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Abstract: RK and RD(∗) are two B-decay measurements that presently exhibit discrepan-

cies with the SM. Recently, using an effective field theory approach, it was demonstrated

that a new-physics model can simultaneously explain both the RK and RD(∗) puzzles.

There are two UV completions that can give rise to the effective Lagrangian: (i) V B: a

vector boson that transforms as an SU(2)L triplet, as in the SM, (ii) U1: an SU(2)L-singlet

vector leptoquark. In this paper, we examine these models individually. A key point is

that V B contributes to B0
s -B̄

0
s mixing and τ → 3µ, while U1 does not. We show that, when

constraints from these processes are taken into account, the V B model is just barely viable.

It predicts B(τ− → µ−µ+µ−) ≃ 2.1× 10−8. This is measurable at Belle II and LHCb, and

therefore constitutes a smoking-gun signal of V B. For U1, there are several observables

that may point to this model. Perhaps the most interesting is the lepton-flavor-violating

decay Υ(3S) → µτ , which has previously been overlooked in the literature. U1 predicts

B(Υ(3S) → µτ)|max = 8.0× 10−7. Thus, if a large value of B(Υ(3S) → µτ) is observed —

and this should be measurable at Belle II — the U1 model would be indicated.
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1 Introduction

At present, there are several measurements of B decays that may indicate the presence of

physics beyond the standard model (SM):

1. b→ sµ+µ−: the LHCb Collaboration has made measurements of B → K∗µ+µ− [1, 2]

that deviate from the SM predictions [3]. The Belle Collaboration finds similar re-

sults [4]. The main discrepancy is in the angular observable P ′
5 [5]. The signifi-

cance of the discrepancy depends on the assumptions about the theoretical hadronic

uncertainties [6–8]. Indeed, it has been recently argued [9] that, by including non-

factorizable power corrections, the experimental results can be reproduced within

the SM. However, the latest fits to the data [10, 11], which take into account the

hadronic uncertainties, find that a discrepancy is still present. It may reach the 4σ

level.

The LHCb Collaboration has also measured the branching fraction and performed

an angular analysis of B0
s → φµ+µ− [12, 13]. They find a 3.5σ disagreement with

the predictions of the SM, which are based on lattice QCD [14, 15] and QCD sum

rules [16].

2. RK : the LHCb Collaboration has found a hint of lepton non-universality. They

measured the ratio RK ≡ B(B+ → K+µ+µ−)/B(B+ → K+e+e−) in the dilepton

invariant mass-squared range 1GeV2 ≤ q2 ≤ 6GeV2 [17], and found

Rexpt
K = 0.745+0.090

−0.074 (stat)± 0.036 (syst) . (1.1)

This differs from the SM prediction of RSM
K = 1 ± 0.01 [18] by 2.6σ, and is referred

to as the RK puzzle.

3. RD(∗) : the charged-current decays B̄ → D(∗)ℓ−ν̄ℓ have been measured by the

BaBar [19], Belle [20] and LHCb [21] Collaborations. It is found that the values of

the ratios RD(∗) ≡ B(B̄ → D(∗)τ−ν̄τ )/B(B̄ → D(∗)ℓ−ν̄ℓ) (ℓ = e, µ) considerably ex-

ceed their SM predictions. Assuming Gaussian distributions, and taking correlations

into account, the experimental results and theoretical predictions can be combined

to yield [22, 23]

Rratio
D ≡ Rexpt

D

RSM
D

= 1.29± 0.17 , Rratio
D∗ ≡ Rexpt

D∗

RSM
D∗

= 1.28± 0.09 . (1.2)

The measured values of RD and RD∗ represent deviations from the SM of 1.7σ and

3.1σ, respectively. These are known as the RD and RD∗ puzzles.

It must be stressed that, while the discrepancies in point 1 have some amount of theoretical

input, those in points 2 and 3 are quite clean. As such, the RK and RD(∗) puzzles provide

very intriguing hints of new physics (NP).1

1Note that, while the RK and RD(∗) puzzles require lepton-non-universal NP, this is not necessarily true

for point 1, see ref. [24] for example.
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In ref. [25], Hiller and Schmaltz searched for a NP explanation of the RK puzzle. They

performed a model-independent analysis of b → sℓ+ℓ−, considering NP operators of the

form (s̄Ob)(ℓ̄O′ℓ), where O and O′ span all Lorentz structures. They found that the only

NP operator that can reproduce the experimental value of RK is of (V − A) × (V − A)

form: (s̄LγµbL)(ℓ̄Lγ
µℓL). Subsequent fits [26–28], which included both the B → K∗µ+µ−

and RK data, confirmed that such a NP operator can also account for the P ′
5 discrepancy.

To be specific, b→ sµ+µ− transitions are defined via the effective Hamiltonian

Heff = −αGF√
2π
VtbV

∗
ts

∑

a=9,10

(

CaOa + C ′
aO

′
a

)

,

O9(10) = [s̄LγµbL][µ̄γ
µ(γ5)µ] , (1.3)

where the primed operators are obtained by replacing L with R. The Wilson coefficients

C
(′)
a include both SM and NP contributions. In the fits it was shown that a NP contribution

to b → sµ+µ− is required; one of the possible solutions is CNP
9 = −CNP

10 < 0, with CNP
9

large. This corresponds to the (s̄LγµbL)(ℓ̄Lγ
µℓL) operator of ref. [25].

In ref. [29], Glashow, Guadagnoli and Lane (GGL) stressed that the NP responsible

for lepton flavor non-universality will generally also lead to lepton-flavor-violating (LFV)

effects. To illustrate this, they proposed the following explanation of the RK puzzle. The

NP is assumed to couple preferentially to the third generation with (V − A) × (V − A)

form, giving rise to the operator

G

Λ2
NP

(

b̄′Lγµb
′
L

) (

τ̄ ′Lγ
µτ ′L

)

, (1.4)

where G = O(1), G/Λ2
NP ≪ GF , and the primed fields are the fermion eigenstates in

the gauge basis. When one transforms to the mass basis, this generates the operator

(b̄LγµsL)(µ̄Lγ
µµL) that contributes to b̄ → s̄µ+µ−. The contribution to b̄ → s̄e+e− is

much smaller, leading to a violation of lepton flavor universality. GGL’s point was that

LFV decays, such as B → Kµe, Kµτ and B0
s → µe, µτ , are also generated.

In ref. [30], it was pointed out that, assuming the scale of NP is much larger than the

weak scale, the operator of eq. (1.4) should be made invariant under the full SU(3)C ×
SU(2)L ×U(1)Y gauge group. There are two possibilities:

ONP
1 =

G1

Λ2
NP

(

Q̄′
LγµQ

′
L

) (

L̄′
Lγ

µL′
L

)

,

ONP
2 =

G2

Λ2
NP

(

Q̄′
Lγµσ

IQ′
L

) (

L̄′
Lγ

µσIL′
L

)

=
G2

Λ2
NP

[

2
(

Q̄′i
LγµQ

′j
L

)(

L̄′j
Lγ

µL′i
L

)

−
(

Q̄′
LγµQ

′
L

) (

L̄′
Lγ

µL′
L

)

]

, (1.5)

where G1 and G2 are both O(1), and the σI are the Pauli matrices. Here Q′ ≡ (t′, b′)T

and L′ ≡ (ν ′τ , τ
′)T . The key point is that ONP

2 contains both neutral-current (NC) and

charged-current (CC) interactions. The NC and CC pieces can be used to respectively

– 3 –
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explain the RK and RD(∗) puzzles.2 (Of course, while a common model of these anomalies

is intriguing, it is also more constraining than separate explanations of the two puzzles.)

This method was explored in greater detail in ref. [44]. The starting point is the

model-independent effective Lagrangian based on eq. (1.5):

LNP =
G1

Λ2
NP

(

Q̄′
LγµQ

′
L

) (

L̄′
Lγ

µL′
L

)

+
G2

Λ2
NP

(

Q̄′
Lγµσ

IQ′
L

) (

L̄′
Lγ

µσIL′
L

)

. (1.6)

These operators are written in the gauge basis and involve only third-generation fermions.

In transforming from the gauge basis to the mass basis, the left-handed down- and up-type

quarks are operated upon by the matrices D and U , respectively, where the Cabibbo-

Kobayashi-Maskawa (CKM) matrix is VCKM = U †D. The leptons are different: neglecting

the neutrino masses, the left-handed charged and neutral leptons are both operated upon

by the same matrix L. In ref. [44] it is assumed that the transformations D and L lead

to mixing only between the second and third generations, so that they each depend on

only one unknown theoretical parameter, respectively θD and θL. In the mass basis, the

above operators contribute to a variety of B decays. Ref. [44] considers the following

processes/observables: (i) b → sℓ+ℓ− (ℓ = µ, e): B → K∗µ+µ−, B0
s → φµ+µ−, RK , (ii)

b → cτ−ν̄τ : RD(∗) , (iii) b → sνν̄: B → K(∗)νν̄ [45, 46]. The experimental measurements

thus put constraints on the coefficients, which are all functions of G1, G2, θD and θL. When

all constraints are taken into account, it is found that the RK and RD(∗) puzzles can be

simultaneously explained if θL is of the order of π/16 and θD is very small (less than Vcb).

With these values for θL and θD, one can make predictions for the rates of other (LFV)

processes, and this is done for B → K(∗)ℓℓ′ and B0
s → ℓℓ′ (ℓℓ′ = τµ, τe, µe).

