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Abstract Background/ introduction: Support Vec-

tor Machine (SVM) is considered to be one of the most

powerful learning algorithms and is used for a wide

range of real world applications. The efficiency of SVM

algorithm and its performance mainly depends on the

kernel type and its parameters. Furthermore, the fea-

ture subset selection that is used to train the SVM

model is another important factor that has a major in-

fluence on it classification accuracy. The feature subset

selection is a very important step in machine learning,

specially when dealing with high dimensional data sets.

Most of the previous researches handled these impor-

tant factors separately. Methods: In this paper, we

propose a hybrid approach based on the Grasshopper

Optimisation Algorithm (GOA), which is a recent al-

gorithm inspired by the biological behaviour shown in
swarms of grasshoppers. The goal of the proposed ap-

proach is to optimise the parameters of the SVM model,

and locate the best features subset simultaneously. Re-
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sults and Conclusions: Eighteen low and high di-

mensional benchmark data sets are used to evaluate

the accuracy of the proposed approach. For verifica-

tion, the proposed approach is compared with seven

well-regarded algorithms. Furthermore, the proposed

approach is compared with grid search, which is the

most popular technique for tuning SVM parameters.

The experimental results show that the proposed ap-

proach outperforms all of the other techniques in most

of the data sets in terms of classification accuracy, while

minimizing the number of selected features.

Keywords SVM · Support vector machine · Grasshop-

per Optimisation Algorithm · GOA · Optimisation ·
Feature selection · Metaheuristics

1 Introduction

Bio-inspired systems have been intensively investigated

for optimising different cognitive and learning algorithms

[46,13,23,1]. One of these algorithms is the Support

Vector Machine (SVM), which is a well-known super-

vised classification algorithm. SVM was first proposed

and implemented by Vladimir Vapnik [42,43]. The SVM

algorithm is one of the most popular supervised mod-

els and is considered to be one of the strongest method

in the machine learning field. SVM has some power-

ful characteristics compared to other methods such as

excellent generalization performance, which is able to

generate high quality decision boundaries based on a

small subset of training data points. In addition, the

SVM has a high ability to model complex and non-

linear relations [39,48].

The basic idea behind the SVM algorithm is to find

the optimal hyperplane that separates two classes by
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maximizing distance between the the margin of the hy-

perplane and the data points in the given data set.

Due to these capabilities, the SVM has been applied

on various applications and shown efficient performance

in a wide range of challenging real-world problems, such

as bio-medical applications [38,3], pattern recognition

[55], anomaly detection [29,36], and many others [49,

54,56,2,31,35,32].

Although the SVM algorithm has many advantages,

it also suffered from some limitations such as sensitivity

to the initial values of its parameters. These parame-

ters include the Cost (C) and the kernel parameters

such as the gamma (γ) parameter in the Radial Basis

Function (RBF) kernel. Improper selection of these pa-

rameters can negatively impact the generalization per-

formance of the SVM. In addition to this limitation,

SVM is like many other machine learning algorithms, its

performance depends on the selected data set features,

which is critically important in improving the general-

ization performance, increasing the computational ef-

ficiency and reducing running time, and produce very

accurate classification model [28,44].

Grasshopper Optimisation Algorithm (GOA) is a

recent metaheuristic optimiser, which was proposed by

Saremi et al in [34,27]. GOA mimics the behaviour of

grasshopper swarms in nature and simulates the repul-

sion and attraction forces between the grasshoppers.

The authors in [34] showed that this algorithm can out-

perform other well-regarded and modern metaheuristic

algorithms based on a suite of complex benchmark func-

tions and engineering problems.

In this work, we propose a new GOA-SVM model,

which applies GOA, for the first time in combination

with SVM. In this mode, GOA is utilized for perform-

ing feature selection and optimising the parameters of

SVM simultaneously. The goal of the model is to maxi-

mize the classification accuracy of SVM with the small-

est possible number of features. The proposed approach

is evaluated based on eighteen public data sets of low

and high dimensions. For verification, the proposed ap-

proach is compared with seven well regraded and mod-

ern algorithms such as Genetic algorithm (GA), Parti-

cle Swarm Optimization (PSO), Grey Wolf Optimizer

(GWO), Firefly Algorithm (FF), Bat Algorithm (BA),

Cuckoo Search (CS) and Multi-Verse Optimiser (MVO).

Furthermore, the proposed approach is compared with

grid search, which is a classical technique used for tun-

ing SVM parameters.

This paper is organized as follows: In Section 2 we

review the previous related works. Section 3 briefly de-

scribes the GOA algorithm. Section 4 presents the SVM

classifier. Section 5 discusses in detail the proposed ap-

proach for feature selection and SVM optimisation based

on the GOA algorithm. The experiments and results

are implemented and analysed in Section 6. Finally, we

summarize the conclusions and future directions of this

work in Section 7.

2 Related Works

In the literature there have been different trends fol-

lowed by researchers for tuning the parameters of SVM

algorithm. Some researchers simply try different sets

of values to tune these parameters by trial and error

to reach some acceptable performance. Another tradi-

tional approach is to use a simple grid search, but this

method is very slow and does not provide satisfactory

results due to the large number of parameter combi-

nations [37,57]. A third approach is based on utilizing

evolutionary or swarm intelligence algorithms. These al-

gorithms belong to the metaheuristic search algorithms

family. They are inspired by some theories and phenom-

ena in nature like biological evolution or the movements

of swarms of creatures in nature. Examples of such algo-

rithms which were applied for optimising SVM parame-

ters are Genetic Algorithms (GA) [33], Particle Swarm

Optimisation (PSO) [4,6], BAT Algorithm (BA) [41],

FireFly (FF) [40], Cuckoo Search (CS) [30], and Grey

Wolf Optimiser (GWO) [11].

Realizing the importance of the feature selection

process on the classification accuracy of the SVM mod-

els, a distinguished line of research extended the ap-

plication of evolutionary and swarm intelligence algo-

rithms to perform feature selection concurrently with

optimising the parameters of the SVM. One of the ear-

liest works that followed this approach was conducted

by Huang and Wang in [16]. The authors proposed a

GA-based approach for optimising the kernel parame-

ters of the SVM and feature selection with the goal of

preserving the classification accuracy of the developed

SVM model. Their experimental results showed that

GA can outperform the grid search method with even

fewer features. Another notable work was conducted by

Lin et al in [22]. They used PSO for the same task and

showed that it can outperform grid search, however it

had very similar performance to GA. Other more recent

examples of this approach can be found in [12,15,20,8,

24]. Although this line of research is very promising,

the amount of work that address optimising the SVM

parameters at the same time as performing feature se-

lection are still relatively scarce.

