

 Simultaneous Gate Sizing and Fanout Optimization
Wei Chen*, Cheng-Ta Hsieh+, Massoud Pedram*

*University of Southern California +Verplex Systems, Inc.
 Los Angeles, CA 90089 Milpitas, CA 95035

Abstract
This paper describes an algorithm for simultaneous gate sizing
and fanout optimization along the timing-critical paths in a
circuit. First, a continuous-variable delay model that captures
both sizing and buffering effects is presented. Next, the
optimization problem is formulated as a non-convex
mathematical program. To manage the problem size, only a
small number of critical paths are considered simultaneously.
The mathematical program is solved by a non-linear
programming package. Finally, a design flow based on iterative
selection and optimization of the k most critical paths in the
circuit is proposed. Experimental results show that the proposed
flow reduces the circuit delay by an average of 9.2% compared
to conventional flows that separate gate sizing from fanout
optimization.

1 Introduction
Timing constraints in modern VLSI circuits are becoming
increasingly tighter. Gate sizing and fanout optimization
techniques are widely used to meet these constraints. Gate sizing
reduces the circuit delay by adjusting the gate sizes and hence
their drive strengths and input capacitances. Fanout optimization
achieves circuit delay reduction by speeding up the timing-
critical signals through insertion of sized buffers.

Gate sizing methods can be classified into two categories:
discrete and continuous. Discrete sizing methods only allow a
set of discrete sizes for each gate. They use combinatorial
algorithms or stochastic search to determine the best size for
each gate [1]. Continuous sizing methods on the other hand
assume that gate sizes are continuous variables and then use
mathematical programming to formulate and solve the
optimization problem [2]. Continuous sizing methods have a
more global view of the solution space and hence tend to achieve
better initial results. The final quality may however degrade after
the round off step, which is required because in reality there are
only discrete sizes allowed for each gate in the ASIC library. In
today’s ASIC design process however, the number of available
gate sizes in standard gate libraries is increasing, so the rounding
error is becoming smaller. Furthermore, the advent of on-the-fly-
synthesized gate libraries is helping to alleviate this problem
further.

Fanout optimization methods are usually applied in a circuit one
net at a time. They can again be divided into discrete buffer
sizing and continuous buffer sizing. The discrete buffer size-
based fanout optimization problem has been proven to be NP-

The Semiconductor Research Corporation under contract no. 98-DJ-606
sponsored this research.

complete [3]. Most of the previous work in this category hence
assumes a fixed template for the buffer tree [4]. Using a buffer
library with continuous sizes greatly simplifies the fanout
optimization problem [5].

Traditionally, gate sizing and fanout optimization are done
individually and at different stages in the design process. This
sequential flow can adversely affect the circuit performance as
illustrated in the example below.

g i

b1

b2

g1

g4

g3

g2

g1

g4

g3

g2
gi

g1

g4

g3

g2

(a) (c)(b)

gi

Figure 1. Motivation for simultaneous gate sizing and buffer

insertion.
In Figure 1 (a), assume that gi, g1 lie on a timing-critical path.
(Object sizes in the schematic represent the actual gate sizes in
the circuit.) Furthermore, assume that the required times for g1 to
g4 are in increasing order. Starting from this configuration, a gate
sizing tool will likely size down the non-critical sinks, g2 to g4 to
improve the critical path’s timing as shown in Figure 1(b). On
the other hand, starting from the configuration in Figure 1 (a), a
fanout optimization tool will likely build the buffer tree shown
in Figure 1 (c) to isolate the non-critical gates from gi.

