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Abstract 
This paper describes an algorithm for simultaneous gate sizing 
and fanout optimization along the timing-critical paths in a 
circuit. First, a continuous-variable delay model that captures 
both sizing and buffering effects is presented. Next, the 
optimization problem is formulated as a non-convex 
mathematical program. To manage the problem size, only a 
small number of critical paths are considered simultaneously. 
The mathematical program is solved by a non-linear 
programming package. Finally, a design flow based on iterative 
selection and optimization of the k most critical paths in the 
circuit is proposed. Experimental results show that the proposed 
flow reduces the circuit delay by an average of 9.2% compared 
to conventional flows that separate gate sizing from fanout 
optimization. 

1 Introduction   
Timing constraints in modern VLSI circuits are becoming 
increasingly tighter. Gate sizing and fanout optimization 
techniques are widely used to meet these constraints. Gate sizing 
reduces the circuit delay by adjusting the gate sizes and hence 
their drive strengths and input capacitances. Fanout optimization 
achieves circuit delay reduction by speeding up the timing-
critical signals through insertion of sized buffers.  

Gate sizing methods can be classified into two categories: 
discrete and continuous. Discrete sizing methods only allow a 
set of discrete sizes for each gate. They use combinatorial 
algorithms or stochastic search to determine the best size for 
each gate [1]. Continuous sizing methods on the other hand 
assume that gate sizes are continuous variables and then use 
mathematical programming to formulate and solve the 
optimization problem [2]. Continuous sizing methods have a 
more global view of the solution space and hence tend to achieve 
better initial results. The final quality may however degrade after 
the round off step, which is required because in reality there are 
only discrete sizes allowed for each gate in the ASIC library. In 
today’s ASIC design process however, the number of available 
gate sizes in standard gate libraries is increasing, so the rounding 
error is becoming smaller. Furthermore, the advent of on-the-fly-
synthesized gate libraries is helping to alleviate this problem 
further. 

Fanout optimization methods are usually applied in a circuit one 
net at a time. They can again be divided into discrete buffer 
sizing and continuous buffer sizing. The discrete buffer size-
based fanout optimization problem has been proven to be NP-
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complete [3]. Most of the previous work in this category hence 
assumes a fixed template for the buffer tree [4]. Using a buffer 
library with continuous sizes greatly simplifies the fanout 
optimization problem [5].  

Traditionally, gate sizing and fanout optimization are done 
individually and at different stages in the design process. This 
sequential flow can adversely affect the circuit performance as 
illustrated in the example below. 
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Figure 1. Motivation for simultaneous gate sizing and buffer 

insertion. 
In Figure 1 (a), assume that gi, g1 lie on a timing-critical path. 
(Object sizes in the schematic represent the actual gate sizes in 
the circuit.) Furthermore, assume that the required times for g1 to 
g4 are in increasing order. Starting from this configuration, a gate 
sizing tool will likely size down the non-critical sinks, g2 to g4 to 
improve the critical path’s timing as shown in Figure 1(b). On 
the other hand, starting from the configuration in Figure 1 (a), a 
fanout optimization tool will likely build the buffer tree shown 
in Figure 1 (c) to isolate the non-critical gates from gi. 

It is possible that in Figure 1 (b) even though g3, g4 are sized 
down to their minimum allowed sizes in the library, their output 
arrival times are still earlier than their required times. So in fact, 
as in Figure 1 (c), buffer b1 can be inserted to improve the arrival 
time at output of g1. Similarly, in Figure 1 (c), if g3, g4 are sized 
down, buffer b2 can be removed without violating the timing 
requirement at output of g2. The gate-sizing tool cannot however 
add b1 in the same way that the fanout optimization tool cannot 
size down g3, g4. From this example, we can see the 
shortcomings of separating the gate sizing and fanout 
optimization steps. Because each step tries to make use of all the 
freedom in the optimization space, it does not leave much 
optimization opportunity for the other. At the same time, each 
step is limited in the kind of optimization that it can perform. By 
combining these two steps into one integrated step, we enlarge 
the solution space and achieve more optimized results.  