The No Free Lunch theorem in optimisation [45]

states that there is and will never be an optimisation

algorithm to solve all optimisation problems. Therefore,

new algorithms have the potential to outperform the ex-

isting ones on a set of problems. The GOA algorithm
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is a newcomer and potentially able to show better re-

sults with or without modification as compared to the

existing algorithms. Saremi et al. [34] showed that this

algorithm outperformed most of the existing algorithms

on challenging problems with a large number of local

solutions (multi-modal). This justifies the use of this al-

gorithm in this work since we intend to take advantage

of its new operators to solve classification problems.

3 The Grasshopper Optimisation Algorithm

The GOA algorithm was proposed in 2016 by Saremi

et al. [34]. This algorithm mimics the swarming be-

haviour of grasshoppers in nature. The flying path of

a grasshopper in a swarm is affected by three compo-

nents: social interaction (Si), gravity (Gi), and wind

advection (Ai). In the GOA algorithm, the social in-

teraction is the main mechanism of search defined as

follows:

Si =

N∑
j=1,j 6=i

s(dij)d̂ij (1)

where dij is the distance between i − th and j − th

grasshopper and it is calculated as dij = |xj − xi|, s is

a function to define the strength of social forces, and

d̂ij =
xj=xi

dij
is a unit vector from i− th grasshopper to

the j − th grasshopper.

It may be seen in this equation that the main com-

ponent of the social interaction is the function s. This

function defines the movement direction of a grasshop-

per in the swarm and defined as follows:

s(r) = fe
−r
l − e−r (2)

where f indicates the intensity of attraction and l is the

attractive length scale.

This function causes two types of forces between the

grasshoppers: attraction and repulsion. When the dis-

tance between two grasshoppers is between [0, 2.079],

they repel each other to avoid collision. The attraction

force increases when the distance is in [2.079, 4] to main-

tain the cohesion of the swarm. When the distance is

exactly 2.079, there is no force, and this area is called

comfort zone. A conceptual model of attraction, repul-

sion, and comfort zone is visualized in Fig. 1.

If the distance becomes equal to 2.079, there is no

attraction and repulsion. The attraction force increases

from 2.079 unit of distance to nearly 4 and then it grad-

ually decreases. Changing the parameters of the equa-

tion for the function s (l and f) changes the swarm-

ing behaviour significantly. To show the interaction be-

tween grasshoppers with respect to comfort area, Fig.

1 shows a conceptual schematic.

The swarm model is efficient in simulating the in-

teractions between grasshoppers. However, it must be

adjusted to design an optimisation algorithm. Saremi

et al. [34] proposed the following mathematical model

search while grasshoppers are interacting. The mathe-

matical model is represented by the following equation:

Xd
i = c

(
N∑

j=1,j 6=i

c
ubd − lbd

s
s
(
|xdj − xdi |

) xj − xi
dij

)
+ T̂d

(3)

where ubd is the upper bound in the d− th dimension,

lbd is the lower bound in the d− th dimension, T̂d is the

value of d − th dimension in the target (best solution

found so far), and c is a decreasing coefficient to shrink

the comfort area, repulsion area, and attraction area.

It may be seen in this equation that the swarm up-

dates the position around a target (T̂d ). The parameter

c converges the swarm towards the target. In the GOA

algorithm, it is assumed that the target is the best solu-

tion obtained so far. While grasshoppers are interacting

and chasing the target, the best solution is updated if

a better solution is encountered.

The parameter c is the main controlling parameter

in the GOA algorithm and, is updated using the follow-

ing equation:

c = cmax − l
cmax − cmin

L
(4)

where L shows the maximum number of iteration, l is

the current iteration, cmax = 1, and cmin = 0.00001.

Fig. 2 illustrates the effect of the previous equation.

This shows the position of the target in 3D space over

100 iterations of the algorithm. The figure illustrates

how the mathematical model is employed to implement

the movement of a swarm around a target in a 3D space.

Due to the use of vectors in the equations, this can be

extended to any number of dimensions.

It has been proven that the GOA is very efficient in

finding optimal solutions for challenging problems. De-

spite the simplicity, the algorithm properly gravitates

solutions towards to best regions of the search space.

The initial population is very important in GAO since

the number of random components is very limited in

this algorithm.

The computational complexity of the GOA algo-

rithm (excluding SVM in the proposed algorithm) is of

O(t∗d∗n∗n) where n is the number of solutions, t is the

number of iterations, and d is the number of variables.

This is because, the distance of a grasshopper to all the

others should be calculated in each dimension over the

course of iterations. Note that this computational com-

plexity does not consider the cost of objective function

since it varies for every problem.
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Fig. 1: Attraction, repulsion, and comfort zone in GOA

 
    (a)                (b)       (c)           (d) 

 

 

Fig. 2: Trajectory of swarm (a) in 3D space (b) x-y view (c) x-z view (d) y-z view

4 Support Vector Machines

Support Vector Machine (SVM) is a non-linear binary

classifier that was developed by Vladimir Vapnik [10,

42,43]. The are an extension of the Support Vector

Classifier (SVC) to accommodate the non-linear bound-

aries between classes, which in turn is an extension of

the Maximal Margin Classifier (MMC) that is limited

to simple linearly-separable data [7]. SVMs are used in

supervised learning and work for both classification and

regression.

Formally, an SVM constructs linear separating hy-

perplanes in high-dimensional vector spaces in which

each data point can be viewed as (xi, yi) pair, where

xi is the feature vector (xi1, xi2, . . . , xip); p is the num-

ber of features, i = 1, . . . , n, where n is the number of

training observations, and yi is the class label; usually

{−1, 1} [17]. If the feature space is well separated, sev-

eral hyperplanes will exist that separate the data points

belonging to the two labelled classes into separated re-

gions in the space. The best hyperplane is defined as the

one that maximizes the distance to the nearest train-

ing data points; this distance is called the margin. The

observations that are far from the hyperplane by a dis-

tance equal to the margin are called support vectors

(SV). These vectors are located in the feature space.

The hyperplane location depends directly and only on

these observations SV, such that if any of these obser-

vations change their locations, the location of the hy-

perplane will also be changed accordingly [17]. Fig. 3

shows the illustration of the idea of the optimal hyper-

plane and support vectors in SVM.