It is possible that in Figure 1 (b) even though g3, g4 are sized
down to their minimum allowed sizes in the library, their output
arrival times are still earlier than their required times. So in fact,
as in Figure 1 (c), buffer b1 can be inserted to improve the arrival
time at output of g1. Similarly, in Figure 1 (c), if g3, g4 are sized
down, buffer b2 can be removed without violating the timing
requirement at output of g2. The gate-sizing tool cannot however
add b1 in the same way that the fanout optimization tool cannot
size down g3, g4. From this example, we can see the
shortcomings of separating the gate sizing and fanout
optimization steps. Because each step tries to make use of all the
freedom in the optimization space, it does not leave much
optimization opportunity for the other. At the same time, each
step is limited in the kind of optimization that it can perform. By
combining these two steps into one integrated step, we enlarge
the solution space and achieve more optimized results.

An interleaved buffer insertion and transistor-sizing algorithm is
proposed in [6]. The algorithm evaluates the effect of buffer
insertion and gate sizing separately and implements the one that
improves circuit delay best. Experimental results demonstrate

that even this greedy approach outperforms those that only do
gate sizing.

This paper presents an algorithm for continuous-variable
simultaneous gate and buffer sizing. The resulting problem
formulation become a non-convex mathematical program, hence
the size of the mathematical program must be controlled
carefully to avoid excessive runtimes. This is achieved by
restricting the number of timing-critical paths that are considered
at one time. The whole circuit is in turn optimized iteratively by
a sequence of timing recalculation and simultaneous sizing and
buffering.

The rest of this paper is as follows. Delay model is described in
Section 2. Precise problem formulation is given in Section 3.
Detailed algorithm and flow are presented in Section 4.
Experimental results and conclusions are given in Sections 5 and
6, respectively.

2 Delay Model
2.1 Notation
The following notation is used in this paper:
gi gate i
ai arrival time of gi’s output
ri required time of gi’s output
zi size of gi

buf i,j buffer chain inserted from gi to its sink gj
hi,j gain of the buffer chain buf i,j
x i,j number of levels of buf i,j
cbuf i,j input capacitance of the first gate in buf i,j
dinti,j intrinsic delay of gj for a signal transition from the

output of gi

rdri,j driving strength of gj for a signal transition from
the output of gi

cloadj sum of input capacitances of gj’s fanout gates

cini input capacitance of gi
di,j delay from the output of gi to the output of gj

dgatei,j delay from the output of buf i,j to the output of gj

dbufi,j delay of the buffer chain buf i,j
C(k) set of gates on the k most-critical paths
Ne(k,i) set of gates that are direct fanout gates of C(k)

2.2 Timing Analysis
Let directed graph G(V, A) represent the net list of a circuit. The
vertex set V represents the set of gates in the circuit whereas the
edge set A represents the source-to-sink connections among
gates. Associated with each gate gi in the circuit, there exist an
actual output arrival time ai and a required output arrival time ri.
The circuit designer specifies arrival times for circuit inputs and
required times for circuit outputs from chip level considerations.

The arrival time aj is given by:

j i i , j i , ja max{(a d)| (v v) A}= + ∀ ∈

The required time ri is given by:

i j i , j i , jr min{(r d)| (v v) A}= − ∀ ∈

where di,j is the delay from the output of gi to the output of gj. gi's
slack time si is defined i i is r a= − . A (timing) critical path is a
path in which the sequence of vertices (vi,…,vo) that comprise
the path (vi ∈ primary inputs and vo ∈ primary outputs), all have
slack values less than or equal to zero.

2.3 Gate Sizing Delay Model
The continuous-variable pin-dependent gate delay model of [7]
is adopted. 1

cload j

dint i.j
rdr i.jdi,j

gi g j

Figure 2. Gate delay model.

i , j i , j i , j jd dint rdr cload= + ⋅ (1)

dinti,j represents the intrinsic delay of gj for a signal transition
from the output pin of gi.. For gates with the same logic function,
dinti,j is nearly a fixed value, independent of the gate size. rdri,j
stands for the drive strength of gj for a signal transition from the
output pin of gi. cloadj is the input capacitance of the gate load
of gj.

k j

j k
g fanout(g)

cload cin
=

= ∑ . rdri,j and cink are functions of the

gate size and gate function. Using linear regression, we
empirically obtain the following equations:

, 1 1

2 2

/i j j

j j

rdr z
cin z

α β
α β

= +
= + ⋅

Equation (1) can then be rewritten as:

k j

i , j i , j i , j j k k
g fanout(g)

d dint rdr (z) cin (z)
=

= + ⋅ ∑

2.4 Buffer Insertion Delay Model
The global fanout optimization problem in conventional logic
synthesis flow is solved net by net by applying a local fanout
optimization algorithm. The latter problem can be expressed as:

Given a source gi with arrival time a i and a set of sink g j with
capacitance load cinj, polarity Pj and required time r j, find the
optimum topology of buffer tree and the appropriate size for
each inserted buffer to minimize the load “seen” by the source
gi, such that the arrival time of g j is less than r j..

2.4.1 Buffer Chain Model

h1

gi
gj

xi,j

h2 hxi,j

bxi,jb2b1

Figure 3. Single sink buffer chain.

As shown in Figure 3, buffers bufi,j inserted on the link from the
output of gi to its single sink gj, consist of b1, b2,…,bxi,j, where xi,j.
denotes the number of inserted buffers between gi and gj. To
calculate the delay of bufi,j, denoted as dbufi,j, the logical effort
based delay model [8] is used. This model is a reformulation of
the conventional RC model of CMOS gate delay. The delay of
buffer b, d=τ(p+gh).2 p is the parasitic delay of the gate. g is
called the logical effort of the gate and depends only on the
topology of the gate and its ability to produce output current. h is

1 For simplicity, the interconnect delay has been ignored in this
formula. It is however easy to extend this formula to use a statistical
wire load model based on the pin-count of the net and size of the circuit.
2 τ is a scaling parameter that characterizes the semiconductor process
being used. It converts the unit-less quantity (p+gh) to d, which has
time units. For simplicity and without loss of generality, we will drop τ
in the discussion that follows.

called electrical effort (or gain), which is defined as load/cin. p
and g are independent of the buffer sizes while cin is the input
pin capacitance of the buffer. In Figure 3, h1, h2,…hxi,j are gains
of the buffer b1, b2,…,bxi,j, respectively. Suppose the input
capacitance of gj is cinj. The input capacitance of the first buffer

b1 is
i , jx

1 j l
l

c cin / h= ∏ .

Theorem [9] Under the required time constraint

i i j
i

a (p g h) r+ + ⋅ <∑ for the sink, c1 is minimized when

h1=h2=…=hxi,j=hi, j .
In this paper, we take advantage of this theorem, since by
minimizing the load of gi, the arrival time of gi is shortened, and
its driver gates are sped up. Notice that the delay from the output
of gi to the output of the last level buffer bxi,j is:

i , j i , j i , jdbuf x (p g h)= + ⋅ (2)

2.4.2 Buffer Tree Model

Without information about the topology of the buffer tree, the
delay from the net source to each net sink cannot be calculated
correctly. Assume that all buffer sizes are available in the cell
library, the buffer tree can be manipulated by the merge and split
operations without affecting the optimality of the buffer tree [9].
These operations are illustrated in Figure 4.

h

h
b3

b11

b12

b2

h

b1

split

merge
b3

b2

Figure 4. Buffer tree merge and split transformations.

Theorem [9] If gains of b1, b11, b12 are the same, then the timing
and input capacitance properties are preserved by the merge/split
transformations (cf. Figure 4).

As a result, the optimal fanout tree with appropriate buffer sizes
may be split into a fanout-free tree, which is composed of a set
of buffer chains connected at the source of the net. The reverse is
obviously true too. Hence, we can build the buffer chains
separately and then merge them to obtain the optimal fanout tree.

Equation (2) can be extended to multiple sink buffer trees as
shown in Figure 5. Recall that for each sink gj of gi, hi,j is the
gain of every buffer in bufi,j .

gi

g4

g3

x i,4

x i,3

hi,3

h i,4

Figure 5. Multiple sink buffer tree.

