noisy data, a

Gaussian noise with r ¼ 0:03Tmax is added for the exact

temperature and the estimation is continued.

It was observed that for high noisy data, a good esti-

mation was achieved for the retrieval of a values with

absolute % error of 2.704 whereas for the value of b, there

was again a huge deviation from the actual value of 0.47 as

mentioned in table 5. The overall estimation with LSM

using ANN-trained inverse estimation was time saving but

an accurate estimation was not achieved.

In order to overcome the disadvantage of LSM, the

objective function was replaced by Bayesian framework.

As mentioned in Eq. (20), to estimate the unknown

Figure 16. (a) Convergence of ‘a’ value. (b) Convergence of ‘b’ value. (c) Convergence of ‘ME’ value using ANN-GA–Bayesian

framework for r ¼ 0:02Tmax noisy temperature data.

Table 8. Estimated values of a and b using ANN-GA–Bayesian framework for different runs for r ¼ 0:02Tmax temperature data.

Run

a Absolute% b Absolute%

ME

Absolute%

Time,s � lnPPDF(18000) error of a (0.47) error of b error of ME

1 18019.42 0.107 0.468 0.425 0.0203 1.5 88.53 86.99

2 18019.43 0.107 0.468 0.425 0.0203 1.5 87.92 86.99

3 18019.41 0.107 0.468 0.425 0.0203 1.5 88.47 86.99

Average 18019.42 0.107 0.468 0.425 0.0203 1.5 88.3 86.99
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parameters, � lnPPDF was calculated. Initially, for the

exact temperature data, the prior information about the

noise is not considered. In order to achieve this, the range

of values of a ¼ ½1000 30000�, b ¼ ½0:3 0:6� was consid-

ered. Similar to the previous estimation, three runs with the

same initial parameters using GA are carried out and the

estimated values of a and b are reported in table 6. Com-

pared to LSM, with ANN-GA–Bayesian framework the

retrieved a and b values are very close to the actual value

with absolute % error of 0.0096 and 0.21, respectively. The

-lnPPDF value is 0.002275, which is found to be lesser

compared with LSM. The convergence of a and b values

and its fitness values are as shown in figure 14.

Further, the estimation is carried out for noisy data with

r ¼ 0:01Tmax. The range of values of a ¼ ½1000 30000�,
b ¼ ½0:3 0:6� and ME ¼ ½0 0:4� was chosen to solve using

GA. The advantage of Bayesian framework over LSM can

be observed here. The Bayesian framework not only

retrieves very accurate values of a and b but also provides

an opportunity to estimate the ME associated with the

temperature measurements. As the Bayesian framework

contains knowledge of priori information about the esti-

mates, the method outperforms LSM, which is evident from

the reported table 7. The retrieved values have an error

lesser than 2% compared to the actual values. The con-

vergence of a, b and ME values is shown in figure 15. As

the experimental temperature measurements are more prone

to errors, the estimation is conducted for noisy temperature

data with r ¼ 0:02Tmax. The retrieved unknown parameters

reported in table 8 for the r ¼ 0:02Tmax noisy temperature

data show a good agreement with the actual values. The

convergence of the corresponding unknown parameters is

shown in figure 16. Similarly, the estimation was carried

Figure 17. (a) Convergence of ‘a’ value. (b) Convergence of ‘b’ value. (c) Convergence of ‘ME’ value using ANN-GA–Bayesian

framework for r ¼ 0:03Tmax noisy temperature data.

Table 9. Estimated values of a and b using ANN-GA–Bayesian framework for different runs for r ¼ 0:03Tmax temperature data.

Run

a Absolute% b Absolute%

ME

Absolute%

Time (s) � lnPPDF(18000) error of a (0.47) error of b error of ME

1 18036.02 0.2 0.468 0.425 0.0305 1.67 97.8 93

2 18036.05 0.2 0.468 0.425 0.0305 1.67 95.35 93

3 18036.05 0.2 0.468 0.425 0.0305 1.67 95.46 93

Average 18036.04 0.2 0.468 0.425 0.0305 1.67 96.2 93
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out for a noisy temperature with r ¼ 0:03Tmax; as a result,

GA in accordance with Bayesian is found to be an effective

method for solving high noisy data as noted from table 9.

The corresponding convergence of a, b and ME values is

shown in figure 17. The retrieved average values of a and

b are used as an input for simulating forward model and

ANN; the comparison of the obtained temperature distri-

bution shown in figure 18 shows the noise handling capa-

bility of the inverse method.

6. Conclusion

An ANN-driven inverse estimation was attempted using

GA. The forward model was solved to obtain the required

temperature distribution for the solidification of Sn–

5wt%Pb alloy. The major concern during inverse estima-

tion of unknown parameters was the computational time.

Therefore, a large data set, within the range of unknown

parameters and corresponding temperatures, was created by

solving the forward model; an ANN model was developed

to reduce the computational time, which acted as a fast

forward model. Though the ANN-GA with LSM was found

to be good for the noiseless temperature data, the

methodology failed to produce satisfactory results for the

noise-added temperature data. Hence, the objective func-

tion was replaced with the Bayesian framework, thereby

exploring the a priori information of the unknown param-

eters. The ANN-GA with Bayesian framework established

effective results with the overall average absolute error less

than 2%; thus, it proved to be a competent and potent tool

for the present inverse problem.

List of symbols

Cp specific heat, (J/(kgK))

fs fraction of solid

ha chill-environmental heat transfer coefficient,

ðW=ðm2KÞÞ
hi interfacial heat transfer coefficient, ðW=ðm2KÞÞ
k thermal conductivity, (W/(mK))

l latent heat

M number of sensors

PPDF posterior probability density function

t time, s

Tl liquidus temperature, �C

Tf fusion temperature, �C

Ts solidus temperature, �C

TC casting surface temperature, �C

TM chill surface temperature, �C

Kp partition coefficient

T(P) simulated temperatures, �C

Y simulated measurements, �C

Figure 18. Comparison of temperature distribution obtained from the actual and retrieved values of a and b at T1 20 mm inside the

mold cavity sensor: (a) for exact temperature, (b) for r ¼ 0:01Tmax, (c) for r ¼ 0:02Tmax and (d) for r ¼ 0:03Tmax.
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Greek

r standard deviation of the prior Gaussian

q density, ðkg/m3Þ
a thermal diffusivity, ðm2=sÞ
� random variables

l mean of prior Gaussian

Subscripts

f fusion

l liquidus

s solidus
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