The linear separating hyperplanes will lead to op-

timal classification. However, in most of the cases the

data points that belong to different classes are not clearly

separated, and hence, linear classification will lead to

substantial misclassification. One way that SVMs can

handle such frequent cases is the ability to map the orig-
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inal feature space (most likely non-linear) to a higher-

dimensional space ϕ, in which the data points that be-

long to different classes have clearer separation bound-

aries (become linearly separable). The high-dimensional

space results from non-linear enlarging of the original

space using kernel functions. Kernel functions have sev-

eral forms such as:

– Linear kernels with the following form:

k (xi, x
′
i) =

p∑
j=1

xijx
′
ij ,

– Polynomial kernels with the following form:

k (xi, x
′
i) = (1 +

p∑
j=1

xijx
′
ij)

d ,

– RBF kernels with the following form:

k (xi, x
′
i) = exp(−γ

p∑
(

j=1

xij − x′ij)2) ,

Where k (.) is the kernel function and its value is the

inner product of the two observation vectors xi and x′i.

In the transformed feature space ϕ the inner product

of two vectors can be represented as ϕ (xi).ϕ (x′i). A

SVM is a support vector classifier with non-linear kernel

function.

A major determinant of the performance of the SVM

is the selection of its kernel function and their param-

eters. In this paper, we used the GOA algorithm for

optimising these parameters.

5 GOA for optimising SVM and feature

selection

In this section, we describe the methodology followed

to use GOA for feature selection and optimising the

parameters of SVM simultaneously. The methodology

adopted is based on the wrapper based approach for

feature selection. Wrapper is a type of feature selection

method, which evaluates the selected subset of features

based on their predictive measure. The main advan-

tage of this approach is that it incorporates a learning

algorithm to evaluate the searched subset of features.

Wrapper based feature selection consists of three main

components: a search method, an inductive algorithm,

and an evaluation measurement [19]. In our implemen-

tation, GOA is used as a search algorithm for finding

a good subset of features, SVM is used as an induc-

tive algorithm, while classification accuracy is utilized

as an evaluation measure. Fig. 4 shows the high level

of the wrapper based approach that is used for feature

selection based on GOA and SVM.

In order to apply any metaheuristic algorithm for

optimising a problem, there are two formulation issues

that should be addressed. The first is how the individ-

ual (i.e. solution) is represented, while the second is

the selection of a fitness function used for evaluating

the quality of the generated solutions. In our proposed

GOA-SVM, we address both points as follows.

– Individual/Population representation: To address this

point we must decide which decision variables to

represent in the individual. In our case, these vari-

ables are the SVM parameters and the input fea-

tures. Therefore, in our implementation, a single so-

lution is represented as a one-dimensional vector of

real numbers as shown in equation 5. The first two

elements of the vector are the candidate hyperpa-

rameters of the SVM, which are the cost C and the

kernel parameter γ. Other elements of the vector

represent a sequence of flags, where each flag corre-

sponds to a feature. That is, if the value of the flag

is larger or equals to 0.5 then the feature is selected,

otherwise the feature is excluded.

Ii = [C γ F1 F2 . . . Fn ] (5)

– Fitness evaluation: The quality of every generated

individual is assessed using a predefined measure-

ment. For this purpose, a fitness function should be

defined. In the proposed model, the fitness function

relies on the average classification accuracy of the

SVM models trained using the parameters and fea-

tures indicated by the individual. This fitness func-

tion can be formulated as shown in equation 6, and

will be used to evaluate the quality of individual Iti
at iteration t, where c(xj) is the classification result

of the jth instance in the testing data set, yj is the

actual class label of the jth instance, δ is the rela-
tion between c(xj) and yj that is if c(xj) = yj then

δ = 1 otherwise δ = 0. N is the number of instances

in the testing data set. Note that the fitness evalu-

ation is measured based on K-folds cross validation

where K denotes the number of folds. The latter

step is important to avoid the problem of overfit-

ting and consequently to obtain more robust results.

This cross-validation will be referred to as an inter-

nal cross-validation.

fitness(Iti ) =
1

K

K∑
k=1

1

N

N∑
j=1

δ(c(xj), yj) (6)

After deciding on these two design issues, the pro-

cesses of running the GOA-SVM model can be described

as follows:

1. Initialization: The GOA-SVM model starts with an

initial random population of candidate solutions where
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Fig. 3: Illustration of the idea of the optimal hyperplane and support vectors in SVM

Fig. 4: Wrapper based approach for feature selection based on GOA and SVM

each solution consists of the C and γ parameters and

a number of flags corresponding to the features in

the data set as was shown in equation 5.

2. Update and reproduction: reproduction operators of

the GOA are applied in this step on all individuals

to form a new population of candidate solutions.

3. Fitness evaluation: the quality of every generated in-

dividual is assessed using the fitness function, which

was described previously in equation 6.

4. Termination: the search process for the best solu-

tion ends when the maximum number of iterations

is reached. Then, the GOA-SVM model reports the

best SVM parameters along with the subset of fea-

tures that was found to have the highest classifica-

tion accuracy.

5. Testing: For verification, the final step is to test the

developed SVM model with the selected parameters

and features based on an unseen and new part of the

original data set.

The overall process of the proposed GOA-SVM model

can be summarized as depicted in the schematic di-

agram shown in Fig. 5. The diagram shows that the

proposed approach starts by specifying the input data

set. After that, some of the preprocessing operations are

applied such as data normalization, and missing value

handling. After this step, the training and testing parts
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are performed based on a cross-validation methodol-

ogy. The training part is then used in the SVM pa-

rameters optimisation and the feature subset selection.

After that, the optimisation process is started using the

GOA algorithm to find the best SVM parameters and

the most relevant feature subset of the SVM model. Af-

ter this iterative process, the final SVM model is used

to evaluate the testing data using the classification ac-

curacy evaluation measure.

6 Experiments and Results

To evaluate and benchmark the proposed GOA-SVM

approach, 18 binary and multi-class data sets were ob-

tained from the University of California at Irvine (UCI)

Machine Learning Repository 1 [21]. The description of

the data sets in terms of number of instances, number

of features, and number of classes is given in Table 1. As

can be seen, the data sets are varied in their size, and

number of dimensions, in order to test the proposed ap-

proach on different scales of problem complexity. More-

over, most of the data sets (14 out of 18) are considered

high-dimensional data sets, as they have more than 10

features/dimensions [5,18]. It is worth mentioning that

many of these data sets have been used in the literature

for testing SVM based classifiers.