2.5 Simultaneous Gate Sizing and Buffer Insertion
Delay Model

To express simultaneous gate sizing and fanout optimization
problem in a mathematical form, the delay model must reflect
the effect of size change and possible insertion of a buffer chain.

As shown in Figure 6, we combine the gate sizing and the buffer
chain delay models. Delay di,j is divided into two parts: dbufi,j,
which is the delay from gi’s output to the buffer chain’s output
and dgatei,j, which is the delay from the buffer chain’s output to
gj’s output.

As before, dbufi,j is calculated by Equation (2). Notice however
that previously output load of the buffer chain cinj was a known
value whereas now cinj changes with gj’s size. The load of gj is
not determined from its direct fanout gates, instead it is
determined from the input capacitance of the very first buffer in

the buffer chain: cbufj,k:
j,k

k
j,k x

j,k

cin
cbuf

(h)
=

The complete set of delay equations is thus summarized as:

j,k

i , j i , j i , j

k k
i, j i , j i , j j x

k j,k

i , j i , j i , j

dbuf x (p g h)
cin (z)

dgate dint rdr (z)
(h)

d dbuf dgate

= ⋅ + ⋅

= +

= +

∑ (3)

where k denotes the index of the fanout branch of gj .

di,j,

gj
gi gk

hj,k
xj,k dinti.j rdri.j

dgatei,jdbufi,j

xi.j (p+ghi,j)

Figure 6. Gate delay model with buffer chains.

Theorem The delay model di,j of Equation (3) is non-convex.
Proof Hessian matrix F of function f is the matrix of the 2nd
partial derivatives of f. Function f is convex over a convex set Ω
containing an interior point if and only if the Hessian matrix F of
f is positive semi-definite throughout Ω [11]. Readers can easily
verify that di,j given in equation (3) is not positive semi-definite.
Therefore, the delay mode is non-convex. <

Equation (3) describes the timing relations in the mathematical
formulation of the simultaneous gate sizing and fanout
optimization problem (section 3). Note when xi.j is equal to 0, it
means no buffer is inserted between gi and gj, and di,j becomes
exactly the same as Equation (1). This model consistency is of
course important, because we do not assume any buffer tree
template before the solution is attempted, and we do not know
whether or not an inserted buffer chain bufi,j exists. We let the
mathematical programming package determine the value of xi,j,
and hi,j, that is the best topology and size of the buffers trees. If
Equations (1) and (3) were not consistent at xi.j=0, for the edges
with a zero-value buffer level, the real delay calculated by
equation (1) would be different from the timing estimation of
constraints formulated based on (3). The convergence of
problem solution would therefore not be guaranteed. Other
important properties of Equation (3) are its continuity and
differentiability, which are indispensable to most mathematical
programming packages.

3 Problem Formulation
3.1 Global Formulation
We would like to capture the timing relations in the whole
circuit in one formulation, because such formulation would
result in a globally optimized solution. The problem is stated as:

start

minimize
s.t. T

i i

i i

j i i , j i , j i j

cycle
a v PI
a cycle v PO
a a dbuf dgate (v ,v) A

≥ ∀ ∈
≤ ∀ ∈
≥ + + ∀ ∈

 (4)

where Tstart is the latest arrival time of all the primary inputs. In
this formulation, for each gate there are two variables
corresponding to its arrival time and gate size; for each edge,
there are two variables corresponding to the number of inserted
buffers and the buffer gain (recall that all buffers in the same
buffer chain have identical electrical effort, i.e. identical gain).
Suppose the number of gates is n and the number of edges is e.
There are (2n+2e) variables. The number of constraints is also e.

Observation: Equation (4) is a non-convex problem because
dgatei,j is a non-convex function.

Each constraint of Equation (4) is related to quite a small
number of variables: ai, aj, xi,j, zj, zk, xj,k and hj,k. So the problem
formulation is very sparse. LANCELOT [12] is especially
effective in solving this kind of large-scale, non-linear, sparse
problem. It has been adopted in many VLSI CAD tools and
shows robustness and high efficiency.

