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Abstract

Statistical pattern recognition techniques classfy
objedsin terms of arepresentative set of features. The
seledion of features to measure and include @n have a
significant effed on the @st and acauracy of an
automated classfier. Our previousresearch has shown
that a hybrid between a k-nearest-neighbars (knn)
clasdfier and a genetic algorithm (GA) can reduce the
size of the feature set used by a clasdfier, while
simultaneously weighting the remaining features to
alow greater clasdfication accuracy. Here we
describe an extension to this approach which further
enhances feature sdledion through the simultaneous
optimizaion of feature weights and sdedion of key
features by including a masking vedor on the GA
chromosome. We present the results of our masking
GA/knn feature seledion method on two important
problems from biochemistry and medicine
identification of functional water moleaules bound to
protein surfaces, and dagnosis of thyroid deficiency.
By dlowing the GA to explore the dfed of
eiminating a feature from the dassfication without
losing weight knowledge learned about the feature, the
masking GA/knn can efficiently examine noisy,
complex, and high-dimensionality datasets to find
combinations of features which classfy the data more
acaurately.  In bath biomedical applications, this
technique resulted in equivalent or better classfication
accuracy using fewer features.

1 Introduction

The sdedion of appropriate features is an
important preaursor to most statistical pattern
recgnition methods. A good feature sdledion
medhanism helps to facilitate dasdfication by
eliminating noisy or non-representative features that

can impede reagnition. Even features which provide
some useful information can reduce the acauracy of a
clasdfier when the amount of training data is limited
[1-3]. This o-called “curse of dimensionality”, along
with the expense of measuring and including features,
demonstrates the utility of obtaining a minimum-sized
set of features that allow a clasdfier to discern pattern
classes well.

Some dassfication rules, such as the k-nearest-
neighbars (knn) rule, can be further enhanced by
multiplying each feature by a weght vaue
proportional to the ability of the feature to distinguish
among pettern classes. This feature weighting method
is aform of feature extraction — defining new features
in terms of the original feature set to facilit ate more
acaurate pattern reaognition. Feature seledion and
extraction, in combination with the Kk-nearest-
neighbars clasdfication rule, have been shown to
provide increased accuracy over the knn rule alone,
and can aid in the analysis of large datasets by
isolating combinations of features that distinguish well
among different pattern classes [4,5].

Genetic algorithms (GA's) have been applied to
the problem of feature sdledion by Siedledki and
Sklanski [6]. In their work, the genetic algorithm
performs feature seedion in combination with a knn
clasdfier, which is used to evaluate the dasdfication
performance of each subset of features sleded by the
GA. The GA maintains a feature seledion vedor
consigting of a single bit for each feature, with a 1
indicating that the feature participates in knn
clasdfication, and a 0 indicating that it is omitted. The
GA searches for a sdledion vedor with a minimal
number of 1's, such that the eror rate of the knn
clasgfier remains below a given threshold. Later work
by Punch et al. and Kdly & Davis expanded this
approach to use the GA for feature extraction [4,5].



Instead of a seledion vedor consisting of only 0's and
1's, the GA manipulates a weight vedor, in which a
discretized real-valued weight is associated with each
feature. Prior to knn classfication, the value of each
feature is multiplied by the assciated weight,
resulting in a new set of features which are linearly
related to the original ones. The goal of the genetic
algorithm is to find a weight vedor which minimizes
the eror rate of the knn classfier, while reducing as
many weights as possible to zero.

We have previoudy applied the GA/knn feature
extraction method to the problem of predicting
conserved water moleaules in protein ligand binding,
an important problem in protein and drug design [7].
In this paper we describe an expanded approach in
which the GA is used to perform simultaneous feature
sdledion and feature extraction. This approach uses
bah a feature weight vedor and a masking, or
sdledion, vedor on the GA chromosome. Feature
weights are real-valued, while the mask values are
either 0 or 1. Each feature is multiplied by bath its
weight value and its mask value prior to classfication
by a knn clasdfier. In this approach, the GA can test
the dfed of diminating a feature cmpletdy from the
clasdfication by setting its mask value to zero without
reducing the associated feature weight to zero. This
allows the feature to be re-introduced later without
losing previoudy-learned weight information. Results
of this method are cmpared with previous feature
extraction results for complex, noisy datasets from
biochemistry and medicine.