Finally, ref. [44] considers possible UV completions that can give rise to ONP
2 [eq. (1.5)],

that is required to explain both RK and RD(∗) . Its coefficient (G2/Λ
2
NP) suggests that this

operator is generated by the tree-level exchange of a single particle. In this case, there are

only four possibilities for the underlying NP model: (i) a vector boson (V B) that transforms

as (1,3, 0) under SU(3)C × SU(2)L × U(1)Y , as in the SM, (ii) an SU(2)L-triplet scalar

leptoquark (S3) [(3,3,−2/3)], (iii) an SU(2)L-singlet vector leptoquark (U1) [(3,1, 4/3)],

(iv) an SU(2)L-triplet vector leptoquark (U3) [(3,3, 4/3)]. The vector boson generates only

ONP
2 , but the leptoquarks generate particular combinations of ONP

1 and ONP
2 [47]. It is

shown that the combination of ONP
1 and ONP

2 generated by the S3 and U3 leptoquarks

cannot simultaneously explain RK and RD(∗) . The only possible UV completions are

therefore the V B and U1 models.

But this now raises a question. If the NP responsible for the RK and RD(∗) puzzles

leads to the effective Lagrangian of eq. (1.6), the underlying NP model is either V B or U1.

But which is it? Short of actually producing a W ′/Z ′ or a leptoquark in an experiment, is

there any way of distinguishing the two models? At first glance, the answer is no. After all,

the two models lead to the same effective Lagrangian and so are “equivalent.” However,

this is not really true. To see this, one has to understand the difference between analyses

2Other analyses of the RD(∗) puzzle can be found in refs. [31–37]. Distributions in B̄ → D(∗)τ−ν̄τ
decays can provide information on the type of new physics present in these decays [38–40]. Efforts to

simultaneously explain multiple flavor anomalies can be found in refs. [41–43].

– 4 –
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based on an effective field theory (EFT) and those based on models. In an EFT analysis,

one writes all effective operators of a given order; these are considered as independent. The

effective Lagrangian of eq. (1.6) includes all four-fermion operators containing two quarks

and two leptons. One can also write four-quark and four-lepton operators. But since

these are uncorrelated with the operators with two quarks and two leptons, and since only

processes of the type q → q′ℓℓ(′) are studied, these other operators are uninteresting. But

this does not hold in a model analysis. Concretely, while both V B and U1 models lead to

operators with two quarks and two leptons, V B also produces four-quark and four-lepton

operators at tree level. In particular, it will contribute significantly to B0
s -B̄

0
s mixing and

the lepton-flavor-violating decay τ → 3µ. These will lead to additional constraints on θD
and θL, respectively. Furthermore, while V B contributes to B → K(∗)νν̄, U1 does not.

The bottom line is that the experimental constraints on the V B model are more stringent

than those on the U1 model. Thus, the predictions for the rates of other processes can

be very different in the two models, and this may allow us to distinguish them. It is this

feature that is studied in the present paper.

We begin in section 2 by reviewing the method of ref. [44] for generating contributions

to RK and RD(∗) , as well as the NP models in which this can occur. These include the

vector-boson model V B and the S3, U1 and U3 leptoquark models. The experimental

measurements that constrain these models are described in section 3. These include not

only processes involving b → sℓ+ℓ−, b → sνν̄ and b → cτ−ν̄, but also τ → µφ, B0
s -B̄

0
s

mixing and τ → 3µ. These experimental constraints are applied to the models in section 4.

As in ref. [44], we find that S3 and U3 are excluded, leaving only V B and U1. However,

the constraints from B0
s -B̄

0
s mixing and τ → 3µ are so stringent that the V B model is only

barely viable. In section 5 we examine the predictions of V B and U1 for other processes,

to see if the two models can be distinguished. We find that, in fact, there are a number

of different ways of doing this. Useful processes/observables include τ → 3µ, RK , and a

previously overlooked lepton-flavor-violating decay, Υ → µτ . We conclude in section 6.

2 Models

Including the generation indices i, j, k, l, the effective Lagrangian of eq. (1.6) can be writ-

ten as

LNP =
Gijkl

1

Λ2
NP

(

Q̄
(′)i
L γµQ

(′)j
L

)(

L̄
(′)k
L γµL

(′)l
L

)

+
Gijkl

2

Λ2
NP

(

Q̄
(′)i
L γµσ

IQ
(′)j
L

)(

L̄
(′)k
L γµσIL

(′)l
L

)

.

(2.1)

This holds in both the gauge and mass bases. The gauge eigenstates, which involve only

third-generation fermions, are indicated by primes on the spinors; the mass eigenstates

have no primes. In transforming from the gauge basis to the mass basis, we have

u′L = UuL , d′L = DdL , ℓ′L = LℓL , ν ′L = LνL , (2.2)

where U , D and L are 3×3 unitary matrices and the spinors u(′), d(′), ℓ(′) and ν(′) include all

three generations of fermions. The fact that the left-handed charged and neutral leptons are

– 5 –
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both operated upon by the same matrix L is a result of neglecting the neutrino masses.3

The CKM matrix is given by VCKM = U †D. The assumption of ref. [44] is that the

transformations D and L involve only the second and third generations:

D =







1 0 0

0 cos θD sin θD
0 − sin θD cos θD






, L =







1 0 0

0 cos θL sin θL
0 − sin θL cos θL






. (2.3)

Because of these transformations, for the down-type quarks and charged leptons, couplings

involving the second generation (possibly flavor-changing) are possible in the mass basis.

(For the up-type quarks, the first generation can also be involved.)

Specifically, in the mass basis we have

Gijkl
n = gnX

ijY kl , (2.4)

where X and Y include the transformations from the gauge to the mass basis. The exact

forms of these matrices depend on which four-fermion operator is used. For the decay

b→ sℓ+ℓ− we have

X = D†







0 0 0

0 0 0

0 0 1






D =







0 0 0

0 sin2 θD − sin θD cos θD
0 − sin θD cos θD cos2 θD






,

Y = L†







0 0 0

0 0 0

0 0 1






L =







0 0 0

0 sin2 θL − sin θL cos θL
0 − sin θL cos θL cos2 θL






. (2.5)

If up-type quarks are involved in a process (such as b → cτ−ν̄), one must include the

transformation matrix U [eq. (2.2)]. Because VCKM = U †D, the amplitude will involve

factors of VCKM in addition to X and Y .

In terms of components, the effective Lagrangian is

LNP =

(

Gijkl
1 +Gijkl

2

)

Λ2
NP

[(

ūiLγµu
j
L

)(

ν̄kLγ
µνlL

)

+
(

d̄iLγµd
j
L

)(

ℓ̄kLγ
µℓlL

)]

+

(

Gijkl
1 −Gijkl

2

)

Λ2
NP

[(

ūiLγµu
j
L

)(

ℓ̄kLγ
µℓlL

)

+
(

d̄iLγµd
j
L

)(

ν̄kLγ
µνlL

)]

+ 2
Gijkl

2

Λ2
NP

[(

ūiLγµd
j
L

)(

ℓ̄kLγ
µνlL

)

+ h.c.
]

. (2.6)

3If neutrino masses are not neglected, the matrices L and N operate on the left-handed charged and

neutral leptons, respectively, and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is VPMNS = N†L.

However, in processes such as b → cτ−ν̄τ and b → sνν̄, the final-state neutrinos are not detected, and so

one must sum over all neutrinos. In this case, since VPMNS is unitary (V †
PMNSVPMNS = 1), its effect on

these processes vanishes.

– 6 –
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For the processes of interest, the NP contributions are

b→ sµ+µ− :
(g1 + g2)

Λ2
NP

X23Y 22 (s̄LγµbL) (µ̄Lγ
µµL) + h.c. , (2.7)

b→ sνν̄ :
(g1 − g2)

Λ2
NP

X23Y kl (s̄LγµbL)
(

ν̄kLγ
µνlL

)

+ h.c. for k, l = 2, 3 , (2.8)

b→ cτ−ν̄ :
2g2
Λ2
NP

[

(VCKMX)23Y 3l (c̄LγµbL)
(

τ̄Lγ
µνlL

)

+ h.c.
]

for l = 2, 3 . (2.9)

From these expressions, we see that there is no NP contribution to b→ sνν̄ (b→ sµ+µ−)

if g1 = g2 (g1 = −g2).
In the above, the NP is described in effective field theory language, as in ref. [44].

However, we are interested in explicitly studying the models that can lead to this EFT.

There are two categories of NP models, those with new vector bosons, and those that

involve leptoquarks. Below we summarize the features of the various models.

2.1 SM-like vector bosons

This model contains vector bosons (V Bs) that transform as (1,3, 0) under SU(3)C ×
SU(2)L ×U(1)Y , as in the SM. We refer to the V Bs as V =W ′, Z ′.

In the gauge basis, the Lagrangian describing the couplings of the V Bs to left-handed

third-generation fermions is

∆LV = g33qV

(

Q
′

L3 γ
µσI Q′

L3

)

V I
µ + g33ℓV

(

L
′

L3 γ
µσI L′

L3

)

V I
µ , (2.10)

where σI (I = 1, 2, 3) are the Pauli matrices. Once the heavy V B is integrated out, we

obtain the following effective Lagrangian, relevant for b → sℓ+ℓ−, b → cτ−ν̄ and b → sνν̄

decays:

Leff
V = −

g33qV g
33
ℓV

m2
V

(

Q
′

L3γ
µσI Q′

L3

)(

L
′

L3γµσ
IL′

L3

)

. (2.11)

Comparing this with eq. (2.1), we find

g1 = 0 , g2 = −g33qV g33ℓV . (2.12)

Note that g2 can be either positive or negative in this model.