We use LANCELOT to solve Equation (4) directly on several
benchmark circuits. Although LANCELOT shows good
performance on this kind of problem, Equation (3) has, in worst
case, O(n2) variables and constraints. Furthermore, the delay
model is non-convex. These considerations make the global
optimization formulation infeasible in practice for large circuits.

3.2 Critical Section Formulation
Instead of optimizing the whole circuit in one shot, we can
iteratively optimize the k most-critical paths of the circuit [7].
C(k) is defined as the set of gates on the k most-critical paths in
the circuit. Ne(k) is defined as the set of gates which are the
immediate fanouts of C(k). In each iteration, C(k) and Ne(k) are
identified. We only focus on optimizing them. The operations
performed include gate sizing C(k), fanout optimization of C(k)
and gate sizing of Ne(k). Compared to only gate sizing, the
topology of the critical paths is not fixed. Compared to local
fanout optimization, the sinks of the critical paths are sizable,
and the buffer trees are generated on the basis of whole path
delay, not for a single net.

By carefully controlling the boundary conditions, that is the
arrival times of Ne(k), solution convergence is guaranteed [7].
Note that only the gates in C(k) and Ne(k) are changed, all others
are fixed, therefore the load of gates in Ne(k) are not changing.
So if we guarantee that the arrival time of Ne(k) after
optimization is no larger than the specified required time, the
arrival time of the gates outside of C(k) and Ne(k) will not
increase. This analysis ignores the reconvergent fanout issues,
and hence holds only approximately. In practice however,
enforcing boundary constraints for Ne(k) is quite effective .
The new formulation is given as:

start

, ,

minimize
. . T , ()

 , ()
 (,) A, ()

i i i

i i i

j i i j i j i j i

cycle
s t a v PI v C k

a cycle v PO v C k
a a dbuf dgate v v v C k

≥ ∀ ∈ ∈
≤ ∀ ∈ ∈
≥ + + ∀ ∈ ∈

 () j j ja r v Ne kδ≤ ⋅ ∀ ∈

(5)

where dbufi,j and dgatei,j were given in Equation (3). δ is a
parameter to control the strictness of the arrival time requirement
on Ne(k). Its value is set to less than or equal to 1.

We define critical edge as an edge in graph G(V, A) that is
driven by a gate in C(k). Suppose there are n’ gates in C(k),
which introduce e’ critical edges and m’ gates in Ne(k). There
are 2(n’+e’+m’) variables (arrival time and size for each gate in
C(k) and Ne(k), buffer chain level and gain for each critical
edge) in Equation (5)). In this way the problem size decreases. If
the circuit is small, we can increase k to put more gates in C(k).

4 Algorithm

Yes

Timing
OK?

Build Buffer
Trees

New Circuit

End

Gate/Buffer
Sizing

Formulate
& Solve

Problem (5)

C(k) & Ne(k)
marked

Initial mapped
circuit

Timing
analysis

No
Timing

OK?

Figure 7 Algorithm flow.

The algorithm flow is depicted in Figure 7. First, timing analysis
is performed on the circuit network. The k most-critical paths are
marked. The buffer trees, which are driven by C(k) and built in
previous iteration, are removed such that the new buffer trees
can be constructed from Equation (5). The rationale for
removing previously constructed buffer trees is that in this way
we allow deleting redundant or non-optimal buffer trees. Next,
problem formulation (5) is generated and passed on to the
LANCELOT package. LANCELOT produces gate sizes, buffer
chain lengths and individual buffer gains. The buffer tree for
each gate in C(k) is formed by recursive merging of the buffer
chains on that net (c.f. section 4.2). After the fanout tree
topology is decided, the algorithm determines the buffer and
gate sizes. In the end, a new circuit net list is generated. The
above steps are repeated until the timing constraints are met.