To give an equal weight for all features, it is impor-

tant to convert them all to the same scale. Therefore, all

data sets are normalized before the training process. In

this work we apply the Min-Max normalization, which

can be defined as given in Equation 7, where Fnew is

the newly transformed feature, minF and maxF are the

minimum and maximum values of the targeted feature

F . Using this Equation, all features are scaled to the

interval [0,1].

Fnew =
Fi −minF

maxF −minF
(7)

As a training/testing methodology, we apply a 10-

folds cross validation, where each data set is divided

into 10 equal parts. Nine parts are used for training

and one for testing. Then, another nine parts are used

for training and the 10th part is used for testing and

so on. This processes is repeated 10 times. Finally, the

average of the classification accuracy on testing parts

is reported.

The GOA-SVM approach is compared to MVO, GA,

PSO, GWO, FF, BA, and CS approaches using the 18

data sets in order to verify its performance. Further-

more, the comparison with the gird search method is

1 http://archive.ics.uci.edu/ml/

discussed. To make the comparisons fair, the experi-

ments are repeated for 10 times/runs to minimize ran-

dom effects. Each run is set to 100 iterations as stop-

ping criteria. Furthermore, all settings and parameters

that are used in the experiments for all algorithms are

presented in Table 2.

The implementation of the proposed model is de-

veloped on Matlab R2015a environment. Foe SVM, we

used Libsvm [9]. The experimental evaluation was per-

formed on a PC with an Intel Core i5-6400, 2.70 GHz,

8 GB RAM, and Windows 7.

Classification rate or accuracy is the main evalua-

tion measure that is used to assess the performance of

the GOA-SVM as well as the other algorithms. Accu-

racy measures the ratio of the correctly classified in-

stances to the actual classes. For each experiment, Av-

erage (Avg), and Standard Deviation (Std) of the clas-

sification results are reported. In addition, the Wilcox-

ons test is used to check the statistical significance of

the difference of the given classification results. In this

paper, a 5% significance level is used in the Wilcoxons

test to threshold the calculated P-values.

In this paper, we preformed three different exper-

iments, the first experiment is applied on the whole

set of features for every data set (without feature selec-

tion), the second experiment is applied on a reduced set

of features for every data set (with feature selection),

and in the last experiment, the GOA-SVM is compared

with 6 other algorithms (Grid search, MVO, GA, PSO,

and GSA), for which the results were obtained directly

from previous studies.

6.1 Experiment I: results without applying feature

selection

In this experiment, we apply the GOA and other algo-

rithms on 18 data sets and employing the complete set

of features for each data set. The accuracy results of

the GOA and other algorithms are presented in Table

3. The average accuracy values show that GOA out-

performs the other metaheuristics and obtains the best

performance on 11 data sets out of 18 data sets (60%

of the data sets). For the other 7 data sets, the av-

erage accuracy results of the GOA are very compet-

itive. For example, the performance of the GOA on

the Liver data set was better than three of other al-

gorithms (MVO, GWO, and BA). Moreover, the pro-

posed approach obtains the highest classification ac-

curacies on high-dimensional data sets such as Sonar,

Spectft, Libras, and Ionosphere. These results support

the capability of the proposed approach to handle high-

dimensional data sets. In addition, GOA shows smaller
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Table 1: List of data sets

data set Features Instances Classes

Breast Cancer 10 683 2

Wine 13 178 3

Heart 13 270 2

Parkinsons 22 195 2

Sonar 60 208 2

Vowel 10 528 11

Spectft 44 276 2

Ionosphere 34 351 2

German 24 1000 2

Vehicle 18 846 4

Australian 15 653 2

Diabetes 8 768 2

Liver 6 345 2

Glass 9 214 6

Arrhythmia 297 452 16

Cleveland 13 303 4

Libras 90 360 15

Teaching Assistant Evaluation (TAE) 5 151 3

Table 2: Initial parameters of the metaheuristic algorithms

Algorithm Parameter Value

GOA [34] cMin 0.00001

cMax 1

Number of search agents 50

Number of iterations 100

GA [14] Crossover ratio 0.9

Mutation ratio 0.1

Selection mechanism Roulette wheel

Population size 50

Generations 100

PSO [47,51] Acceleration constants [2.1, 2.1]

Inertia w [0.9, 0.6]

Number of particles 50

Generations 100

MVO [25] Min wormhole existence ratio 0.2

Max wormhole existence ratio 1

Universes 50

Iterations 100

BA [53] Loudness 0.5

Pulse rate 0.5

Frequency minimum 0

Frequency maximum 2

FF [52] Alpha 0.5

Beta 0.2

Gamma 1

Cuckoo Search [50] Discovery rate Pα 0.25

Number of nests 50

Number of generations 100

GWO [26] α Min=0, and Max=2
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Fig. 5: Schematic diagram of the proposed GOA-SVM model.

standard deviation values for most of the data sets,

which supports the robustness of the algorithm.

Fig. 3 presents the box-plot charts of the accuracy

for all used data sets. The box-plots are shown for the

10 values of classification accuracy that are given by

each algorithm at the end of the SVM training. In this

plot, the box represents the interquartile range (IQR),

the whiskers represent the maximum accuracy values,

the bar in the box represents the median accuracy val-

ues, and outliers of the accuracy values are expressed

as small circles. The box-plots indicate the improved

performance of GOA for optimising the SVM.

To assess the overall performance of GOA and other

algorithms, and to confirm the significance and robust-

ness of the results, we apply the Wilcoxons statistical

test with 5% significance level on the obtained average

accuracy results. Table 4 lists Wilcoxons test P-values

between the GOA and other approaches. The P-values

less than 0.05 indicate that the GOA results have statis-

tically significant differences compared with other ap-

proaches. The P-values that are greater than 0.05 (un-

derlined) are not significant compared with other ap-

proaches. According to this table, the GOA results are

statistically significant in most of the data sets.

As an overall summary for all data sets, Table 5

shows summarised values which represent the number

of data sets each algorithm Won/Tied/Lost on accu-

racy, and the associated p-values. It appears that the

GOA algorithm is superior on 11 data sets out of 18 in

terms of accuracy. Moreover, in terms of significance,

the results show that the GOA is better on 4, 5, 7, 8,

6, 8, and 4 data sets compared with MVO, GA, PSO,
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Fig. 6: Box-plot charts for GOA and other algorithms based on 18 data sets (Without Features selection)
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Table 3: Classification accuracy and standard deviation results for all data sets without applying feature selection.