When one transforms to the mass basis, the V Bs couple to other generations. The

Z ′ contributes at tree level to b → sµ+µ− and b → sνν̄; the W ′ contributes at tree level

to b → cτ−ν̄. These contributions are given in eqs. (2.7)–(2.9) for the above values of g1
and g2.

The above processes all involve four-fermion operators that contain two quarks and

two leptons. But V B exchange also produces four-quark and four-lepton operators at tree

level. In the gauge basis, the corresponding effective Lagrangian is

L4Q,4L
NP = −

(

g33qV

)2

2m2
V

(

Q
′

L3γ
µσIQ′

L3

)(

Q
′

L3γµσ
IQ′

L3

)

−
(

g33ℓV
)2

2m2
V

(

L
′

L3γ
µσIL′

L3

)(

L
′

L3γµσ
IL′

L3

)

. (2.13)

– 7 –
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Fierz Transformations

(aLb
c
L)(c

c
LdL) = −1

2(aLγ
µdL)(c

c
Lγµb

c
L)

(aLγ
µbL)(cLγµdL) = (aLγ

µdL)(cLγµbL)

Identities involving Pauli Matrices

σ2ijσ
2
kl =

1
2δilδkj − 1

2σ
I
il · (σI)Tkj

σIijσ
2
jkσ

2
lmσ

I
mn = 3

2δinδlk +
1
2σ

I
in · (σI)Tlk

δijδkl =
1
2δilδkj +

1
2σ

I
il · σIkj

σIijσ
I
kl =

3
2δilδkj − 1

2σ
I
il · σIkj

Table 1. Fierz transformations and Pauli-matrix identities used in the analysis of LQ models.

In the mass basis, these contribute to processes such as B0
s -B̄

0
s mixing and τ → 3µ, and

their measurements can be used to further constrain the V B model.

There are a number of variants of the V B model — for example, see refs. [48–52].

Note that some of these models address the b→ sµ+µ− anomalies with a Z ′, while others

also try to explain the RD(∗) puzzle. In some models, new fermions are involved. This

introduce additional parameters, which can lead to more flexibility in predictions.

2.2 Leptoquarks

In refs. [35, 53] it was shown that six different types of leptoquark (LQ) models can explain

RD(∗) . Of these, only four lead to four-fermion operators of the desired (V −A)× (V −A)

form: (i) a scalar SU(2)L singlet S1, (ii) a scalar SU(2)L triplet S3, (iii) a vector SU(2)L
singlet U1, (iv) a vector SU(2)L triplet U3. In general, tree-level LQ exchange generates ONP

1

and ONP
2 [47]. However, different models will produce different combinations of the two

operators. Below, with the help of the identities in table 1, we determine these combinations

for each of the four LQ models. That is, we derive the relation between g1 and g2, as well

as the signs of these quantities.

Note that, unlike the V B model, four-quark and four-lepton operators are not produced

in LQ models at tree level.

2.2.1 SU(2)L-singlet scalar LQ (S1)

S1 is a scalar LQ that is an SU(2)L triplet (it transforms as (3,1,−2/3) under SU(3)C ×
SU(2)L × U(1)Y ). In the gauge basis, the interaction Lagrangian for the S1 LQ is given

by [53]

∆LS1
= h33S1

(

Q
′

L3iσ
2L′c

L3

)

S1 + h.c. , (2.14)
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where ψc = Cψ̄T denotes a charge-conjugated fermion field. When the heavy LQ is inte-

grated out, we obtain the following effective Lagrangian:

Leff
S1

=

∣

∣h33S1

∣

∣

2

m2
S1

(

Q
′

L3iσ
2
ijL

′c
L3j

)(

L
′c

L3kσ
2
klQ

′
L3l

)

(2.15)

=

∣

∣h33S1

∣

∣

2

4m2
S1

[(

Q
′

L3γ
µQ′

L3

)(

L
′

L3γµL
′
L3

)

−
(

Q
′

L3γ
µσIQ′

L3

)(

L
′

L3γµσ
IL′

L3

)]

.

SU(2)L indices have been inserted in the first line. In the second line, we have used relations

from table 1 and then suppressed the indices. Comparing this with eq. (2.1), we find

g1 = −g2 =
1

4

∣

∣h33S1

∣

∣

2
> 0 . (2.16)

When one transforms to the mass basis, the S1 LQ couples to other generations.

However, because g1 = −g2, it does not contribute to b → sµ+µ− [eq. (2.7)] and hence

cannot explain RK . So this LQ model is not of interest to us.

2.2.2 SU(2)L-triplet scalar LQ (S3)

S3 is a scalar LQ that is an SU(2)L triplet (it transforms as (3,3,−2/3)). In the gauge

basis, its interaction Lagrangian is given by [53]

∆LS3
= h33S3

(

Q
′

L3σ
Iiσ2L′c

L3

)

SI
3 + h.c. (2.17)

Integrating out the heavy LQ, we obtain the following effective Lagrangian:

Leff
S3

=

∣

∣h33S3

∣

∣

2

m2
S3

(

Q
′

L3iσ
I
ijσ

2
jkL

′c
L3k

)(

L
′c

L3lσ
2
lmσ

I
mnQ

′
L3n

)

(2.18)

=

∣

∣h33S3

∣

∣

2

4m2
S3

[

3
(

Q
′

L3γ
µQ′

L3

)(

L
′

L3γµL
′
L3

)

+
(

Q
′

L3γ
µσIQ′

L3

)(

L
′

L3γµσ
IL′

L3

)]

.

Comparing this with eq. (2.1), we find

g1 = 3g2 =
3

4

∣

∣h33S3

∣

∣

2
> 0 . (2.19)

When one transforms to the mass basis, the S3 LQ couples to other generations. The

components of the SU(2)L triplet have Qem = 2
3 ,−1

3 ,−4
3 . The Qem = 2

3 LQ contributes

to b → sℓ+ℓ− and b → cτ−ν̄, while the Qem = −1
3 LQ contributes to b → sνν̄. These

contributions are given in eqs. (2.7)–(2.9) for the above values of g1 and g2.

The S3 LQ has been studied in refs. [54, 55].

2.2.3 SU(2)L-singlet vector LQ (U1)

U1 is a vector LQ that is an SU(2)L singlet (it transforms as (3,1, 4/3)). Its interaction

Lagrangian is given in the gauge basis by [53]

∆LU1
= h33U1

(

Q
′

L3 γ
µ L′

L3

)

U1µ + h.c. (2.20)
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Integrating out the heavy LQ, and inserting SU(2)L indices, we obtain the following effec-

tive Lagrangian:

Leff
U1

= −
∣

∣h33U1

∣

∣

2

m2
U1

(

Q
′

L3iγ
µδij L

′
L3j

)(

L
′

L3kγµδkl Q
′
L3l

)

(2.21)

= −
∣

∣h33U1

∣

∣

2

2m2
U1

[(

Q
′

L3γ
µQ′

L3

)(

L
′

L3γ
µL′

L3

)

+
(

Q
′

L3γ
µσIQ′

L3

)(

L
′

L3γµσ
IL′

L3

)]

.

Comparing this with eq. (2.1), we find

g1 = g2 = −1

2

∣

∣h33U1

∣

∣

2
< 0 . (2.22)

In the mass basis, the U1 LQ couples to other generations and contributes at tree level

to b→ sµ+µ− and b→ cτ−ν̄. These contributions are given in eqs. (2.7) and (2.9) for the

above values of g1 and g2. However, because g1 = g2, there is no contribution to b→ sνν̄.

The U1 LQ has been studied in ref. [56].

2.2.4 SU(2)L-triplet vector LQ (U3)

The U3 LQ is a vector that is an SU(2)L triplet (it transforms as (3,3, 4/3)). In the gauge

basis, its interaction Lagrangian is given by [53]

∆LU3
= h33U3

(

Q
′

L3 γ
µ σIL′

L3

)

U I
3µ + h.c. (2.23)

When the heavy LQ is integrated out, the effective Lagrangian is

Leff
U3

= −
∣

∣h33U3

∣

∣

2

m2
U3

(

Q
′

L3iγ
µσIij L

′
L3j

)(

L
′

L3kγµσ
I
kl Q

′
L3l

)

(2.24)

= −
∣

∣h33U3

∣

∣

2

2m2
U3

[

3
(

Q
′

L3γ
µQ′

L3

)(

L
′

L3γ
µL′

L3

)

−
(

Q
′

L3γ
µσIQ′

L3

)(

L
′

L3γµσ
IL′

L3

)]

.

Comparing this with eq. (2.1), we find

g1 = −3g2 = −3

2

∣

∣h33U3

∣

∣

2
< 0 . (2.25)

In the mass basis, the U3 LQ couples to other generations. The components of the

SU(2)L triplet have Qem = 5
3 ,

2
3 ,−1

3 . The Qem = 2
3 LQ contributes to b → sℓ+ℓ− and

b → cτ−ν̄; the Qem = −1
3 LQ contributes to b → sνν̄. These contributions are given in

eqs. (2.7)–(2.9) for the above values of g1 and g2.

The U3 LQ has been studied in refs. [57, 58].

2.3 Summary

We briefly recap the above results. We assume that the NP couples only to the third

generation in the gauge basis, and that it produces four-fermion operators with a (V −
A)× (V −A) structure. We find that there are four NP models that contribute to both RK
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and RD(∗) . There are two operators, ONP
1 and ONP

2 , shown in eq. (2.1), whose coefficients

are g1 and g2. The four models contribute differently to ONP
1 and ONP

2 :

V B : g1 = 0 , g2 = −g33qV g33ℓV , g2 can be positive or negative ,

S3 : g1 = 3g2 =
3

4

∣

∣h33S3

∣

∣

2
> 0 ,

U1 : g1 = g2 = −1

2

∣

∣h33U1

∣

∣

2
< 0 ,

U3 : g1 = −3g2 = −3

2

∣

∣h33U3

∣

∣

2
< 0 . (2.26)

In ref. [44], it is noted that λ(3) (= g2) is positive for the S3 and U3 models, but negative

for U1. This is confirmed by the above.