An interleaved buffer insertion and transistor-sizing algorithm is 
proposed in [6]. The algorithm evaluates the effect of buffer 
insertion and gate sizing separately and implements the one that 
improves circuit delay best. Experimental results demonstrate 



 

that even this greedy approach outperforms those that only do 
gate sizing.  

This paper presents an algorithm for continuous-variable 
simultaneous gate and buffer sizing. The resulting problem 
formulation become a non-convex mathematical program, hence 
the size of the mathematical program must be controlled 
carefully to avoid excessive runtimes. This is achieved by 
restricting the number of timing-critical paths that are considered 
at one time. The whole circuit is in turn optimized iteratively by 
a sequence of timing recalculation and simultaneous sizing and 
buffering.   

The rest of this paper is as follows. Delay model is described in 
Section 2. Precise problem formulation is given in Section 3. 
Detailed algorithm and flow are presented in Section 4. 
Experimental results and conclusions are given in Sections 5 and 
6, respectively. 

2 Delay Model 
2.1 Notation 
The following notation is used in this paper: 
gi gate i 
ai arrival time of gi’s output 
ri required time of gi’s output 
zi size of gi 

buf i,j buffer chain inserted from gi to its sink gj 
hi,j gain of the buffer chain buf i,j 
x i,j number of levels of  buf i,j 
cbuf i,j input capacitance of the first gate in buf i,j  
dinti,j  intrinsic delay of gj for a signal transition from the 

output of gi 

rdri,j  driving strength of gj for a signal transition from 
the output of gi 

cloadj  sum of input capacitances of gj’s fanout gates 

cini input capacitance of gi 
di,j  delay from the output of gi to the output of gj 

dgatei,j  delay from the output of buf i,j to the output of gj 

dbufi,j  delay of the buffer chain buf i,j  
C(k) set of gates on the k most-critical paths  
Ne(k,i) set of gates that are direct fanout gates of C(k)  

2.2 Timing Analysis 
Let directed graph G(V, A) represent the net list of a circuit. The 
vertex set V represents the set of gates in the circuit whereas the 
edge set A represents the source-to-sink connections among 
gates. Associated with each gate gi in the circuit, there exist an 
actual output arrival time ai and a required output arrival time ri. 
The circuit designer specifies arrival times for circuit inputs and 
required times for circuit outputs from chip level considerations.  

The arrival time aj is given by: 

j i i , j i , ja max{(a d )| ( v v ) A}= + ∀ ∈  

The required time ri is given by:  

i j i , j i , jr min{(r d )| ( v v ) A}= − ∀ ∈  

where di,j is the delay from the output of gi to the output of gj. gi's 
slack time si is defined i i is r a= − . A (timing) critical path is a 
path in which the sequence of vertices (vi,…,vo) that comprise 
the path (vi ∈ primary inputs and vo ∈ primary outputs), all have 
slack values less than or equal to zero.  

2.3 Gate Sizing Delay Model 
The continuous-variable pin-dependent gate delay model of [7] 
is adopted. 1 
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Figure 2. Gate delay model. 

i , j i , j i , j jd dint rdr cload= + ⋅   (1) 

dinti,j represents the intrinsic delay of gj for a signal transition 
from the output pin of gi.. For gates with the same logic function, 
dinti,j is nearly a fixed value, independent of the gate size. rdri,j 
stands for the drive strength of gj for a signal transition from the 
output pin of gi. cloadj is the input capacitance of the gate load 
of gj. 

k j

j k
g fanout(g )

cload cin
=

= ∑ . rdri,j and cink are functions of the 

gate size and gate function. Using linear regression, we 
empirically obtain the following equations: 

, 1 1

2 2

/i j j

j j

rdr z
cin z

α β
α β

= +
= + ⋅  

Equation (1) can then be rewritten as:  

k j

i , j i , j i , j j k k
g fanout(g )

d dint rdr ( z ) cin ( z )
=

= + ⋅ ∑  

2.4 Buffer Insertion Delay Model 
The global fanout optimization problem in conventional logic 
synthesis flow is solved net by net by applying a local fanout 
optimization algorithm. The latter problem can be expressed as: 

Given a source gi with arrival time a i and a set of sink g j with 
capacitance load cinj, polarity Pj and required time r j, find the 
optimum topology of buffer tree and the appropriate size for 
each inserted buffer to minimize the load “seen” by the source 
gi, such that the arrival time of g j is less than r j.. 