Algorithm GOA MVO GA PSO

data set Avg±Std Avg±Std Avg±Std Avg±Std

Breast Cancer 97.23±1.88 96.92±2.13 96.78±1.94 96.63±1.15

Wine 97.77±2.72 97.75±2.76 97.71±2.80 96.60±2.78

Heart 82.22±6.24 82.59±5.51 82.59±7.23 83.70±2.46

Parkinsons 94.95±5.00 94.89±5.05 94.92±4.47 93.37±4.52

Sonar 88.55±8.01 88.50±6.14 87.52±8.57 87.98±5.34

Vowel 99.81±0.57 99.43±0.88 99.43±0.88 98.86±0.93

spectft 78.73±7.82 76.45±4.81 76.79±6.45 75.31±5.91

Ionosphere 95.16±3.14 94.59±3.93 93.18±3.09 94.04±4.05

German 75.80±5.31 75.70±4.45 76.80±5.27 76.30±4.94

Vehicle 85.35±3.48 84.76±3.93 82.96±5.02 85.10±3.63

Australian 84.93±4.06 84.35±3.54 85.07±4.72 84.78±2.27

diabetes 76.05±3.72 76.17±3.81 76.44±6.43 76.83±6.48

liver 71.60±6.17 68.94±4.02 72.13±6.28 73.32±5.24

glass 70.06±11.84 65.97±11.10 65.48±8.34 67.77±8.37

Arrhythmia 65.24±10.91 64.24±13.26 68.78±5.95 71.21±6.67

Cleveland 55.08±12.07 58.01±8.93 59.01±8.61 57.72±7.81

Libras 87.78±5.30 87.22±5.00 87.22±3.97 87.50±3.34

TAE 58.25±10.42 56.29±13.03 54.92±16.37 55.54±10.59

Algorithm GWO FF BA CS

data set Avg±Std Avg±Std Avg±Std Avg±Std

Breast Cancer 96.64±1.30 96.64±1.30 96.93±1.37 96.49±1.47

Wine 96.63±2.75 96.08±4.35 97.22±5.12 97.75±3.72

Heart 82.96±9.54 84.44±4.91 82.96±6.67 83.33±4.46

Parkinsons 94.89±5.62 93.89±4.93 92.79±6.63 93.82±5.55

Sonar 85.50±5.93 88.45±3.85 88.02±7.48 85.10±6.88

Vowel 99.05±1.28 99.24±0.93 99.43±0.86 99.24±0.93

spectft 77.54±8.12 77.19±10.75 77.54±5.46 77.25±8.71

Ionosphere 94.30±3.13 94.57±5.34 94.86±4.75 94.29±3.14

German 76.10±3.78 76.90±4.20 76.30±3.49 75.80±4.19

Vehicle 83.93±3.02 84.87±5.45 84.75±2.19 84.64±3.39

Australian 86.38±3.50 85.36±5.36 85.07±4.25 84.06±4.85

diabetes 75.91±4.55 75.77±4.83 76.31±6.50 76.70±3.54

liver 71.27±6.04 71.91±7.37 71.00±6.55 72.48±7.79

glass 64.48±8.23 67.88±9.97 67.27±8.67 69.09±10.83

Arrhythmia 71.92±7.23 59.06±8.88 71.24±6.37 71.72±7.97

Cleveland 56.44±6.17 57.09±5.19 59.78±11.28 57.73±7.88

Libras 84.72±4.17 86.39±3.61 87.22±7.26 86.67±6.89

TAE 57.71±14.57 52.96±15.08 55.50±11.45 58.13±9.75

GWO, FF, BA, and CS, respectively. In addition, the

Friedman test was used to rank the different algorithms

applied to 18 data sets. The results of the Friedman test

show that the GOA obtains the best rank (Lower is bet-

ter). This confirms the ability of the GOA algorithm to

optimise the parameters of the SVM classifier.

6.2 Experiment II: results with applying feature

selection

In this experiment, we apply the GOA and other al-

gorithms on 18 data sets, when extending the GOA

for simultaneously optimising the SVM parameters and

performing feature selection. Table 6 shows the results

when applying GOA with feature selection compared

with GOA without feature selection. The results show



12 Ibrahim Aljarah et al.

Table 4: P-values of the Wilcoxon test of GOA vs other algorithms before applying features selection (p ≥ 0.05

are underlined).

data set/Algorithm MVO GA PSO GWO FF BA CS

Breast Cancer 9.02E-01 1.67E-01 7.72E-04 2.74E-03 2.74E-03 7.85E-02 2.75E-04

Wine 5.71E-01 2.64E-02 1.45E-04 5.72E-09 5.40E-05 7.74E-01 7.74E-01

Heart 6.17E-01 8.05E-01 1.00E+00 7.12E-01 1.01E-01 5.33E-01 1.00E+00

Parkinsons 8.00E-01 9.00E-01 5.78E-03 4.46E-01 7.78E-02 2.26E-02 1.67E-01

Sonar 4.57E-01 6.21E-01 3.86E-01 1.69E-04 2.62E-01 3.86E-01 5.39E-04

Vowel 1.16E-04 2.37E-04 9.00E-14 1.40E-06 6.44E-06 2.86E-03 6.44E-06

Spectft 1.89E-02 1.10E-01 3.11E-03 5.39E-01 6.24E-01 2.19E-01 1.40E-01

Ionosphere 6.13E-01 8.67E-07 3.21E-02 1.74E-02 7.09E-01 9.01E-01 2.04E-01

German 6.25E-01 6.61E-02 3.27E-01 6.23E-01 3.26E-01 4.60E-01 6.41E-02

Vehicle 2.20E-01 3.27E-03 6.24E-01 1.45E-03 4.63E-01 3.28E-03 4.98E-02

Australian 8.06E-01 3.89E-01 4.59E-01 1.37E-03 1.09E-01 2.67E-01 9.03E-01

Diabetes 8.07E-01 4.99E-02 2.70E-01 6.25E-01 6.24E-01 9.03E-01 3.27E-01

Liver 2.86E-05 2.19E-01 8.58E-02 6.24E-01 3.91E-01 4.98E-02 3.25E-01

Glass 6.87E-03 1.40E-04 2.70E-02 4.83E-07 2.74E-02 2.10E-03 3.25E-01

Arrhythmia 8.07E-01 1.11E-01 2.34E-04 9.37E-04 2.66E-07 9.37E-04 1.45E-03

Cleveland 6.59E-02 1.41E-02 1.41E-01 6.24E-01 3.26E-01 2.93E-03 1.77E-01
Libras 3.81E-01 5.32E-01 9.01E-01 1.12E-04 1.03E-01 1.00E+00 7.09E-01

TAE 3.89E-01 6.53E-02 2.14E-01 1.41E-01 1.39E-02 8.39E-02 1.76E-01

Table 5: Summary statistical results on a variety of measures (without feature selection). The table values represent

the number of data sets each algorithm won/losses/ties on a variety of measures along with their rank using F-test.