3 Constraints

When one transforms to the mass basis, two new parameters are introduced, θD, θL. The

NP contributes to b → sµ+µ−, b → sνν̄ and b → cτ−ν̄. These contributions are given in

eqs. (2.7)–(2.9); the coefficients are (different) functions of g1, g2, θD, θL. Another decay

to which all four models contribute is τ → µφ. In addition, the V B model contributes to

other processes, such as B0
s -B̄

0
s mixing and τ → 3µ. The experimental measurements of,

or limits on, these processes provide constraints on the NP parameter space.

In order to compare models, we fix ΛNP = 1TeV and assume a common value for

2g33qV g
33
ℓV ,

∣

∣h33S3

∣

∣

2
,
∣

∣h33U1

∣

∣

2
and

∣

∣h33U3

∣

∣

2
. We apply all the experimental constraints to establish

the allowed region in the (θD, θL) parameter space. If there is no region in which all

constraints overlap, the model is excluded. For the models that are retained, we predict

the rates for other processes based on the allowed region in parameter space. Since this

region can be different for different models, it may be possible to distinguish them.

3.1 b→ sℓ+ℓ−, b→ sνν̄, b→ cτ−ν̄

The effective Hamiltonians for b→ sℓ+ℓ−, b→ sνν̄ and b→ cτ−ν̄ are

Heff

(

b→ sℓiℓ̄j
)

= −αGF√
2π
VtbV

∗
ts

[

Cij
9 (s̄Lγ

µbL)
(

ℓ̄iγµℓj
)

+ Cij
10 (s̄Lγ

µbL)
(

ℓ̄iγµγ
5ℓj

)

]

, (3.1)

Heff (b→ sνiν̄j) = −αGF√
2π
VtbV

∗
tsC

ij
L (s̄Lγ

µbL)
(

ν̄iγµ(1− γ5)νj
)

, (3.2)

Heff (b→ cℓiν̄j) =
4GF√

2
VcbC

ij
V (c̄Lγ

µbL)
(

ℓ̄iLγµνjL
)

, (3.3)

where the Wilson coefficients include both the SM and NP contributions: CX = CX(SM)+

CX(NP). Comparing with eqs. (2.7)–(2.9) (and recalling that LNP and Heff have opposite
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signs), we have

Cij
9 (NP) = −Cij

10(NP) =
π√

2αGFVtbV
∗
ts

(g1 + g2)

Λ2
NP

X23Y ij , (3.4)

Cij
L (NP) =

π√
2αGFVtbV

∗
ts

(g1 − g2)

Λ2
NP

X23Y ij , (3.5)

Cij
V (NP) = − 1

2
√
2GFVcb

2g2
Λ2
NP

(

VcsX
23 + VcbX

33
)

Y ij . (3.6)

In the following subsections we examine the experimentally-preferred values of the above

quantities.

3.1.1 Cµµ
9 (NP) = −Cµµ

10 (NP)

A global analysis of the b → sℓ+ℓ− anomalies was recently performed in ref. [10]. The fit

included data on B → K(∗)µ+µ−, B → K(∗)e+e−, B0
s → φµ+µ−, B → Xsµ

+µ−, b → sγ

and B0
s → µ+µ−. It was found that there is a significant disagreement with the SM,

possibly as large as 4σ, and that it can be explained if there is NP in b → sµ+µ−. There

are four possible explanations, each having roughly equal goodness-of-fits: (i) Cµµ
9 (NP) < 0,

(ii) Cµµ
9 (NP) = −Cµµ

10 (NP) < 0, (iii) Cµµ
9 (NP) = −C ′µµ

9 (NP) < 0, and (iv) Cµµ
9 (NP) =

−Cµµ
10 (NP) = −C ′µµ

9 (NP) = −C ′µµ
10 (NP) < 0. Of these, it is solution (ii) that interests us.

According to the fit, the allowed 3σ range for the Wilson coefficients is

− 1.13 ≤ Cµµ
9 (NP) = −Cµµ

10 (NP) ≤ −0.21 . (3.7)

Note that the above range of the NP contribution is consistent with the RK anomaly: the

central value of Rexpt
K can be explained with Cµµ

9 (NP) ≃ −0.55.

3.1.2 Cij
L (NP)

Cij
L (NP) can be constrained by the existing data of B̄ → Kνν̄ and B̄ → K∗νν̄ decays. The

BaBar and Belle Collaborations give the following 90% C.L. upper limits [45, 46]:

B
(

B+ → K+νν̄
)

≤ 1.7× 10−5 ,

B
(

B+ → K∗+νν̄
)

≤ 4.0× 10−5 ,

B
(

B0 → K∗0νν̄
)

≤ 5.5× 10−5 . (3.8)

In ref. [59], these are compared with the SM predictions

BSM
K ≡ B (B → Kνν̄)SM = (3.98± 0.43± 0.19)× 10−6 ,

BSM
K∗ ≡ B (B → K∗νν̄)SM = (9.19± 0.86± 0.50)× 10−6 . (3.9)

Taking into account the theoretical uncertainties [59], the 90% C.L. upper bounds on the

NP contributions are
BSM+NP
K

BSM
K

≤ 4.8 ,
BSM+NP
K∗

BSM
K∗

≤ 4.9 . (3.10)
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We have

BSM+NP
K

BSM
K

=
BSM+NP
K∗

BSM
K∗

=
1

3|CSM
L |2



3|CSM
L |2 + 2CSM

L

3
∑

i=1

Re[Cii
L (NP)] +

3
∑

i,j=1

|Cij
L (NP)|2



 ,

(3.11)

where CSM
L ≃ −1.47/ sin2 θW ≃ −6.36 (θW is the Weinberg angle). The bound on NP

therefore becomes

− 13
3

∑

i=1

Re[Cii
L (NP)] +

3
∑

i,j=1

|Cij
L (NP)|2 ≤ 473 . (3.12)

A constraint on the NP contribution can also be obtained from the inclusive decay. The

ALEPH Collaboration gives the 90% C.L. upper limit as B(B → Xsνν̄) ≤ 6.4× 10−4 [60].

However, this implies BSM+NP
Xs

/BSM
Xs

≤ 22, which is a weaker constraint than that from the

exclusive decays.

3.1.3 Cℓν
V (NP)

The constraint on Cij
V can be obtained from the comparison of the measurements of the

ratios RD(∗) ≡ B(B̄ → D(∗)τ−ν̄τ )/B(B̄ → D(∗)ℓ−ν̄ℓ) (ℓ = e, µ) with their SM expectations.

This is shown in eq. (1.2), and leads to the 3σ bounds

0.79 ≤ Rratio
D ≤ 1.79 , 1.02 ≤ Rratio

D∗ ≤ 1.53 , (3.13)

where

Rratio
D = Rratio

D∗ =

2





∣

∣1 + Cτντ
V (NP)

∣

∣

2
+

∑

j=1,2

∣

∣C
τνj
V (NP)

∣

∣

2





1 +
∣

∣1 + C
µνµ
V (NP)

∣

∣

2
+

∑

j=1,3

∣

∣C
µνj
V (NP)

∣

∣

2 . (3.14)

Here we have assumed C
eνj
V (NP) = 0.

3.2 τ → µφ

The NP effective Lagrangian of eq. (2.6) generates the process τ → µss:

Leff =
g1 + g2
Λ2
NP

X22Y 23 (sLγ
µsL) (τLγµµL) , (3.15)

which will lead to τ → µφ and τ → µη(′). Writing the hadronic currents as

〈0|sγµs|φ〉 = fφmφǫ
µ
φ , 〈0|sγµs|η(′)〉 = if

η(′)
pµ
η(′)

, (3.16)

the branching ratios (neglecting the mass of the muon) are given by

B(τ → µφ) =
f2φm

3
τττ

128πΛ4
NP

|κ|2
(

1− η2φ
)2 (

1 + 2η2φ
)

,

B(τ → µη(′)) =
f2
η(′)
m3

τττ

128πΛ4
NP

|κ|2
(

1− η2
η(′)

)

, (3.17)
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where κ = (g1 + g2)X
22Y 23, ηφ ≡ mφ/mτ and η

(′)
η ≡ m

(′)
η /mτ . Thus we obtain the

following ratio:

B
(

τ → µη(′)
)

B(τ → µφ)
=
f2
η(′)

f2φ
·

1− η2
η(′)

(

1− η2φ

)2 (

1 + 2η2φ

)
. (3.18)

We may use the following expression to estimate f2φ:

f2φ =
27mφΓφB(φ→ µ+µ−)

4πα2
em

. (3.19)

Taking the values for mφ, mτ , ττ , Γφ and B(φ → µ+µ−) from ref. [61], this yields fφ ≈
225 MeV. For the η(′) decay constant we get (using fπ = 130MeV, f1 ∼ 1.1fπ, f8 ∼
1.3fπ [62] , and θ = 19.5◦ [63])

fη = − fπ√
3

(√
2 cos θ

f8
fπ

+ sin θ
f1
fπ

)

≃ −157.63 MeV ,

fη′ =
fπ√
3

(

cos θ
f1
fπ

−
√
2 sin θ

f8
fπ

)

≃ 31.76 MeV . (3.20)

Using these we obtain

B(τ → µη)

B(τ → µφ)
∼ 0.60 ,

B(τ → µη′)

B(τ → µφ)
∼ 1.9× 10−2 . (3.21)

The current 90% C.L. limits on these branching ratios are [61]

B(τ → µη) < 6.5× 10−8 ,

B(τ → µη′) < 1.3× 10−7 ,

B(τ → µφ) < 8.4× 10−8 . (3.22)

Of these decays, τ → µη′ is the least constraining. And since τ → µφ and τ → µη are

of the same order, we will use τ → µφ to constrain the coupling κ. Using B(τ → µφ) <

8.4× 10−8 [64] and ΛNP = 1TeV, we obtain the constraint

|κ| < 0.019 . (3.23)

3.3 B0
s -B̄

0
s mixing

As noted in section 2.1, the V B model also generates four-quark operators at tree level.