2 Methods

2.1 K-nearest-neighbors classification

A  k-nearest-neighboars  clasdfier is used to
evaluate each weight set evolved by the GA. This
alows a great deal of generdlity in the dassfication,
because the knn clasdfication method does not depend
on the data following any particular distribution,
unlike many other clasdfiers which asaime a
multivariate Gausdan distribution of the feature
values. The algorithm used in knn clasdfication is
smple. First, training patterns are plotted in a d-
dimensional feature space, where d is the number of
features being used for the dasdfication. These
training patterns are plotted according to their
observed feature values aong the @rresponding
feature axes, and labded with their known
clasdfication. For example, Figure 1la. shows training
patterns from 3 classes plotted in a 2-dimensional

feature space Each axisin this gace represents one
feature being considered by the dasdfier. Once the
training data ae plotted, the unknown objed is plotted
in the feature space according to the observed values of
its features. The unknown is then typically classfied
according to the majority class of its k nearest
neighbars. In the figure, three of the five nearest
neighbors (shaded gray) are of class2, so the unknown
is classfied as beonging to class 2. We used the
branch and bound knn algorithm [8] to improve the
efficiency of the knn by reducing the number of
distance @lculations involved in finding the nearest
neighbors of the unknown pattern.

In the weighted knn classfier, the feature values
of the training patterns and the unknown pattern are
multi pli ed by the @rresponding weight values prior to
clasdfication. The result is that the feature space is
expanded in the dimensions associated with highly
weighted features, and compressed in the dimensions
asociated with less highly weighted features, as
shown in Figure 1b. This all ows the knn clasdfier to
distinguish more finely among patterns along the
dimensions associated with highly-weighted features.
In the figure, the dassfication of the unknown pattern
changes to class 3 after feature scaling has been
applied, since four of the five nearest neighbors
(shown in gray) of the unknown are now samples from
class3. If afeature weight is zero, then al the values
in the @rresponding dmension are reduced to zero,
and that feature dfedively drops out of the
clasdfication. For our experiments, al features are
normalized over the range [1.0-10.0] prior to
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Figure1: Scalingthe KNN algorithm.



weighting and clasdfication, in order to avoid an
implicit weighting of features which have different
ranges in values.

For some applications, it is not practical to oldain
an equal number of training patterns of each class In
diagnosis of rare diseases, for example, there are far
more patients who do not have the disease in question
than those who do. If every patient's medical
information is used to train a knn classfier to classfy
a patient as “healthy” or “ill”, it is likely that there
will be a bias towards “healthy” classfications, smply
because there will be more “healthy” training points to
potentiall y contribute to the dasdfication. We anploy
two distinct approaches to iminate voting bias due to
unbalanced training data. The first approach is to
equalize the number of examples of each class by
gtratifying the randomized seledion of the training
data. All available examples of the least common
class are included in the training set, along with an
equal-sized, randomly seleded set of examples from
the more common classs. In the second approach, all
examples of each classare included in the training set.
Biasis avoided by implementing classbalanced voting
that weights the votes from members of each class
such that the sum of weighted votes over all members
of a classis equal for al clases. This approach was
successully applied by Salamov and Solowyev in their
knn approach to the prediction of protein secondary
structure [9].

2.2 The genetic algorithm

The dromosome for the masking GA/knn is
composed of two parts. The first part consists of one
real-valued weight for each of the features being
considered. In thisimplementation, the weights range
from 0 to 100 and are represented as 32-hit, unsigned,
floating-point numbers. The second part of the
chromosome is the feature masking vedor. Two
approaches were used in constructing the mask vedor.
In the first method, a single mask bit was assciated
with each feature. If the bit asociated with a certain
feature was &t to zero, then the feature was omitted
from the knn clasdfication. Otherwise, the
appropriate weight was applied to the feature as
described abowe, and the feature participated in the
knn clasdfication process normaly.  Since this
technique places sgnificant importance on a single bit
of the GA chromosome, a second method was devised
to reduce the large phenotypic variation asciated
with a single-bit genotypic changein the mask bits. In
this ond approach, m mask bits were associated

with each feature, and the feature participated in
clasdfication only if the number of 1's among these m
bits was greater than or equal to /2] Under bath
methods a feature ould also be removed from
consideration if its weight value started at or was
reduced to zero; however this unlikely event did not
occur in any of the experiments reported here.