Algorithm GOA MVO GA PSO GWO FF BA CS

W T L W T L W T L W T L W T L W T L W T L W T L

Accuracy 11 0 7 0 0 18 0 0 18 2 0 16 2 0 16 2 0 16 1 0 17 0 0 18

P-value N/A N/A N/A 0 14 4 2 11 5 1 10 7 2 8 8 0 12 6 1 9 8 1 13 4

Rank 3.08 4.81 4.67 4.69 5.22 4.83 4.06 4.64

that the effect of feature selection improves the results.

As we can see in the table, the accuracy results are

improved for 10 data sets with clear reduction of the

original features (32% to 65% reduction rate). In ad-

dition, the results for the remaining 8 data sets with

feature selection are very close to the results with all

features. These results indicate that the proposed fea-

ture selection approach, used simultaneously with SVM

parameter optimisation, is able to get better accuracy

results with a considerable reduction in the number of

original features.

For high-dimensional data sets such as Libras, Ar-

rhythmia, Ionosphere, Spectft, and Sonar, their results

show that the features are reduced to 52.22%, 53.09%,

55.59%, 55.00% and 47.00%, respectively. In addition,

the accuracy rates for these data sets are higher than

the results with all features. These results reveal that

the proposed approach not only locates the optimal

model parameters and reduces the number of features,

but also can find the optimal and most relevant fea-

tures.

Table 7 shows the comparison of GOA and other

algorithms after applying the feature selection. It is

noted that GOA outperforms the other algorithms in 12

data sets in terms of classification accuracy. Moreover,

it shows competitive results in terms of minimizing the

number of selected features.

Fig. 7 shows the box-plots of the accuracy results

with feature selection for all of the data sets used. The

box-plots confirm that the results of the GOA approach

has higher median whilst maintaining smaller interquar-

tile ranges in most cases. This proves that the GOA al-

gorithm is better than others in terms of stability and

robustness.

Table 8 shows the obtained P-values from the Wilcox-

ons rank test between the GOA algorithm and other

algorithms for all data sets after applying feature selec-

tion. The table shows that the accuracy results of the
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Table 6: Classification accuracy and standard deviation results of GOA for all data sets with and without applying

feature selection.

Algorithm Without feature selection With feature selection

data set Accuracy Original Accuracy No. of selected Reduction

(Avg±Std) No. of features (Avg±Std) features (Avg±Std) rate (%)

Breast cancer 97.23±1.88 10 96.49±1.17 6.70±1.19 33.00

Wine 97.77±2.72 13 97.77±2.72 7.70±1.35 40.77

Heart 82.22±6.24 13 82.59±6.20 7.10±1.22 45.38

Parkinsons 94.95±5.00 22 95.97±4.37 12.90±1.92 41.36

Sonar 88.55±8.01 60 88.86±5.93 31.80±3.54 47.00

Vowel 99.81±0.57 10 99.05±1.27 7.40±0.92 26.00

Spectft 78.73±7.82 44 80.52±5.44 19.80±3.16 55.00

Ionosphere 95.16±3.14 34 93.44±2.88 16.80±2.27 50.59

German 75.80±5.31 24 73.4±4.45 10.00±3.03 58.33

Vehicle 85.35±3.48 18 82.50±2.12 11.40±1.28 36.67

Australian 84.93±4.06 15 85.07±5.27 5.40±2.00 64.00

Diabetes 76.05±3.72 8 74.35±5.15 4.10±1.58 48.75

liver 71.60±6.17 6 67.51±8.05 4.20±1.47 30.00

Glass 70.06±11.84 9 69.19±10.72 5.20±1.17 42.22

Arrhythmia 65.24±10.91 297 70.35±4.75 142.30±4.69 52.09

Cleveland 55.08±12.07 13 55.47±7.06 6.90±2.12 46.92

Libras 87.78±5.30 90 89.44±4.44 43.00±4.31 52.22

TAE 58.25±10.42 5 58.91±7.85 3.40±1.02 32.00

GOA are significantly improved for most of the data

sets.

As an overall summary for all data sets, Table 9

shows the number Wins,Ties, and Losses on accuracy,

minimum number of features, and p-values measures for

each algorithm. It appears that the GOA algorithm is

superior on 12 data sets out of 18 in terms of accuracy.

Moreover, in term of statistical significance, the results

show that the GOA are better on 9, 4, 6, 7, 7, 10, and 7

data sets compared with MVO, GA, PSO, GWO, FF,

BA, and CS, respectively. In addition, the Friedman

test shows that the GOA obtains the best rank.

6.3 Experiment III: comparisons with metaheuristics

in the literature

In this section, we compare the results of the optimised

SVM using GOA with grid search, and four popular

metaheuristics algorithms (MVO, GA, PSO, and GSA)

that are obtained directly from the literature (twelve

data sets used). The comparison is conducted based on

the system architecture used in these works [16,22,20].

Table 10 shows more details about the approaches that

are used for the comparisons.

Table 11 shows the results of the GOA and other

well-regarded approaches. It can be seen that GOA out-

performs the gird search method in all data sets with

notable differences in the accuracy results. In addition,

GOA outperforms the other metaheuristics algorithms

and performs reasonably in eight data sets out of twelve.

Moreover, the results of the GOA for the other four data

sets are very close to the other algorithms.

Taken together, the results of this section showed

that the GOA along with SVM can make a very effec-

tive memetic, wrapper-based algorithm to solve a wider

range of classification problems. For one, the GOA algo-

rithm addressed the high-dimensional nature of feature

selection problems. This algorithm has been equipped

with effective operators to avoid the local solutions of

such problems and find a reasonable estimation of the

global optimum in a reasonable time. For another, the

SVM used the selected feature by the GOA algorithm

to classify the data sets with an accurate classification

rate. The outcome of using GOA and SVM to handle

difficulties in two steps of classification proven to be

very effective as per the results of this section.