In the mass basis, the operator of eq. (2.13) includes

(g33qV )
2

2m2
V

sin2 θD cos2 θD (s̄Lγ
µbL) (s̄LγµbL) . (3.24)

This generates a contribution to B0
s -B̄

0
s mixing. In the SM, the same operator is produced

via a box diagram. Here we have

NCSM
V LL (s̄Lγ

µbL) (s̄LγµbL) , (3.25)

– 14 –



J
H
E
P
0
1
(
2
0
1
7
)
0
1
5

where

N =
G2

Fm
2
W

16π2
(VtbV

∗
ts)

2 ∼ 10−11GeV−2 ,

CSM
V LL = ηBsxt

[

1 +
9

1− xt
− 6

(1− xt)2
− 6x2t lnxt

(1− xt)3

]

. (3.26)

In the above, xt ≡ m2
t /m

2
W and ηBs = 0.551 is the QCD correction [65]. The SM and NP

contributions can be combined. We define

NCV LL ≡ NCSM
V LL +

(

g33qV

)2

2m2
V

sin2 θD cos2 θD . (3.27)

The mass difference in the Bs system is then given by

∆Ms =
2

3
mBsf

2
Bs
B̂Bs |NCV LL| . (3.28)

Taking fBs

√

B̂Bs = (266 ± 18)MeV [66, 67], VtbV
∗
ts = −0.0405 ± 0.0012 [61, 68], and

mt = 160GeV [61, 69], we find the SM prediction

∆MSM
s = (17.4± 2.6) ps−1 . (3.29)

This is to be compared with the experimental measurement [70]

∆Ms = (17.757± 0.021) ps−1 . (3.30)

As we will see in the next section, the constraint on the V B model from B0
s -B̄

0
s mixing is

extremely stringent.

3.4 τ → 3µ

Finally, the V B model also produces four-lepton operators at tree level. In the mass basis,

the Lagrangian of eq. (2.13) includes the operator

− (g33ℓV )
2

2m2
V

sin3 θL cos θL (µ̄Lγ
µτL) (µ̄LγµµL) , (3.31)

which generates the decay τ → 3µ. As this is a lepton-flavor-violating decay, it can arise

only due to NP. The decay rate for τ → 3µ is then given by

B
(

τ− → µ−µ+µ−
)

= X

(

g33ℓV
)4

16m4
V

m5
τττ

192π3
sin6 θL cos2 θL , (3.32)

where X is a suppression factor due to the non-zero muon mass. In terms of ηµ = mµ/mτ ,

it is given by

X = 12

(1−ηµ)2
∫

4η2µ

dx√
x

(

x− 2η2µ
)(

1 + η2µ − x
)

√

(

x− 4η2µ
)

(

1− 2
(

x+ η2µ
)

+
(

x+ η2µ
)2
)

≈ 0.94 . (3.33)
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At present, the branching ratio for τ− → µ−µ+µ− has only an experimental upper

bound [71]:

B
(

τ− → µ−µ+µ−
)

< 2.1× 10−8 at 90% C.L. (3.34)

This then puts a constraint on θL in the V B model, which, as we will see in the next

section, is quite strong.

4 Models: allowed parameter space

Taking into account all the experimental constraints described in section 3, we find the

allowed parameter space in the four NP models. We assume ΛNP = 1TeV, and take the

third-generation coupling to be 2g33qV g
33
ℓV =

∣

∣h33U1

∣

∣

2
=

∣

∣h33U3

∣

∣

2
=

∣

∣h33S3

∣

∣

2
= 1. For the V B

model, we take g33qV = g33ℓV . (In the next section we vary g33qV and g33ℓV .) In figure 1, the

constraints in the (θL, θD) plane are shown for the V B, U1, U3 and S3 models. These are

presented only for θL ≥ 0; the space is symmetric under θL → −θL.
For all four models, the flavor anomalies RD, RD∗ and RK can be explained in the

shaded regions colored in pink, red and blue, respectively. The gray shaded region is

allowed from B̄ → K(∗)νν̄ at 90% C.L. The region bounded by the green lines is consistent

with the 90% C.L. upper limit on the branching ratio of τ → µφ. For the V B model,

there are additional constraints coming from B0
s -B̄

0
s mixing and τ → 3µ. For the τ → 3µ

constraint, the region to the left of the cyan line is allowed. The B0
s -B̄

0
s mixing constraint

is shown in the orange region, which is extremely narrow near θD = 0, π/2.

Based on this figure, one can make two observations:

• There are only two regions in parameter space where the constraints from RD, RD∗ ,

RK and B̄ → K(∗)νν̄ (if applicable) might overlap. These are roughly around π/16 .

θL . π/8, with θD near 0 (region 1) or π/2 (region 2). However, the additional

constraint from τ → φµ distinguishes the two regions. That is, while region 1 satisfies

the τ → φµ constraint, region 2 does not, and is therefore excluded. Henceforth, we

focus only on region 1.

• For the V B model, the constraint from B0
s -B̄

0
s mixing has the same shape as that from

B̄ → K(∗)νν̄. They are both independent of θL, and so bound only θD. However,

we see that the B0
s -B̄

0
s mixing constraint is much more stringent than that from

B̄ → K(∗)νν̄. For g33qV = g33ℓV = 1/
√
2, one has |θD| ≪ 1, so that it is somewhat

difficult from this figure to determine if this region is consistent with the others.

In order to obtain more information, in figure 2, we show the constraints in region 1

of the (θL, θD) plane for the V B, S3, U1, and U3 models. In the figures, we indicate the

values of the contours for the flavor anomalies, that is, RNP+SM
X /RSM

X for X = K and D(∗).

From this figure, we can see that

• For the S3 model, the RD∗ region does not overlap with the RK or B̄ → K(∗)νν̄

regions. And for the U3 model, the RD∗ and B̄ → K(∗)νν̄ regions do not overlap.

Therefore, S3 and U3 with the flavor mixing structure of eq. (2.5) are excluded.4

4A different type of the mixing for the U3 LQ is discussed in ref. [57].
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RD∗

RD

τ
→

3
µ

τ → φµ

b
→

s
µ
µ b → sνν̄

∆Ms

Figure 1. Allowed regions in the (θL, θD) plane for the V B, S3, U1, and U3 models. We have

fixed the NP scale as ΛNP = 1TeV. In each model, the third-generation coupling is taken as

2g33qV g
33
ℓV =

∣

∣h33U1

∣

∣

2
=

∣

∣h33U3

∣

∣

2
=

∣

∣h33S3

∣

∣

2
= 1. The RD, RD∗ and RK (along with the b → sℓ+ℓ− data)

anomalies can be explained in the shaded regions colored in pink, red, and blue, respectively. The

regions bounded by the gray, green, cyan, and orange lines are allowed from the measurements of

b→ sνν̄, τ → µφ, τ → 3µ, and ∆Ms, respectively. The last two observables are applicable only in

the V B model.

• For the U1 model, if θD ≤ 0.028, there is a region where all the constraints overlap,

and so this model is allowed. On the other hand, the V B model is on the edge

of exclusion — the boundaries of the ∆Ms, b → sµµ, and τ → 3µ constraints

are touching, but just barely. This also implies that the V B model only allows

limited values of these observables. From this figure we see that τ → 3µ is a critical

process for the V B model. Therefore, in addition to the 90% C.L. upper bound on

B(τ− → µ−µ+µ−) from eq. (3.34) shown in the figure (solid cyan line), we superpose

an estimated 3σ upper limit on this branching ratio (dashed cyan line).

– 17 –



J
H
E
P
0
1
(
2
0
1
7
)
0
1
5

R
K
=

0
.9
0

R
K
=
0
.5
1

R
ratio

D(∗)=1.02

R
K
=

0
.9
0

R
K
=
0
.5
1

R
ratio

D(∗) =1.53

R
ratio

D(∗) =1.02

Rratio
D(∗) =0.79

0 p

32

p

16

p

8

-
p

16

-
p

32

-
p

64

0

p

64

p

32

p

16

qL

q
D

U1 model: »hU1

33 2
= 1

R
K
=
0
.9
0

R
K

=
0
.5
1

R
ratio

D
(∗) =

0.79

R
ratio

D(∗) =1.02

R
K
=
0
.9
0

R
K

=
0
.5
1

Rratio
D(∗) =0.79

R
ratio

D(∗) =1.02

Figure 2. Magnified figures of figure 1. The color legends are the same as the previous figures.

The values of the contours for RNP+SM
X /RSM

X (X = K,D,D∗) are indicated. The RD constraint (in

pink) is satisfied for the entire region of the plot in V B and hence omitted.