4.1 Buffer Tree Generation
After Equation (5) is solved, xi,j is usually a non-integral value.
In reality, a feasible solution should be an integer. Suppose µ1
and µ2 are the two nearest feasible integers considering polarity
requirement of xi,j. We round xi,j to the number that satisfies the
required timing constraint of gj. If both values meet (or violate)
the required time demand, we pick up the value that makes cbuf

i,j, the input capacitance of the first gate in the tapered buffers buf

i,j, smaller. This heuristic keeps the load of the critical gate
smaller, thus reducing the arrival time of critical gate.
After the number of levels for each buffer chain is determined,
the size of buffers are calculated from its level and gain. The size
of these buffers is again in general a non-integral value, and
indeed some sizes may be less than one. The merge operation is
done recursively from the first level to reduce the number of
buffers and increase their sizes to make them whole buffers. The
advantage of merge is that it can minimize the round up error
due to non-integral buffer sizes and at the same time reduce the
buffer areas. Since the gain of each chain is calculated for

different sinks separately, their values may not be same. The
merge transform keeps the delay unchanged only when two
branches have the same gain. Therefore, we define a constant ε
and merge two buffers as long as the difference of their gains is
less than or equal to ε.

5 Experimental Results
Our algorithm was implemented and run on Pentium-III
733MHz machine. Table 2 shows our experimental results for
performing global optimization on some benchmark circuits.
These results correspond to the solution to Equation (4). The
initial cell count and delays for all circuits are given in Table 1.
Initially, each logic gate is mapped to the corresponding
minimum size cell in the library. To make the comparison fair,
we iteratively perform both buffer + sizing (B+S) and sizing +
buffer (S+B). Notice that buffers inserted in iteration i are kept
during sizing in iteration i+1, but they are removed before
buffering in iteration i+1. The delays of the first four iterations
are compared with the delay of (one-step) simultaneous
buffer/sizing (B/S). The gate sizing and fanout optimization
techniques are described in [7] and [10], respectively. The B+S
and S+B iterations converge to the final circuit delay only after
two iterations. The percentage improvement of B/S over B+S or
S+B is calculated as the delay of B/S divided by the smaller of
the two delays obtained by B+S and S+B. The improvement of
B/S over the sequential methods is an average of 5.1%.

The global formulation is too expensive (and indeed impractical)
to apply to large circuits. Table 3 presents results of the iterative
optimization method based on Equation (5). In each iteration, we
choose a k value such that the k most critical paths consist of
about 150 gates. For the sequential methods, we perform two
local iterations of B+S or S+B on the gates in the critical section
whereas for the B/S technique, we solve Equation (5) in one
shot. Circuit timing is updating from one iteration to next.
Examining the results for the first four circuits in Tables 2 and 3,
we note that the delay of the critical section formulation B/S is
only a little bit larger than that of the global formulation B/S.
Sequential methods however perform worse using the critical
section formulation flow. Percentage improvement of the B/S
technique over sequential techniques becomes more pronounced.
The average delay improvement is 9.2%.

Circuit Cell Delay
(Initial)

Circuit Cell Delay
(Initial)

C499 232 9.92 C3540 573 24.86
C1908 262 13.13 k2 589 17.62
C880 282 13.24 C5315 849 16.45
C1355 375 12.83 C7552 1391 31.18
dalu 513 21.97

Table 1. Benchmarks information.