As mentioned earlier, the No Free Lunch theorem

states and has been logically proved that there is no

general optimiser to solve all optimisation problems.

However, some algorithms might be beneficial for a set

of problems with or without modification or hybridiza-

tion. The operator integrated in GOA make it suitable

for selecting an optimal set of feature from a give large

set of features. In fact, this algorithm benefits from a
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Fig. 7: Box-plot charts for GOA and other algorithms based on 18 data sets after applying features selection.
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Table 7: Classification accuracy and standard deviation results of GOA and other approaches for all data sets after

applying feature selection. (NFS stands for Number of selected features)

Algorithm GOA MVO GA PSO

Data Avg±Std NSF Avg±Std NSF Avg±Std NSF Avg±Std NSF

Breast Cancer 96.49±1.17 6.70±1.19 96.05±1.73 5.10±1.45 96.04±1.86 6.40±1.56 95.61±1.83 6.40 ±1.43
Wine 97.77±2.72 7.70±1.35 97.19±3.75 8.10±1.58 97.19±2.81 7.90±1.7 95.55±3.33 7.60 ±1.02
Heart 82.59±6.20 7.10±1.22 81.85±5.60 8.60±1.69 80.74±6.37 6.50±2.38 81.85±7.49 8.40±1.20

Parkinsons 95.97±4.37 12.90±1.92 93.87±4.98 12.10±2.84 94.34±4.26 8.70±1.79 94.37±5.86 10.40±2.11
Sonar 88.86±5.93 31.80±3.54 86.12±8.32 29.90±2.43 85.14±12.09 21.90±4.97 84.16±5.59 29.70±2.97
Vowel 99.05±1.27 7.40±0.92 97.17±2.83 8.20±0.75 98.49±2.36 8.20±0.60 98.68±1.47 8.00±1.26
Spectft 80.52±5.44 19.80±3.16 80.14±7.56 20.20±3.54 77.95±11.25 14.30±2.00 78.28±7.67 20.40±4.86

Ionosphere 93.44±2.88 16.80±2.27 90.87±4.40 15.50±3.44 92.60±4.07 14.00±3.49 92.88±3.88 18.70±1.79
German 73.40±4.45 10.00±3.03 73.90±6.42 13.00±3.16 72.60±4.82 9.10±3.56 74.80±5.65 15.80±1.17
Vehicle 82.50±2.12 11.40±1.28 81.43±3.27 13.00±2.10 81.56±3.32 11.70±2.19 81.79±2.75 13.20±1.25
Australian 85.07±5.27 5.40±2.00 86.81±5.04 5.30±1.73 84.64±5.39 5.20±0.87 84.06±4.44 4.90±1.04

Diabetes 74.35±5.15 4.10±1.58 76.56±2.97 4.80±1.78 76.69±3.63 6.30±1.62 76.43±4.25 5.40±1.28
Liver 67.51±8.05 4.20±1.47 62.87±8.34 3.40±1.28 66.83±10.10 4.40±1.20 66.18±1.28 3.70±1.35
Glass 69.19±10.72 5.20±1.17 66.82±9.93 5.00±0.89 66.84±9.87 5.20±1.40 66.90±7.31 5.10±0.94

Arrhythmia 70.35±4.75 142.30±4.69 70.80±7.84 142.90±9.18 70.83±6.44 70.10±23.30 70.14±5.39 142.20±9.09
Cleveland 55.47±7.06 6.90±2.12 48.17±10.85 6.30±1.79 55.82±6.68 5.30±2.00 57.03±11.83 6.20±1.66
Libras 89.44±4.44 43.00±4.31 88.33±5.09 44.10±3.88 88.61±4.20 30.20±7.32 89.17±4.56 44.50±6.07
TAE 58.91±7.85 3.40±1.02 53.13±17.12 3.90±0.94 51.83±14.54 4.60±0.49 54.38±14.11 4.50±0.67

Algorithm GWO FF BA CS

Avg±Std NSF Avg±Std NSF Avg±Std NSF Avg±Std NSF

Breast Cancer 95.89±2.86 5.40±1.62 96.33±2.57 4.70±1.27 96.20±1.74 5.60±1.50 96.48±1.64 5.90±1.45
Wine 97.22±2.78 7.10±1.45 96.11±4.34 7.10±2.02 94.41±6.57 7.00±1.18 96.57±3.85 8.10±1.04
Heart 80.74±7.55 6.90±1.81 81.11±3.87 6.00±2.53 80.37±7.95 7.00±2.45 81.11±3.87 8.40±1.02

Parkinsons 95.92±5.85 9.10±2.47 92.37±6.83 11.30±1.10 92.29± 4.67 12.70±1.68 95.37±4.30 10.90±2.21
Sonar 88.00±5.70 19.40±1.96 86.55±8.24 28.60±4.29 86.09±5.34 28.10±4.41 85.64±7.91 29.7±3.58
Vowel 98.86±1.25 8.50±1.02 99.05±0.95 8.30±0.64 99.05±1.27 8.30±1.00 98.67±1.49 8.40±0.92
Spectft 76.38±5.68 16.10±3.27 77.46±10.48 19.80±2.32 77.18±8.94 18.90±2.70 77.12±9.46 18.80±2.89

Ionosphere 92.59±3.67 13.70±2.10 90.88±5.24 14.80±3.28 90.88±4.75 16.70±2.90 92.89±5.87 16.70±4.15
German 73.50±3.91 12.30±1.55 70.20±5.36 10.40±2.20 71.70±4.50 11.90±1.51 74.70±3.77 15.40±2.69
Vehicle 81.32±5.68 11.40±1.11 81.68±3.36 11.80±1.17 80.14±6.55 11.40±2.00 81.67±4.31 13.20±1.66
Australian 85.36±4.07 5.10±0.70 85.07±3.55 3.60±0.49 84.35±4.09 4.90±0.94 84.49±6.12 7.40±2.29

Diabetes 76.69±1.84 5.30±1.19 74.87±4.50 3.30±1.42 75.13±4.58 4.80±1.47 76.70±4.20 6.10±1.04
Liver 62.01±7.04 3.40±1.56 66.43±7.10 2.90±1.30 62.92±6.88 4.00±1.55 68.11±7.26 5.40±0.66
Glass 63.57±8.10 4.30±0.64 67.27±7.82 4.60±1.11 68.29±10.96 4.80±1.33 68.64±13.13 5.00±1.18