Chromosomes are evaluated by applying the

anti - fitness(wei ght set) =
Core (# incorrect predictions)

+C, (diff erencein error rate anong classas)
+C,,.(# missed votes)
+C, o (# unmasked features)

Figure 2: Overview of the GA abjective function.
The onstants applied to each term are adjusted
empirically based on run results. For typical runs, the
contribution to the overall anti-fitness from incorred
predictions is ~72-78%, from difference in error rate
among classes, ~10%, from missed votes, ~10%, and
from unmasked features ~2-8%, depending upon the
number of features masked.

weight and mask vedors to the feature set, and
performing classfication on a set of patterns of known
class with a featureeweighted knn clasdfier. The
fitness asdgned to a chromosome is computed in
severa parts. The two most important parts of the
fitnessfunction are the aror rate of the knn classfier
on the known test data, and the number of features
which were used in the dasdfication. This allows the
masking GA/knn to simultaneoudly drive toward
greater clasdfication acauracy and the use of fewer
features. In addition, the number of incorred votesin
the knn classgfication process is used to smocath the
fitness function and provide additional guidance for
the GA. A balanceterm is also introduced to prevent
bias introduced by unequal numbers of test patternsin
different classes, thisis particularly important in the
absence of classbalanced voting. For example, if a
dataset consists of 95 patterns from classA and only 5
from class B, the balance term prevents the GA from
training the knn to always predict class A and thus
achieve a 5% apparent error rate. Since the GA
engine we are using, GAucsDp [10], is a function
minimizer, anti-fitnessis measured rather than fitness
The anti-fitness function being minimized is
summarized in Figurg.



The avail able data ae partitioned into several sets
for each GA/knn run, with or without masking. First,
the data, al of which have known class are
partitioned into a training set and a holdout set for
external testing. The training data ae then further
partitioned into a knn training set, used to populate the
knn feature space with voting examples, and another
set to be sequentially clasdfied by the weighted knn to
provide feadback to the GA on the dfedivenessof the
current weight set.  Once the GA/knn training has
converged or reached a fixed generation limit, the best
weight set identified is used along with aweighted knn
algorithm to perform an unbiased clasdfication on the
holdout test set. GA training runs were typically
exeauted for 100 0r 200 generations, with a population
size of 200.

2.3 Experiments on biochemical data

Most experiments were performed on a set of data
describing the environments of water moleaules bound
to protein surfaces, which are important for protein
function. Water moleaules in this dataset belong to
one of two classes. those displaced from the protein
surfacewhen the protein binds another moleaule, such
as a drug, and those that are mnserved. Five features
characterizing the local environment of water
moleaules in 20 independently-solved, unrelated
protein structures were alculated. These features
measure dharacteristics sich as the number of protein
atoms packed around the water moleale, the number
of hydrogen bonds between the water moleaule and the
protein, the thermal mobility of the water moleaule
measured in two different ways, and the frequency
with which the atoms surrounding the water moleaule
tend to bind water moleaules in another database of
proteins [11]. Since there were significantly more
conserved than displaced water moleaules, the dataset
was balanced by randomized seledion as described in
sedion 2.1. The result was a set of 2728 water
moleaules that were used for training and testing data
in subsequent experiments.

2.4 Experiments on medical data

A semnd set of experiments was done to
determine the ability of the masking GA/knn to
perform feature seledion on a dataset of higher
dimensiondlity than the waters data.  For these
experiments, we seleded a medical dataset consisting
of 21 clinical test results for a set of patients being
tested for thyroid dysfunction. The training set is
composed of test results for 3772 cases from the year

1985 whil e the testing data consists of the 3428 cases
from 1986 The godl is to determine whether or not a
patient is hypothyroid. Previous analyses of this data
have shown that traditional clasdfiers, including
discriminant analysis, Bayes clasdfiers, and neura
networks can clasdfy this dataset well using all
avail able features [12,13]. Our goal was to determine
if the masking GA/knn can be trained to provide
comparable dasdfication performance with a
significant reduction in the number of clinical tests
required.

The number of samples of each class is highly
unbalanced in bath the training and testing data. The
training set contains 3487 negative (non-hypothyroid)
samples, and 284 msitive samples. The testing data
consists of 3177 negative samples and 250 positive
samples. Due to thisimbalance classbalanced voting
was used for experiments with unweighted knn
clasdfication, and with the masking GA/knn.
Masking runs were done using 15 mask bits and one
32-hit floating point weight for each feature, for atotal
chromosome length of 987 bits.

3 Results

3.1 Classification of protein-bound water
molecules

The goals of our research on protein-bound water
molealles are twofold. First, we would like to be able
to classfy whether spedfic water moleaules are more
likdy to be nserved or displaced upon ligand
binding. We have previousy shown that a knn
clasgfier in combination with a GA feature extractor
can achieve significantly improved classfication for
bound waters, compared to unweighted knn
clasdfication, and linear and quedratic discriminant
anaysis [7]. We have aso used a genetic
programming (GP) approach to apply a polynomia
function, rather than a linear coefficient, to each
feature prior to knn classfication [14]. The GP
approach showed an improved performance due to the
ability to discover non-linear relationships between
features, but was more prone to the problem of “over-
fitting” — finding overly spedfic dasdfication rules
that perform well on the training data, but do not
generalize well to new data.