2.4.1 Buffer Chain Model 
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Figure 3. Single sink buffer chain. 

As shown in Figure 3, buffers bufi,j inserted on the link from the 
output of gi to its single sink gj, consist of b1, b2,…,bxi,j, where xi,j. 
denotes the number of inserted buffers between gi and gj. To 
calculate the delay of bufi,j, denoted as dbufi,j, the logical effort 
based delay model [8] is used. This model is a reformulation of 
the conventional RC model of CMOS gate delay. The delay of 
buffer b, d=τ(p+gh).2 p is the parasitic delay of the gate. g is 
called the logical effort of the gate and depends only on the 
topology of the gate and its ability to produce output current. h is 
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in the discussion that follows. 



 

called electrical effort (or gain), which is defined as load/cin. p 
and g are independent of the buffer sizes while cin is the input 
pin capacitance of the buffer. In Figure 3, h1, h2,…hxi,j are gains 
of the buffer b1, b2,…,bxi,j, respectively.  Suppose the input 
capacitance of gj is cinj. The input capacitance of the first buffer 

b1 is 
i , jx

1 j l
l

c cin / h= ∏ .  

Theorem [9] Under the required time constraint 

i i j
i

a ( p g h ) r+ + ⋅ <∑  for the sink, c1 is minimized when 

h1=h2=…=hxi,j=hi, j . 
In this paper, we take advantage of this theorem, since by 
minimizing the load of gi, the arrival time of gi is shortened, and 
its driver gates are sped up. Notice that the delay from the output 
of gi to the output of the last level buffer bxi,j is: 

i , j i , j i , jdbuf x ( p g h )= + ⋅   (2) 

2.4.2 Buffer Tree Model 

Without information about the topology of the buffer tree, the 
delay from the net source to each net sink cannot be calculated 
correctly. Assume that all buffer sizes are available in the cell 
library, the buffer tree can be manipulated by the merge and split 
operations without affecting the optimality of the buffer tree [9]. 
These operations are illustrated in Figure 4. 
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Figure 4. Buffer tree merge and split transformations. 

Theorem [9] If gains of b1, b11, b12 are the same, then the timing 
and input capacitance properties are preserved by the merge/split 
transformations (cf. Figure 4). 

As a result, the optimal fanout tree with appropriate buffer sizes 
may be split into a fanout-free tree, which is composed of a set 
of buffer chains connected at the source of the net. The reverse is 
obviously true too. Hence, we can build the buffer chains 
separately and then merge them to obtain the optimal fanout tree. 

Equation (2) can be extended to multiple sink buffer trees as 
shown in Figure 5. Recall that for each sink gj of gi, hi,j is the 
gain of every buffer in bufi,j .  
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Figure 5. Multiple sink buffer tree. 

2.5 Simultaneous Gate Sizing and Buffer Insertion 
Delay Model 

To express simultaneous gate sizing and fanout optimization 
problem in a mathematical form, the delay model must reflect 
the effect of size change and possible insertion of a buffer chain.  

As shown in Figure 6, we combine the gate sizing and the buffer 
chain delay models. Delay di,j is divided into two parts: dbufi,j, 
which is the delay from gi’s output to the buffer chain’s output 
and dgatei,j, which is the delay from the buffer chain’s output to 
gj’s output.  

As before, dbufi,j is calculated by Equation (2). Notice however 
that previously output load of the buffer chain cinj was a known 
value whereas now cinj changes with gj’s size. The load of gj is 
not determined from its direct fanout gates, instead it is 
determined from the input capacitance of the very first buffer in 

the buffer chain: cbufj,k: 
j,k

k
j,k x

j,k

cin
cbuf

( h )
=  

The complete set of delay equations is thus summarized as: 

j,k

i , j i , j i , j

k k
i, j i , j i , j j x

k j,k

i , j i , j i , j

dbuf x ( p g h )
cin ( z )

dgate dint rdr ( z )
( h )

d dbuf dgate

= ⋅ + ⋅

= +

= +

∑  (3) 

where k denotes the index of the fanout branch of gj . 
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Figure 6. Gate delay model with buffer chains. 