Arrhythmia 69.71±4.67 67.00±14.02 66.41±10.49 137.70±6.21 71.68±4.64 142.30±6.77 69.92±6.59 140.70±5.2
Cleveland 56.10±8.49 6.20±2.18 55.42±10.30 5.20±1.99 55.80±9.60 5.60±1.50 58.09±7.70 7.10±1.51
Libras 87.22±5.30 30.40±4.76 86.39±3.15 44.40±5.06 87.22±4.51 43.60±3.98 87.5±4.167 43.60±4.15
TAE 52.46±11.70 3.70±0.90 52.50±16.18 4.40±0.80 53.67±12.51 3.90±0.94 56.83±9.84 4.00±0.77

high exploratory behaviour and this was the main rea-

son of its success it this work. As per the results and

No Free Lunch theorem, we state that this algorithm is

worthy of use in the field of feature selection to assist

classifier in finding a suitable set of features. It has the

potential to leverage the whole classification process.

7 Conclusions

This work presents a novel hybrid approach for opti-

mising SVM based on the Grasshopper Optimisation

Algorithm (GOA). The proposed approach is able to

tune the parameters of the SVM kernel and at the same

time can find the minimal and optimal subset of the

model features. This study shows that optimising SVM

classifier by finding suitable features and the optimal

kernel parameters simultaneously lead to better overall

classification accuracy. The experimental results on the

benchmark data sets revealed the effectiveness of the

GOA on enhancing the SVM classifier accuracy. The

GOA outperforms other optimisers such as GA, MVO,

GWO, PSO, Firefly, BA, and Cuckoo search in most of

the data sets in terms of classification accuracy.

For future work, the application of the proposed

GOA-SVM model to other real word problems can be

investigated and applied. For example, the efficacy of

the proposed model could be employed to tackle data

mining problems in different domains such as real busi-

ness problems in organizational environments. Further-

more, the performance of the model can be investigated

on larger scale problems.
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Table 8: P-values of the Wilcoxon test of GOA classification results vs other algorithms after applying features

selection (p ≥ 0.05 are underlined).

data set/Algorithm MVO GA PSO GWO FF BA CS

Breast Cancer 2.56E-02 4.21E-03 5.23E-07 2.06E-01 5.37E-01 6.18E-01 9.02E-01

Wine 2.62E-01 5.14E-02 2.73E-06 1.57E-01 1.34E-02 1.83E-05 1.34E-02

Heart 7.10E-01 4.54E-01 4.59E-01 3.85E-01 3.13E-01 2.55E-02 3.13E-01

Parkinsons 5.97E-04 9.02E-04 9.38E-02 1.27E-14 3.19E-05 2.66E-10 1.22E-01

Sonar 2.57E-02 6.40E-02 8.57E-09 2.13E-01 3.75E-01 1.55E-04 5.58E-03

Vowel 1.23E-07 6.78E-01 1.76E-01 2.80E-01 6.84E-01 1.00E+00 5.96E-02

Spectft 8.06E-01 6.22E-01 1.39E-01 1.24E-04 1.76E-01 1.40E-03 3.20E-03

Ionosphere 1.45E-06 1.31E-01 1.69E-01 2.12E-01 1.30E-05 1.76E-03 9.02E-01

German 5.00E-02 9.03E-01 4.78E-03 3.26E-01 1.76E-05 2.19E-01 2.73E-02

Vehicle 2.69E-02 2.20E-01 2.18E-01 1.42E-02 3.21E-03 3.71E-02 7.14E-01

Australian 6.50E-02 1.10E-01 1.40E-01 2.66E-01 7.12E-01 4.60E-01 7.11E-01

Diabetes 4.50E-03 9.93E-03 1.35E-02 9.74E-03 3.90E-01 3.91E-01 9.99E-03

Liver 9.08E-04 8.07E-01 2.20E-01 2.06E-34 3.25E-01 3.04E-05 3.26E-01

Glass 3.28E-01 6.24E-01 4.63E-01 3.13E-05 8.07E-01 1.00E+00 1.00E+00

Arrhythmia 1.00E+00 3.63E-02 5.40E-01 2.21E-01 2.35E-04 1.36E-02 6.24E-01

Cleveland 3.04E-06 2.67E-01 8.07E-01 7.13E-01 5.39E-01 9.03E-01 9.76E-03

Libras 7.77E-02 1.68E-01 8.04E-01 8.36E-04 9.03E-07 1.91E-03 4.22E-03

TAE 3.46E-04 1.12E-03 1.71E-01 4.27E-06 3.11E-01 7.29E-07 2.37E-02

Table 9: Summary statistical results on a variety of measures (with feature selection). The table values represent

the number of data sets each algorithm won/losses/ties on a variety of measures along with their rank using F-test.

Algorithm GOA MVO GA PSO GWO FF BA CS

W T L W T L W T L W T L W T L W T L W T L W T L

Accuracy 12 1 7 1 0 17 0 0 18 1 0 17 0 0 18 0 1 17 1 1 16 1 0 17

Features 2 1 15 0 0 18 3 0 15 0 0 18 5 1 12 7 0 11 0 1 17 0 0 18

P-value - - - 1 8 9 2 12 4 1 11 6 1 10 7 0 11 7 1 7 10 2 9 7

Rank 2.31 4.83 4.86 4.36 5.08 5.31 5.61 3.64

Compliance with Ethical Standards

Conflict of Interests The authors declare that they

have no conflict of interest.

Informed Consent All procedures followed were in

accordance with the ethical standards of the respon-

sible committee on human experimentation (institu-

tional and national) and with the Helsinki Declaration

of 1975, as revised in 2008 (5).

Human and Animal Rights This article does not

contain any studies with human or animal subjects per-

formed by any of the authors.

Funding

This research received no specific grant from any fund-

ing agency in public, commercial, or not-for-profit sec-

tors.

Acknowledgements The authors would like to thank Dr.
Simon Andrews from Babraham Institute, Cambridge, UK
for thoroughly proof-reading this paper.

References

1. Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection
weights in neural networks using the whale optimization
algorithm. Soft Computing pp. 1–15 (2016)

2. Arana-Daniel, N., Gallegos, A.A., López-Franco, C.,
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