• Comparing the V B and U1 models, the constraints from the flavor anomalies (RK ,

RD(∗)) are similar (for θD near 0). But the additional constraints from ∆Ms and

τ → 3µ put V B on the verge of exclusion. The limited amount of parameter space

available to V B increases its predictive power. Specifically, while the allowed region

for the U1 model includes 0.11 ≤ θL ≤ 0.73 and 0.001 ≤ θD ≤ 0.028, for the V B

model (θL, θD) is limited to be ≃ (0.333, 0.006).

The V B and U1 models are therefore the candidates to simultaneously explain the RK

and RD(∗) puzzles in the case where the NP couples predominantly to the third-generation

fermions.
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5 Predictions

We have now established that the V B and U1 models are candidates to explain the present

discrepancies with the SM in b → sµ+µ−, RD(∗) and RK . The main question we wish

to address in this paper is: is there any way of distinguishing the two models? There

are two handles that can potentially accomplish this. First, the V B model contributes to

four-lepton and four-quark operators, and hence to processes such as τ → 3µ and B0
s -B̄

0
s

mixing, while the U1 model does not.5 Second, due to additional constraints, the allowed

region in (θL, θD) space is essentially a single point for V B, while it is much larger for U1.

Below we explore the predictions of the two models for various processes. As we will see,

it is potentially possible to distinguish the V B and U1 models.

5.1 Processes

5.1.1 RD(∗)

The 3σ allowed ranges of Rratio
D(∗) are given in eq. (3.13). At present, large deviations from

the SM are allowed (up to 79% and 53% for RD and RD∗ , respectively). On the other

hand, from figure 2, we see that the V B and U1 models are allowed only if θD is very

small. This means that such large deviations in RD(∗) from the SM are not favored, as

these are inconsistent with the RK anomaly. The models predict

V B : Rratio
D(∗) ≃ 1.04 ,

U1 : 1.02 ≤ Rratio
D(∗) ≤ 1.05 . (5.1)

Thus, even if RD(∗) is measured with greater precision, it will probably not be possible to

distinguish the V B and U1 models. However, if the measurements confirm large deviations

from the SM, both models will be ruled out.

5.1.2 RK

The situation is different for RK . Using eq. (1.1), its allowed 3σ range is 0.498 ≤ RK ≤
1.036. The models predict [73]

V B : RK ≃ 0.90 ,

U1 : 0.51 ≤ RK ≤ 0.90 . (5.2)

We therefore see that the U1 model can accomodate smaller values of RK than can the V B

model. This is due to the fact that its allowed (θL, θD) region includes larger values of θL.

Thus, if future measurements of RK find it to be less than 0.90 at higher than 90% C.L.,

this would point clearly to U1 (and exclude V B).

5In this paper we perform the analysis at tree level. Radiative corrections to four-lepton operators have

been considered in ref. [72] within an EFT framework. However, as with all EFT analyses, the results do

not necessarily apply to all models. To obtain the proper result, a more complete analysis must be done

within each individual model.
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5.1.3 τ → 3µ

This decay is particularly interesting because only the V B model contributes to it. The

present experimental bound is B(τ− → µ−µ+µ−) < 2.1 × 10−8 at 90% C.L. [eq. (3.34)].

Belle II expects to reduce this limit to < 10−10 [74]. The reach of LHCb is somewhat

weaker, < 10−9 [75].

Now, the amplitude for τ → 3µ depends only on θL [eq. (3.31)]. In figure 2, we see

that the allowed value of θL corresponds to the present experimental bound. That is, V B

predicts

B(τ− → µ−µ+µ−) ≃ 2.1× 10−8 . (5.3)

Thus, the V B model predicts that τ → 3µ should be observed at both LHCb and Belle II.

This is a smoking-gun signal for the model.

5.1.4 B → K(∗)µτ

The BaBar Collaboration obtained an experimental bound of B(B+ → K+µ±τ∓) < 4.8×
10−5 at 90% C.L. [76]. Belle II will collect 100 times more data than BaBar, and this will

allow it to measure B(B+ → K+µ±τ∓) to a level of 5× 10−7 [77].

The models predict [73]

V B : B
(

B → K(∗)µτ
)

≃ 4.0× 10−10 ,

U1 : 6.8× 10−11 ≤ B
(

B → K(∗)µτ
)

≤ 2.1× 10−8 . (5.4)

Neither model can produce B(B → K(∗)µτ) sufficiently large that it can be observed at

Belle II.

5.1.5 B → K(∗)τ+τ−

The BaBar Collaboration recently put a limit of B(B+ → K+τ+τ−) < 2.25× 10−3 at 90%

C.L. [78]. Belle II will be able to improve on this, but because there are two τ ’s in the final

state, the expected reach is only ∼ 2× 10−4 [77].

To measure and calculate the branching ratio of B → K(∗)τ+τ−, we need to deal

with charmonium resonances. In analogy with B → K(∗)µ+µ−, we take q2 > 15GeV2 for

integration and obtain the partial branching ratio by using flavio [73]:

V B : B
(

B → K(∗)τ+τ−
)

≃ 4.4× 10−8 ,

U1 : 7.6× 10−10 ≤ B
(

B → K(∗)τ+τ−
)

≤ 1.5× 10−6 . (5.5)

The values of B(B → K(∗)τ+τ−) possible in both models are at least two orders of magni-

tude smaller than the estimated reach of Belle II. This decay can therefore not be used as

a signal of the V B and/or U1 models.
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5.1.6 B0
s → µτ , B0

s → τ+τ−

At present, LHCb is working on measuring these two decays, which are difficult due to the

presence of τ ’s in the final state. However, no estimates of the reach are available [79].

(At Belle II, a rough estimate for B0
s → τ+τ− could be ∼ 2 × 10−3 with 50 ab−1 of data,

obtained by rescaling the present data at Belle.)

For B0
s → µτ , the models predict

V B : B
(

B0
s → µτ

)

≃ 6.7× 10−9 ,

U1 : 1.1× 10−9 ≤ B
(

B0
s → µτ

)

≤ 3.6× 10−7 , (5.6)

while for B0
s → τ+τ− we have

V B : B
(

B0
s → τ+τ−

)

≃ 2.4× 10−7 ,

U1 : 5.8× 10−18 ≤ B
(

B0
s → τ+τ−

)

≤ 6.7× 10−6 . (5.7)

For B0
s → µτ , if the branching ratio were measured to be between 6.7×10−9 and 3.6×10−7,

this would point to the U1 model. However, it is unlikely that such a small branching ratio

is measurable. Similarly, if B(B0
s → τ+τ−) were found to be in the range 2.4 × 10−7–

6.7 × 10−6, this would indicate U1. However, here too it is not clear that such a small

branching ratio is measurable.

5.1.7 Υ → µτ

Finally, we turn to Υ → µτ . This lepton-flavor-violating decay has been overlooked in

previous analyses, but it is potentially an important process to consider.6 At the fermion

level, this decay is bb̄ → µτ , and it can receive contributions from both the V B and U1

models. Note that this process has a pattern of mixing different from the above processes,

and thus the models provide unique predictions.

In the past, the BaBar [81] and CLEO [82] Collaborations have studied lepton flavor

violation in narrow Υ(nS)(n = 1, 2, 3) decays. The strongest limits come from BaBar [81],

which put an upper limit on B(Υ(2S, 3S) → µτ) of a few times 10−6. This was obtained

using 13.6 fb−1 and 26.8 fb−1 of the BaBar dataset on the Υ(2S) and Υ(3S), respectively.

Belle II is expected to collect a few hundred fb−1 of data on the Υ(3S) [77]. A precise

estimate of the sensitivity to Υ(3S) → µτ will require a dedicated study. However, given

the order-of-magnitude increase in luminosity at Belle II compared to BaBar, we expect

roughly an order-of-magnitude improvement in the sensitivity. That is, a reach of about

10−7 for B(Υ(3S) → µτ) at Belle II is not unreasonable. These decays may also be studied

at LHCb, but we are not aware of the LHCb reach for these processes.

In the SM, the LFV decay Υ(nS) → ℓ−ℓ′+, where ℓ and ℓ′ represent leptons of different

flavor, is highly suppressed. On the other hand, in the V B and U1 models, Υ(nS) → µ−τ+

receives significant contributions. Assuming the NP is purely left-handed, the decay rate

for this process is given by

Γ
(

Υ(nS) → µ−τ+
)

=
m3

Υ(nS)f
2
Υ(nS)

48π

(

1− η2τ
)(

2− η2τ − η4τ
)

|κ|2 , (5.8)

6Quark flavor violating quarkonium decays were considered in ref. [80].
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where ητ = mτ/mΥ(nS) and κ contains the coupling corresponding to the transition bb̄ →
τµ. In the V B and U1 models we have

κ = −g1 + g2
2Λ2

NP

X33Y 32 =
g1 + g2
2Λ2

NP

cos2 θD cos θL sin θL . (5.9)

The decay constant fΥ(nS) can be found using the electromagnetic decay Υ(nS) → ℓ−ℓ+,

which is unaffected by NP. Its decay rate can be expressed as

Γ
(

Υ(nS) → ℓ−ℓ+
)

=
4πα2

27

f2Υ(nS)

mΥ(nS)

(

1 + 2η2ℓ(nS)

)√

1− 4η2
ℓ(nS) , (5.10)

where ηℓ(nS) = mℓ/mΥ(nS).