Theorem The delay model di,j of Equation (3) is non-convex. 
Proof Hessian matrix F of function f is the matrix of the 2nd 
partial derivatives of f. Function f is convex over a convex set Ω 
containing an interior point if and only if the Hessian matrix F of 
f is positive semi-definite throughout Ω [11].  Readers can easily 
verify that di,j given in equation (3) is not positive semi-definite. 
Therefore, the delay mode is non-convex. < 

Equation (3) describes the timing relations in the mathematical 
formulation of the simultaneous gate sizing and fanout 
optimization problem (section 3). Note when xi.j is equal to 0, it 
means no buffer is inserted between gi and gj, and di,j becomes 
exactly the same as Equation (1). This model consistency is of 
course important, because we do not assume any buffer tree 
template before the solution is attempted, and we do not know 
whether or not an inserted buffer chain bufi,j exists. We let the 
mathematical programming package determine the value of xi,j, 
and hi,j, that is the best topology and size of the buffers trees. If 
Equations (1) and (3) were not consistent at xi.j=0, for the edges 
with a zero-value buffer level, the real delay calculated by 
equation (1) would be different from the timing estimation of 
constraints formulated based on (3). The convergence of 
problem solution would therefore not be guaranteed. Other 
important properties of Equation (3) are its continuity and 
differentiability, which are indispensable to most mathematical 
programming packages. 

3 Problem Formulation 
3.1 Global Formulation 
We would like to capture the timing relations in the whole 
circuit in one formulation, because such formulation would 
result in a globally optimized solution. The problem is stated as: 



 

start

minimize  
s.t.             T                            
                                           
                  

i i

i i

j i i , j i , j i j

cycle
a v PI
a cycle v PO
a a dbuf dgate ( v ,v ) A

≥ ∀ ∈
≤ ∀ ∈
≥ + + ∀ ∈

 (4) 

where Tstart is the latest arrival time of all the primary inputs. In 
this formulation, for each gate there are two variables 
corresponding to its arrival time and gate size; for each edge, 
there are two variables corresponding to the number of inserted 
buffers and the buffer gain (recall that all buffers in the same 
buffer chain have identical electrical effort, i.e. identical gain). 
Suppose the number of gates is n and the number of edges is e. 
There are (2n+2e) variables. The number of constraints is also e. 

Observation: Equation (4) is a non-convex problem because 
dgatei,j is a non-convex function. 

Each constraint of Equation (4) is related to quite a small 
number of variables: ai, aj, xi,j, zj, zk, xj,k and hj,k. So the problem 
formulation is very sparse. LANCELOT [12] is especially 
effective in solving this kind of large-scale, non-linear, sparse 
problem. It has been adopted in many VLSI CAD tools and 
shows robustness and high efficiency.  

We use LANCELOT to solve Equation (4) directly on several 
benchmark circuits. Although LANCELOT shows good 
performance on this kind of problem, Equation (3) has, in worst 
case, O(n2) variables and constraints. Furthermore, the delay 
model is non-convex. These considerations make the global 
optimization formulation infeasible in practice for large circuits. 

3.2 Critical Section Formulation 
Instead of optimizing the whole circuit in one shot, we can 
iteratively optimize the k most-critical paths of the circuit [7]. 
C(k) is defined as the set of gates on the k most-critical paths in 
the circuit. Ne(k) is defined as the set of gates which are the 
immediate fanouts of C(k). In each iteration, C(k) and Ne(k) are 
identified. We only focus on optimizing them. The operations 
performed include gate sizing C(k), fanout optimization of C(k) 
and gate sizing of Ne(k). Compared to only gate sizing, the 
topology of the critical paths is not fixed. Compared to local 
fanout optimization, the sinks of the critical paths are sizable, 
and the buffer trees are generated on the basis of whole path 
delay, not for a single net. 