The second goal of our protein-water research is
to elucidate the determinants of water binding on the
protein surface — that is, which features are important
for binding, and which features are lessrelevant. The



inclusion of mask bits in the GA chromosome, and
subsequent feature seledion results, succeel in
identifying combinations of features which distinguish
well  between conserved and dsplaced water
molealles. By analysis of these results we @n gain
insight into which chemical and structural factors are
more important contributors to the @nservation of
water molecules in ligand binding.

GA runs for feature etraction aone, then
extraction in combination with seledion, were done
using jackknife aossvalidation [15]. In each of these
jackknife tests, the 2728 available water moleaules
were partitioned into training and holdout-testing sets.
The acauracy of the dasdfier is observed and averaged
over several runs with similar initial conditions, but
different balanced but otherwise randomly-seleded
training and testing sets. For feature extraction runs,
the training set contained 2296waters, 1148 of which
were known-class waters used to populate the knn
feature space and 1148 of which were knowns
clasdfied to provide feadback to the GA. The other
432 waters, treated as unknowns, composed the
holdout test set. For masking runs, a similar training
set of 2300 waters was divided equally between knn
population and weight tuning, and the holdout-test set
had 428waters. Table 1 shows the unbiased holdout
test results of several experiments using only feature
extraction. The value of k was st to 39 for al runs
after being optimized as described in [7]. The
clasdfier's conserved water, displaced water, and
overall predictive accuracy are shown, along with the
weights applied to each feature. In order to reducethe
amount of redundant information on the diromosome
in the form of linearly-related weight sets, a parsmony
term was added to the fitness function to reward
weights of smaller magnitude by penalizing each
weight set acoording to the sum of its weights.

Individual weight sets were then normalized to sum to
1.0 to facilitate comparison between weights from
different runs.

Masking runs were done using the same
weighting scheme as the extraction-only runs, with the
addition of single mask bit per feature to the GA
chromosome. An additional feature, NMOB,
refleding atomic mohility as a combination of atomic
ocaupancy (OCC) and temperature factor (BVAL),
was included in these runs to assesswhether NMOB or
BVAL provided more dasdfication power. The
holdout test results of the masking runs are shown in
Table 2. Weights of zero indicate that a feature was
masked and not used in the knn classification.

Weight sets with two o three features masked
performed equivalently in clasdfication accuracy to
weight setsincluding all four featuresin previous runs
(Table 1). Masking of weights was consistent from
run to run, with different masking patterns tending to
be assciated with different classfication balance and
acauracy. It is possble to classfy bound water
molealles as conserved or displaced with 68%
acauracy and goad balance using only three features,
atomic density, B-value, and number of hydrogen
bonds, saving the need to measure atomic
hydrophilicity and mobility values.

Predictive Accuracy Feature Weights

Cons Disp Total NADN NAHP NBVAL NHBD

81.02% 57.41% 69.21% | 0.149 0.276 0.229 0.346

81.94 55.09 68.52 0.161 0.328 0.173 0.337
74.54 61.57 68.06 0.031 0.323 0.255 0.391
75.46 59.72 67.59 0.061 0.051 0.613 0.275
77.31 57.41 67.36 0.055 0.235 0.383 0.328
69.44 62.50 65.97 0.168 0.116 0.303 0.412
67.59 63.43 65.51 0.056 0.360 0.222 0.361
72.22 56.48 64.35 0.006 0.347 0.330 0.317
68.98 58.80 63.89 0.094 0.190 0.224 0.492
71.76 52.31 62.04 0.097 0.040 0.518 0.345

Table 1: Results of GA feature extraction runs with parsimony. Prediction accuracy for
conserved (Cons) and displaced (Disp) water moleaules, as well as the total prediction
acauracy over bath classes, are shown. Also shown are the final weights found by the genetic

algorithm for each feature:

normalized atomic density (NADN), normalized atomic 5

hydrophili city (NAHP), normali zed B-value (NBVAL), and normali zed hydrogen-bond count
(NHBD). For further details about these features and the GA/knn feature extractor, see [