We may now combine eqs. (5.8), (5.9) and (5.10) to get predictions for the branching

ratio of Υ(nS) → µτ in the V B and U1 models. These are

V B : B(Υ(1S) → µτ) ≃ 2.3× 10−9 ,

B(Υ(2S) → µτ) ≃ 2.3× 10−9 ,

B(Υ(3S) → µτ) ≃ 3.0× 10−9 ,

U1 : 1.1× 10−9 ≤ B(Υ(1S) → µτ) ≤ 2.4× 10−8 ,

1.2× 10−9 ≤ B(Υ(2S) → µτ) ≤ 2.4× 10−8 ,

1.5× 10−9 ≤ B(Υ(3S) → µτ) ≤ 3.2× 10−8 . (5.11)

The V B model predicts a branching ratio of O(10−9), while it can be O(10−8) in the U1

model. Therefore this mode can potentially allow us to distinguish between the two models.

However, even the upper limit predicted by the U1 model seems to be out of reach of Belle

II, according to our estimate of its reach. On the other hand, perhaps Belle II or LHCb

will in fact be sensitive to branching ratios of O(10−8). Or perhaps the NP coupling is

bigger than we have assumed (see section 5.2 below), resulting in larger branching ratios.

The point is that Υ → µτ decays may provide us with valuable information in identifying

the lepton-flavor-violating NP.

5.1.8 Summary

There are therefore three observables that can distinguish the V B and U1 models:

1. τ → 3µ: V B predicts B(τ− → µ−µ+µ−) ≃ 2.1 × 10−8, its present upper limit (U1

does not contribute to the decay). This implies that the LFV decay τ → 3µ, which is

absent in the SM, should be observed at both LHCb and Belle II. This is therefore a

smoking-gun signal: it can occur only in the V B model, and if the decay is not seen,

the model would be ruled out.

2. RK : the current 3σ range for RK is 0.498 ≤ RK ≤ 1.036. The U1 model can

accomodate smaller values of RK , while the V B model cannot. Specifically, if future

measurements of RK find it to be less than 0.90 at higher than 90% C.L., this would

point to U1 (and exclude V B).
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3. Υ → µτ : to date, the LFV decay Υ → µτ has been overlooked as a test of NP models

in B decays. Within the V B model, B(Υ(nS) → µτ) is a few times 10−9, but in

the U1 model, it can reach a few times 10−8. Belle II should be able to measure

B(Υ(3S) → µτ) down to ∼ 10−7. However, this is only a very rough estimate — a

detailed study is needed for a precise determination of the reach. It may be that, in

fact, Belle II (or LHCb) will be able to observe branching ratios of O(10−8). And if

the decay Υ → µτ is observed, this will suggest the U1 model.

There are five other observables that receive contributions in the V B and U1 models: RD(∗) ,

B → K(∗)µτ , B → K(∗)τ+τ−, B0
s → µτ , B0

s → τ+τ−. However, either these observables

cannot distinguish the two models, or, if they can, the predicted branching ratios fall below

the expected reach of Belle II and LHCb.

5.2 Varying the couplings

Now, the results of the previous subsection have been found assuming that 2 g33qV g
33
ℓV =

∣

∣h33U1

∣

∣

2
= 1. However, there is nothing special about this value of the square of the coupling

(henceforth denoted coupling2). This then raises the question: if the coupling2 is allowed

to take different values, how do the results of section 5.1 change? This is examined in this

subsection.

For each new value of the coupling2, one must redo the analysis of section 4, to de-

termine the region in (θL, θD) parameter space allowed by the various experimental con-

straints. That is, figures of the type in figure 2 are produced. The following results

are found:

• For the S3 and U3 models, it is found that the RD∗ and B̄ → K(∗)νν̄ regions do not

overlap, and this is independent of the value of coupling2. S3 and U3 are therefore

excluded.

• For the V B model, the constraints essentially come from three observables:

1. B0
s -B̄

0
s mixing (∆Ms): puts an upper bound on g33qV sin θD cos θD [eq. (3.24)].

2. τ → 3µ: puts an upper bound on (g33ℓV )
2 sin3 θL cos θL [eq. (3.31)].

3. b → sµ+µ− (Cµµ
9 (NP)): puts a lower bound on (g33qV sin θD cos θD)(g

33
ℓV sin2 θL).

(There is also an upper bound, but this is not relevant for the V B model.)

These three constraints overlap at basically a single point in the parameter space.

However, one still has the freedom to relabel this point by adjusting the values of

g33qV , g
33
ℓV , θL and θD. For example, in the previous section we had g33qV = g33ℓV =

√
0.5,

(θL, θD) = (0.333, 0.006). However, two other possibilities are g33qV =
√
0.5/0.8, g33ℓV =

0.8
√
0.5, (θL, θD) = (0.392, 0.005) and g33qV =

√
0.28/1.2, g33ℓV = 1.2

√
0.28, (θL, θD) =

(0.360, 0.009). But the key point is that, in both of these cases, the predictions for

other processes are little changed from those in section 5.1.

• The U1 model is viable only if
∣

∣h33U1

∣

∣

2 ≥ 0.5. Values of the coupling2 larger than 5 are

allowed, see figure 3.
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Figure 3. Figure 2 for the U1 model, but with
∣

∣h33U1

∣

∣

2
= 0.5 (left) or

∣

∣h33U1

∣

∣

2
= 5 (right). Left: the

blue (RK) and red (RD∗) regions barely overlap, so this is the minimum value of the coupling2 for

which U1 is viable. Right: the regions overlap, so U1 is viable for
∣

∣h33U1

∣

∣

2
= 5 (as well as for larger

values of the coupling2).

In fact, we do have some information about the value of the coupling2. One can set

limits on coupling2/Λ2
NP from direct searches, assuming a certain mode of production for

the new mediator states. Following ref. [83], using the bb̄ → τ τ̄ process mediated by s-

or t-channel vector-boson or leptoquark exchange, one can get the following rough upper

bounds: |g33qV g33ℓV |max/Λ
2
NP ∼ 3TeV−2 for the V B model and

∣

∣h33U1

∣

∣

2

max
/Λ2

NP ∼ 5TeV−2 for

the U1 model. That is, for ΛNP = 1TeV, g33qV g
33
ℓV ≤ 3 and

∣

∣h33U1

∣

∣

2 ≤ 5.7

In light of these results, we rederive the predictions of the U1 model for the various

observables, allowing 0.5 ≤
∣

∣h33U1

∣

∣

2 ≤ 5. For comparison, we include the V B predictions

from section 5.1. We find

1. RD(∗) :

V B : Rratio
D(∗) ≃ 1.04 ,

U1 : 1.02 ≤ Rratio
D(∗) ≤ 1.29 . (5.12)

For coupling2 = 1, we found that, for both models, large deviations in RD(∗) from the

SM are not favored, so it is not possible to distinguish the V B and U1 models using

RD(∗) . From the above numbers, we see that, when the coupling2 is allowed to vary,

this no longer holds. If it is found that 1.04 < RD(∗) ≤ 1.29, this will indicate U1.

7To be precise, the bound given in ref. [83] should be applied as g33qV g33ℓV cos2 θD cos2 θL ≤ 3 and
∣

∣h33
U1

cos θD cos θL
∣

∣

2
≤ 5 (for ΛNP = 1TeV). The down-sector mixing, which reduces the rate of bb̄ pair

production, is negligible since θD ≪ 1 for the present case. As for the lepton mixing, it can at most reduce

the decay rate into τ τ̄ by 15% (for θL ≤ π/8). Here we (conservatively) ignore this effect, resulting in a

slightly more stringent constraint on coupling2, as shown in the main text.
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2. RK :

V B : RK ≃ 0.90 ,

U1 : 0.51 ≤ RK ≤ 0.90 . (5.13)

The result is as before: if future measurements find 0.51 ≤ RK < 0.90, this would

point clearly to U1 (and exclude V B).

3. B → K(∗)µτ :

V B : B
(

B → K(∗)µτ
)

≃ 4.0× 10−10 ,

U1 : B
(

B → K(∗)µτ
)

|max = 1.6× 10−7 . (5.14)

When the coupling2 is allowed to vary, the value of B(B → K(∗)µτ)|max predicted by

the U1 model is larger than in section 5.1. Unfortunately, it is still below the reach

of Belle II (which is 5× 10−7 [77]).

4. B → K(∗)τ+τ−:

V B : B
(

B → K(∗)τ+τ−
)

≃ 4.4× 10−8 ,

U1 : B
(

B → K(∗)τ+τ−
)

|max = 1.1× 10−4 . (5.15)

Here too, when the coupling2 is allowed to vary, we find that the value of B(B →
K(∗)τ+τ−)|max for the U1 model is increased over that in section 5.1. It may just

be attainable at Belle II (its reach is ∼ 2 × 10−4 [77]). Thus, B → K(∗)τ+τ− could

perhaps be used to distinguish the two models.

5. B0
s → µτ :

V B : B
(

B0
s → µτ

)

≃ 6.7× 10−9 ,

U1 : B
(

B0
s → µτ

)

|max = 2.8× 10−6 . (5.16)

Once again, the value of B(B0
s → µτ)|max for the U1 model is larger than that in sec-

tion 5.1. However, we cannot evaluate whether this decay can be used to distinguish

the two models as we do not know the reach of LHCb or Belle II for B0
s → µτ .

6. B0
s → τ+τ−

V B : B
(

B0
s → τ+τ−

)

≃ 2.4× 10−7 ,

U1 : B
(

B0
s → τ+τ−

)

|max = 5.4× 10−4 . (5.17)

The value of B(B0
s → τ+τ−)|max for the U1 model is larger than before. However,

we cannot evaluate whether this decay can be used to distinguish the two models as

we do not know the reach of LHCb or Belle II for B0
s → τ+τ−.
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7. Υ(3S) → µτ :

V B B(Υ(3S) → µτ) ≃ 3.0× 10−9 ,

U1 : B(Υ(3S) → µτ)|max = 8.0× 10−7 . (5.18)

Previously, we made a rough estimate that Belle II should be able to measure

B(Υ(3S) → µτ) down to ∼ 10−7. We speculated that perhaps Belle II could do

better than this (and noted that a precise determination of the reach can only

be obtained through a detailed study). However, the above predicted values of

B(Υ(3S) → µτ)|max show that, even with our rough estimate, the U1 model can

lead to rates for Υ(3S) → µτ that are easily observable at Belle II. If this decay were

seen, it would exclude V B and point to U1. This demonstrates the importance of

this process for testing NP models in B decays.