By carefully controlling the boundary conditions, that is the 
arrival times of Ne(k), solution convergence is guaranteed [7]. 
Note that only the gates in C(k) and Ne(k) are changed, all others 
are fixed, therefore the load of gates in Ne(k) are not changing. 
So if we guarantee that the arrival time of Ne(k) after 
optimization is no larger than the specified required time, the 
arrival time of the gates outside of C(k) and Ne(k) will not 
increase. This analysis ignores the reconvergent fanout issues, 
and hence holds only approximately. In practice however, 
enforcing boundary constraints for Ne(k) is quite effective . 
The new formulation is given as: 

start
                                            

, ,

minimize  
. .     T                              , ( )

         , ( )
          ( , ) A, ( )

i i i

i i i

j i i j i j i j i

cycle
s t a v PI v C k

a cycle v PO v C k
a a dbuf dgate v v v C k

≥ ∀ ∈ ∈
≤ ∀ ∈ ∈
≥ + + ∀ ∈ ∈

                                     ( ) j j ja r v Ne kδ≤ ⋅ ∀ ∈

(5) 

where dbufi,j and dgatei,j were given in Equation (3). δ is a 
parameter to control the strictness of the arrival time requirement 
on Ne(k). Its value is set to less than or equal to 1. 

We define critical edge as an edge in graph G(V, A) that is 
driven by a gate in C(k). Suppose there are n’ gates in C(k), 
which introduce e’ critical edges and m’ gates in Ne(k). There 
are 2(n’+e’+m’) variables (arrival time and size for each gate in 
C(k) and Ne(k), buffer chain level and gain for each critical 
edge) in Equation (5)). In this way the problem size decreases. If 
the circuit is small, we can increase k to put more gates in C(k).  
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Figure 7 Algorithm flow. 

The algorithm flow is depicted in Figure 7. First, timing analysis 
is performed on the circuit network. The k most-critical paths are 
marked. The buffer trees, which are driven by C(k) and built in 
previous iteration, are removed such that the new buffer trees 
can be constructed from Equation (5). The rationale for 
removing previously constructed buffer trees is that in this way 
we allow deleting redundant or non-optimal buffer trees. Next, 
problem formulation (5) is generated and passed on to the 
LANCELOT package. LANCELOT produces gate sizes, buffer 
chain lengths and individual buffer gains. The buffer tree for 
each gate in C(k) is formed by recursive merging of the buffer 
chains on that net (c.f. section 4.2). After the fanout tree 
topology is decided, the algorithm determines the buffer and 
gate sizes. In the end, a new circuit net list is generated. The 
above steps are repeated until the timing constraints are met.  

4.1 Buffer Tree Generation 
After Equation (5) is solved, xi,j is usually a non-integral value. 
In reality, a feasible solution should be an integer. Suppose µ1 
and µ2 are the two nearest feasible integers considering polarity 
requirement of xi,j. We round xi,j to the number that satisfies the 
required timing constraint of gj. If both values meet (or violate) 
the required time demand, we pick up the value that makes cbuf 

i,j, the input capacitance of the first gate in the tapered buffers buf 

i,j, smaller. This heuristic keeps the load of the critical gate 
smaller, thus reducing the arrival time of critical gate. 
After the number of levels for each buffer chain is determined, 
the size of buffers are calculated from its level and gain. The size 
of these buffers is again in general a non-integral value, and 
indeed some sizes may be less than one. The merge operation is 
done recursively from the first level to reduce the number of 
buffers and increase their sizes to make them whole buffers. The 
advantage of merge is that it can minimize the round up error 
due to non-integral buffer sizes and at the same time reduce the 
buffer areas. Since the gain of each chain is calculated for 



 

different sinks separately, their values may not be same. The 
merge transform keeps the delay unchanged only when two 
branches have the same gain. Therefore, we define a constant ε 
and merge two buffers as long as the difference of their gains is 
less than or equal to ε.  