Predictive Accuracy Feature Weights
Cons Disp Total NADN NAHP NBVAL NHBD NMOB
67.29% 69.63% 68.46% | 0.175 0.000 0.491 0.335 0.000
64.02 70.56 67.29 0.142 0.219  0.000 0.437 0.202
62.62 70.09 66.36 0.000 0.373 0.000 0.414 0.213
68.22 62.62 65.42 0.000 0.000 0.130 0.536 0.334
64.95 65.89 65.42 0.000 0.000 0.581 0.419 0.000
65.42 64.95 65.19 0.000 0.400 0.000 0.263 0.337
61.68 66.36 64.02 0.166 0.000 0.463 0.371 0.000
64.02 64.02 64.02 0.000 0.000 0.470 0.153 0.377
65.42 61.68 63.55 0.000 0.000 0.000 0.278 0.722
64.02 62.62 63.32 0.000 0.000 0.752 0.248 0.000
66.36 59.35 62.85 0.000 0.000 0.575 0.425 0.000
63.55 60.28 61.92 0.180 0.000 0.307 0.514 0.000
61.68 62.15 61.92 0.000 0.000 0.505 0.495 0.000
59.35 63.08 61.21 0.191 0.000 0.333 0.476 0.000
64.95 56.07 60.51 0.158 0.254 0.279 0.309 0.000

Table 2. Feature extraction and selection results. Prediction accuracy for conserved (Cons), and
displaced (Disp) waters are shown, aswell asoverall prediction accuracy for bath classes. The final, unit-
normali zed weight set for each run is also shown. Weightsin bdd face were masked by the GA and thus

reduced to zero for the knn classification.

3.2 Medical data classification

Experiments with the high-dimensionality thyroid
data indicate the utility of the masking technique in
datasets with a large number of features. An
unweighted knn using all features was used to classfy
the thyroid data for odd values of k ranging from 3 to
9 to determine the optimal k-value for the knn rule.
The best clasdfication was achieved at k=5, but the
clasdfier exhibited a strong bias toward negative
diagnoses. The predictive acauracy for non-
hypothyroid patients was 98.21%, whil e the predictive
acauracy for patients with hypothyroid was 30.40%,
with an overall acauracy of 93.26%. When class
balanced voting was utilized in an unweighted knn,
the bias was overcome at a cost in overall predictive
acauracy. A classbalanced knn clasdfier at k=5
achieved a predictive acauracy of 69.53% for positive
hypothyroid, 70.00% for class negative hypothyroid,
and 69.57% overall.

By alowing the GA to apply weights to the
features, the predictive accuracy of the knn classfier
was improved significantly, and balance between the
clases was maintained. The masking GA/knn
achieved a predictive accuracy of 94.30% for non-
hypothyroid petients, 94.00% for hypothyroid petients,
and 9428% overall. More remarkably, the inclusion
of mask hits for feature seledion allowed the GA to

achieve an even greater predictive accuracy, while
using only 5 of the original 21 features. The masking
GAJ/knn attained a predictive accuracy of 97.73% for
non-hypothyroid, 98.00% for hypothyroid positive,
and 97.75% overall using the following (normalized)
weight set:

AGE MALE OTHY QrHY
0. 000000 0.391041 0.053148 0. 000000

OMVED SI CK PREG SURG
0. 000000 0. 000000 0.000000 0.108802

1131 QO QPER LI TH
0. 146451 0. 000000 0. 000000 0. 000000

TUM T HPI' T PSY
0. 000000 0. 000000 0.000000 0.000000

TSH T3 TT4 T4U
0. 300558 0. 000000 0. 000000 0.000000

FTI
0. 000000

4 Discussion

In comparing feature-weighting-only runs with
weighting-and-masking runs for bath the waters data
and the thyroid data, the most notable result is that the
predictive accuracy ohtained by each technique is
similar, but the masking runs are able to oltain this
level of predictive accuracy using significantly fewer
features than the weighting runs, which use all



avail able features to some extent. This ability allows
the GA/knn to function not only as a classfier, but
aso as a data mining tedhnique. By exposing
combinations of features which distinguish well
between pattern classes, the masking GA/knn can help
researchers to analyze large datasets to determine
interrel ationships among the features, identify features
related to oljed classfications, and iminate features
from the dataset without an adverse dfed on
clasdfication performance In the @ase of the waters
data, this ahility can help to isolate those physical and
chemical properties of water molealle ewvironments
that act as determinants of conserved water moleaules
upon ligand binding. In the @se of the thyroid data,
only 5 clinical tests are required, as opposed to 21, and
result in higher diagnostic accuracy.

Traditional feature seledion techniques, such as
the (p, q) agorithm [13], floating forward seledion
[3], and branch and bound feature seledion [12],
operate independently of feature etraction. By
allowing feature extraction and sdledion to ocour
simultaneoudly, the masking technique alows a
genetic  algorithm  the opportunity to find
interrelationships in the data that may be missed when
feature sdledion and feature etraction are
independent.
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