5.3 Combining observables

Above, we have seen that it is indeed possible to distinguish the V B and U1 models. V B

predicts that τ → 3µ is on the verge of being observed, while there are several other

observables that are signals of U1. Should one of these signals be seen, indicating the

presence of a particular type of NP, it would of course be very exciting. However, even more

information about the underlying NP model can be obtained by using the measurements

of other observables.

The U1 model contains three unknown parameters: θL, θD and |h33U1
|2/Λ2

NP. Then,

given the measurement of an observable that indicates the presence of the U1 model, one

can use two other observables to derive the values of all the parameters of the model. To

illustrate this, suppose that RK and RD(∗) are measured very precisely, and RK = 0.781 and

Rratio
D(∗) = 1.077 are found. If B(Υ(3S) → µτ) = 1.11× 10−8 is also measured, this points to

the U1 model. The theoretical parameters must take the values |h33U1
|2/Λ2

NP = 2.43TeV−2,

θL = 0.039, θD = 0.006. U1 then predicts B(B → K(∗)µτ) = 1.68 × 10−8, B(B →
K(∗)τ+τ−) = 5.57× 10−6, B(B0

s → µτ) = 2.80× 10−7, and B(B0
s → τ+τ−) = 2.57× 10−5.

On the other hand, the V B model is much more restrictive. It contains four unknown

parameters: θL, θD, g
33
qV and g33lV (without loss of generality we can set ΛNP = 1TeV).

Unlike the U1 model, the V B model receives severe constraints from B0
s -B̄

0
s mixing and

τ → 3µ. The constraint from B0
s -B̄

0
s mixing implies g33qV sin θD cos θD < 4.2 × 10−3, while

the constraint from τ → 3µ implies (g33ℓV )
2 sin3 θL cos θL < 1.65× 10−2 at 90% C.L. These

constraints leave no room for the V B model to explain RK less than 0.90 at 90% or

higher C.L.

6 Conclusions

At present, there are several measurements of B decays that exhibit discrepancies with

the predictions of the SM. These include P ′
5 (from an angular analysis of B → K∗µ+µ−),

the differential branching fraction of B0
s → φµ+µ−, RK ≡ B(B+ → K+µ+µ−)/B(B+ →

K+e+e−), and RD(∗) ≡ B(B̄ → D(∗)τ−ν̄τ )/B(B̄ → D(∗)ℓ−ν̄ℓ) (ℓ = e, µ). These suggest NP
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in b̄→ s̄µ+µ− (first three signals) or b̄→ c̄τ+ντ (RD(∗)). Now, suppose that NP is present,

and that it couples preferentially to the left-handed third-generation particles in the gauge

basis. In ref. [30], it was noted that, if this NP is invariant under the full SU(3)C ×
SU(2)L ×U(1)Y gauge group, then, when one transforms to the mass basis, one generates

the operators (b̄LγµsL)(µ̄Lγ
µµL) (that contributes to b̄→ s̄µ+µ−) and (b̄LγµcL)(τ̄Lγ

µντL)

(that contributes to b̄ → c̄τ+ντ ). In other words, the RK and RD(∗) puzzles can be

simultaneously explained.

This idea was explored in greater detail, using an effective field theory approach, in

ref. [44]. Here the starting point is a model-independent effective Lagrangian consisting of

two four-fermion operators in the gauge basis, each with its own coupling. It was assumed

that the transformation from the gauge basis to the mass basis leads to mixing only between

the second and third generations. As a consequence, for the down-type quarks, only one

unknown theoretical parameter is introduced: θD. Similarly, for the charged leptons, θL
is the new parameter. In the mass basis, the two operators contribute to a variety of

B decays, all with two quarks and two leptons at the fermion level: B → K∗µ+µ−,

B0
s → φµ+µ−, RK , RD(∗) , B → K(∗)νν̄. The coefficients of the operators in the mass basis

are all functions of the coupling2, θD and θL. For assumed values of the coupling2, the

experimental measurements lead to an allowed region in (θL, θD) space. This region was

found to be nonzero, showing that a simultaneous explanation of RK and RD(∗) is possible.

There are two UV completions that can give rise to the effective Lagrangian. They are (i)

V B: a vector boson that transforms as an SU(2)L triplet, as in the SM, and (ii) U1: an

SU(2)L-singlet vector leptoquark.

The purpose of this paper is to explore ways of distinguishing the V B and U1 models.

There are two reasons to think that this might be possible. First, the V B model does not

lead only to tree-level operators with two quarks and two leptons. It also produces four-

quark and four-lepton operators. As such, it also contributes to processes such as B0
s -B̄

0
s

mixing and τ → 3µ. These will lead to additional constraints on θD and θL, respectively.

Second, while V B contributes to B → K(∗)νν̄, U1 does not. The net effect is that the

experimental constraints on the V B model are more stringent than those on the U1 model.

That is, the allowed region in (θL, θD) space is smaller for V B than for U1. This implies

that the predictions for the rates of other lepton-flavor-violating processes may be very

different in the two models, which will allow us to distinguish them.

With this in mind, our first step was to apply the relevant experimental constraints

to determine the allowed region in (θL, θD) space for each of the models. The constraints

from the measurements of RK , RD, RD∗ , and τ → µφ applied to both models. For V B

there were additional constraints from B → K(∗)νν̄, B0
s -B̄

0
s mixing, and τ → 3µ.

Our intention was to then use the allowed (θL, θD) regions to compute the predictions

of the two models for various observables. However, the first step produced an unexpected

result: the constraints on the V B model are so stringent that it is just barely viable.

To be specific, the boundaries of the allowed (θL, θD) regions corresponding to the ∆Ms,

b → sµµ, and τ → 3µ constraints overlap at essentially a single point. This is a very

different result than that found in the effective field theory analysis of ref. [44]. This is

because all constraints have been included in the present model-dependent analysis. This
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illustrates that the results from the effective field theory analysis must be used carefully:

despite being “model-independent,” they do not necessarily apply to all models.

Things were very different for the U1 model. We considered two possibilities for the

coupling2:
∣

∣h33U1

∣

∣

2
= 1 and 0.5 ≤

∣

∣h33U1

∣

∣

2 ≤ 5. In either case, the allowed region in (θL, θD)

space is sizeable.

For both models, using the allowed (θL, θD) regions, we then computed the predictions

for various observables. Note that, since the (θL, θD) “region” of the V B model consists

essentially of a single point, the predictions for the observables are very specific. On the

other hand, the U1 model gives ranges for its predictions. The observables include RD(∗) ,

RK , τ → 3µ (V B only), B → K(∗)µτ , B → K(∗)τ+τ−, B0
s → µτ , B0

s → τ+τ− and

Υ(3S) → µτ . Note that the lepton-flavor-violating decay Υ(3S) → µτ has been overlooked

in previous analyses. However, it is potentially an important process for testing models

proposed to explain the B-decay anomalies.

Given that their allowed (θL, θD) regions are so different, it is indeed possible to distin-

guish the V B and U1 models experimentally. V B predicts B(τ− → µ−µ+µ−) ≃ 2.1×10−8,

which is the present upper limit. This is measurable at Belle II and LHCb, so that τ → 3µ

constitutes a smoking-gun signal for the V B model. There is no similar observable for the

U1 model. However, there are a number of processes that can potentially point to U1. We

present the results for 0.5 ≤
∣

∣h33U1

∣

∣

2 ≤ 5. For the decay Υ(3S) → µτ , we estimated that

Belle II should be able to measure its branching ratio down to ∼ 10−7. But the U1 (V B)

model predicts B(Υ(3S) → µτ)|max = 8.0 × 10−7 (3.0 × 10−9). Thus, if this decay were

observed, it would indicate U1 (and exclude V B). Another possibility is RK . Its present

allowed 3σ range is 0.498 ≤ RK ≤ 1.036. The U1 (V B) model predicts 0.51 ≤ RK ≤ 0.90

(RK ≃ 0.90). The U1 model can therefore accomodate smaller values of RK than can the

V B model, so that, if future measurements find 0.51 ≤ RK < 0.90 at higher than 90%

C.L., this would exclude V B and favor U1. Finally, for the other decays B → K(∗)µτ ,

B → K(∗)τ+τ−, B0
s → µτ , and B0

s → τ+τ−, in all cases the U1 model predicts larger

branching ratios than does V B. However, whether or not these decays can be used to

distinguish the two models depends on whether they can be observed at Belle II or LHCb.

Notes added. (1) While this paper was being completed, the Belle Collaboration re-

leased a new measurement of RD∗ [84]. They find consistency with the SM at the level of

0.6σ. Now, if this result is combined with the previous results of BaBar, Belle and LHCb,

the discrepancy with the SM is reduced. However, in any case, neither of the V B and U1

models presented in this paper allows for large deviations in RD(∗) from the SM. Thus, this

result is rather favored. (2) After this paper was submitted to the arXiv, we were informed

that LHCb has now set the upper limit B(B0
s → τ+τ−) < 3.0× 10−3 (95% C.L.) [85].
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