5 Experimental Results 
Our algorithm was implemented and run on Pentium-III 
733MHz machine. Table 2 shows our experimental results for 
performing global optimization on some benchmark circuits. 
These results correspond to the solution to Equation (4). The 
initial cell count and delays for all circuits are given in Table 1. 
Initially, each logic gate is mapped to the corresponding 
minimum size cell in the library. To make the comparison fair, 
we iteratively perform both buffer + sizing (B+S) and sizing + 
buffer (S+B). Notice that buffers inserted in iteration i are kept 
during sizing in iteration i+1, but they are removed before 
buffering in iteration i+1. The delays of the first four iterations 
are compared with the delay of (one-step) simultaneous 
buffer/sizing (B/S). The gate sizing and fanout optimization 
techniques are described in [7] and [10], respectively. The B+S 
and S+B iterations converge to the final circuit delay only after 
two iterations. The percentage improvement of B/S over B+S or 
S+B is calculated as the delay of B/S divided by the smaller of 
the two delays obtained by B+S and S+B. The improvement of 
B/S over the sequential methods is an average of 5.1%.  

The global formulation is too expensive (and indeed impractical) 
to apply to large circuits. Table 3 presents results of the iterative 
optimization method based on Equation (5). In each iteration, we 
choose a k value such that the k most critical paths consist of 
about 150 gates. For the sequential methods, we perform two 
local iterations of B+S or S+B on the gates in the critical section 
whereas for the B/S technique, we solve Equation (5) in one 
shot. Circuit timing is updating from one iteration to next. 
Examining the results for the first four circuits in Tables 2 and 3, 
we note that the delay of the critical section formulation B/S is 
only a little bit larger than that of the global formulation B/S. 
Sequential methods however perform worse using the critical 
section formulation flow. Percentage improvement of the B/S 
technique over sequential techniques becomes more pronounced. 
The average delay improvement is 9.2%. 

Circuit Cell Delay 
(Initial) 

Circuit Cell Delay 
(Initial) 

C499 232 9.92 C3540 573 24.86 
C1908 262 13.13 k2 589 17.62 
C880 282 13.24 C5315 849 16.45 
C1355 375 12.83 C7552 1391 31.18 
dalu 513 21.97    

Table 1. Benchmarks information. 

Iterations 
Circuit 

1 2 3 4 

Delay 
(B/S) 

CPU 
(sec) 

D (B+S) 5.35 5.02 5.06 5.03 C499 
D (S+B) 5.13 5.08 5.03 5.04 

4.82 86 

D (B+S) 7.51 7.37 7.40 7.40 C1908 
D (S+B) 7.36 7.27 7.35 7.36 

7.08 144 

D (B+S) 7.67 7.51 7.54 7.50 C880 
D (S+B) 7.59 7.55 7.55 7.54 

7.22 201 

D (B+S) 10.54 10.39 10.35 10.37 C3540 
D (S+B) 10.58 10.41 10.32 10.38 

9.45 1821 

Table 2. Global formulation results. 
Circuit Delay 

(B+S) 
CPU 
(B+S) 

Delay 
(S+B) 

CPU 
(S+B) 

Delay 
(B/S) 

CPU 
(B/S) 

Improve 
(%) 

C499 5.39 245 5.38 228 5.03 198 7.0 
C1908 7.50 302 7.43 335 7.18 236 3.5 
C880 7.94 438 7.90 394 7.34 255 7.6 

C1355 7.38 391 7.44 457 6.95 432 6.2 
dalu 13.46 459 13.40 865 12.82 693 4.5 

C3540 11.03 827 11.12 734 9.81 250 12.4 
k2 10.73 522 10.59 603 9.23 594 14.7 

C5315 11.14 1894 11.23 2433 10.02 2097 11.2 
C7552 18.15 4758 17.91 4458 15.54 3295 15.3 

Table 3. Critical section formulation results. 

6 Conclusions 
In this paper, we introduced a new delay model for describing 
gate sizing with inserted buffers. The simultaneous gate sizing 
and fanout optimization problem was formulated as a non-linear 
programming problem and solved by LANCELOT. To control 
the problem size, we used an iterative flow to optimize the k 
most-critical paths. Merge and split operations were adopted to 
transform the fanout free tree to a general buffer tree. 
Experimental results showed that our simultaneous gate sizing 
and fanout optimization algorithm has an average delay 
improvement of 9.2% compared to conventional methods based 
on sequential fanout optimization and gate sizing flow.  
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