Iterations
Circuit

1 2 3 4

Delay
(B/S)

CPU
(sec)

D (B+S) 5.35 5.02 5.06 5.03 C499
D (S+B) 5.13 5.08 5.03 5.04

4.82 86

D (B+S) 7.51 7.37 7.40 7.40 C1908
D (S+B) 7.36 7.27 7.35 7.36

7.08 144

D (B+S) 7.67 7.51 7.54 7.50 C880
D (S+B) 7.59 7.55 7.55 7.54

7.22 201

D (B+S) 10.54 10.39 10.35 10.37 C3540
D (S+B) 10.58 10.41 10.32 10.38

9.45 1821

Table 2. Global formulation results.
Circuit Delay

(B+S)
CPU
(B+S)

Delay
(S+B)

CPU
(S+B)

Delay
(B/S)

CPU
(B/S)

Improve
(%)

C499 5.39 245 5.38 228 5.03 198 7.0
C1908 7.50 302 7.43 335 7.18 236 3.5
C880 7.94 438 7.90 394 7.34 255 7.6

C1355 7.38 391 7.44 457 6.95 432 6.2
dalu 13.46 459 13.40 865 12.82 693 4.5

C3540 11.03 827 11.12 734 9.81 250 12.4
k2 10.73 522 10.59 603 9.23 594 14.7

C5315 11.14 1894 11.23 2433 10.02 2097 11.2
C7552 18.15 4758 17.91 4458 15.54 3295 15.3

Table 3. Critical section formulation results.

6 Conclusions
In this paper, we introduced a new delay model for describing
gate sizing with inserted buffers. The simultaneous gate sizing
and fanout optimization problem was formulated as a non-linear
programming problem and solved by LANCELOT. To control
the problem size, we used an iterative flow to optimize the k
most-critical paths. Merge and split operations were adopted to
transform the fanout free tree to a general buffer tree.
Experimental results showed that our simultaneous gate sizing
and fanout optimization algorithm has an average delay
improvement of 9.2% compared to conventional methods based
on sequential fanout optimization and gate sizing flow.

Reference
[1] O. Coudert, R. Haddad, "New Algorithms for Gate Sizing: a

Comparative Study", Proc. of 33rd DAC, pp.734-739, Jun 1996.
[2] M. Berkelaar, J. Jess, "Gate Sizing in MOS Digital Circuits with

Linear Programming", Proc. of European DAC, pp.217-221,
1990.

[3] C. L. Berman, J. L. Carter, K. F. Day, “The Fanout Problem:
From Theory to Practice”, Advanced Research in VLSI: Proc. of
the 1989 Decennial Caltech Conference, pp. 69-99, 1989.

[4] H. Touati, “Performance-oriented Technology Mapping”, Ph.D.
thesis, University of California, Berkeley, Technical Report
UCB.ERL M90/109, November 1990.

[5] K. Kodandapani, J. Grodstein, A. Dominic, H. Touati, “A Simple
Algorithm for Fanout Optimization using High-Performance
Buffer Libraries”, Proc. of ICCAD, pp. 466-471, November 1993.

[6] Y. Jiang, S. Sapatnekar, C. Bamji, J. Kim, “Interleaving Buffer
Insertion and Transistor Sizing into a Single Optimization”, IEEE
Transactions on VLSI Systems, vol.6, No.4, pp. 625 - 633,
December 1998.

[7] W. Chen, C. T. Hsieh, M. Pedram, “Simultaneous Gate Sizing and
Placement”, IEEE Transactions on CAD, Vol.19, No.2, pp.206-
214, February 2000.

[8] I. Sutherland, R. Sproul, “The Theory of Logical Effort:
Designing for Speed on the Back of an Envelope”, Advanced
Research in VLSI, Santa Cruz, 1991.

[9] D. Kung, “A Fast Fanout Optimization Algorithm for Near-
Continuous Buffer Libraries”, Proc. of 35th DAC, pp. 352-355,
June 1998.

[10] P. Rezvani, A. Ajami, M. Pedram, H. Savoj, “Leopard: A Logical
Effort-based fanout OPtimization for Area and Delay”, Proc. of
ICCAD, pp. 516-519, November 1999.

[11] D. Luenberger, Linear and Nonlinear Programming, Addison-
Wesley, pp.180, 1984.

[12] A. R. Conn, N. I. M. Gould, P. Toint, LANCELOT: A Fortran
Package for Large-Scale Nonlinear Optimization, Springer-
Verlag, 1992.

