
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 1, JANUARY 2011 85

Simultaneous Handling of Symmetry, Common
Centroid, and General Placement Constraints

Qiang Ma, Linfu Xiao, Yiu-Cheong Tam, and Evangeline F. Y. Young

Abstract—In today’s system-on-chip designs, both digital and
analog parts of a circuit will be implemented on the same chip.
Parasitic mismatch induced by layout will affect circuit perfor-
mance significantly for analog designs. Consideration of symme-
try and common centroid constraints during placement can help
to reduce these errors. Besides these two specific types of place-
ment constraints, other constraints, such as alignment, abutment,
preplace, and maximum separation, are also essential in circuit
placement. In this paper, we will present a placement methodol-
ogy that can handle all these constraints at the same time. To the
best of our knowledge, this is the first piece of work that can han-
dle symmetry constraint, common centroid constraint, and other
general placement constraints, simultaneously. Experimental re-
sults do confirm the effectiveness and scalability of our approach
in solving this mixed constraint-driven placement problem.

Index Terms—Analog placement, common centroid con-
straints, constraint graph, corner block list, sequence pair (SP),
symmetry constraints.

I. Introduction

IN TODAY’S system-on-chip designs, both digital and
analog parts of a circuit will be implemented on the same

chip. Placement of the analog parts is an error-prone and time-
consuming process. In analog placement, parasitic mismatch
induced by the layout will affect the circuit performance
significantly. Consideration of symmetry and common centroid
constraints during placement can help to reduce these errors.
For symmetry constraint, pairs of cells are required to be
placed symmetrically with respect to a horizontal or vertical
axis. For common centroid constraint, devices will be split
into a number of smaller sub-devices and placed in rotational
symmetry about a common center point. An example is shown
in Fig. 1. In Fig. 1, there is a common centroid group with
two devices. Each device is divided into smaller sub-devices
and layout in an interleaving manner to satisfy the common

Manuscript received December 8, 2009; revised March 19, 2010 and June
3, 2010; accepted July 6, 2010. Date of current version December 17,
2010. The preliminary versions of this paper appeared in the Proceedings of
ICCAD’06 [16] and ICCAD’07 [12]. This work was supported in part by the
Research Grants Council of the Hong Kong Special Administrative Region,
China, under Project 418908. This paper was recommended by Associate
Editor Y.-W. Chang.

Q. Ma is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61821 USA (e-mail:
qiangma1@illinois.edu).

L. Xiao, Y.-C. Tam, and E. F. Y. Young are with the Department of
Computer Science and Engineering, Chinese University of Hong Kong, Shatin,
Hong Kong (e-mail: lfxiao@cse.cuhk.edu.hk; yctam@cse.cuhk.edu.hk;
fyyoung@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2064490

centroid requirement. Besides common centroid and symme-
try, other general constraints, such as alignment, abutment,
preplace, and maximum separation, are also essential in circuit
placement. In this paper, we will present a methodology that
can handle all these constraints, simultaneously. To the best of
our knowledge, this is the first piece of work that can handle
symmetry constraint, common centroid constraint, and other
general placement constraints at the same time.

The problem of placing devices with symmetry constraint
has been extensively studied [1], [2], [4], [9], [11]–[13],
[15]–[17], [19], [20]. Most previous studies used simulated
annealing as an optimization engine based on a packing
representation. We can classify those representations into two
categories: 1) absolute representation, and 2) topological repre-
sentation. In an absolute representation [4], [9], [13], modules
are represented by their absolute coordinates on the chip plane.
However, the size of the solution space is huge in this case
which will affect the solution quality given a limited amount
of searching time. In a topological representation, the relative
positions between the modules are encoded. The solution
space is much smaller in comparison with that of an absolute
representation, but complicated computations are needed for
checking symmetry feasibility and adjusting the module po-
sitions to satisfy the constraints. Topological representations
such as sequence-pairs [14], O-tree [6], B*-trees [3], and
TCG-S [10] have been applied to handle symmetry con-
straints [1], [2], [11], [12], [15]–[17], [19], [20]. Most of these
previous works handle only symmetry constraints while [12]
handles common centroid constraint and [19] and [20] handle
both. Strasser et al. [19] presented an algorithm called Plan-
tage that makes use of a hierarchically bounded enumeration
of basic building blocks and the B*-tree representation to per-
form analog placement taking into account symmetry, common
centroid, proximity, and minimum distance constraints. The
last two constraints are about the maximum and minimum
distances between two modules. Plantage, however, cannot
handle other placement constraints in general. The work
in [20] handles both symmetry and common centroid con-
straints efficiently based on the symmetric feasible sequence
pair (SP) representation.

As mentioned above, component mismatch has significant
adverse effects on many analog circuits. This kind of mismatch
can be effectively suppressed by a common centroid layout,
which refers to a layout style in which a set of devices have
a common center point. Devices can be split into a number
of smaller ones and placed with the same center point. The

0278-0070/$26.00 c© 2010 IEEE

86 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 1, JANUARY 2011

Fig. 1. Layout of a differential pair (M1 and M2). Both M1 and M2 are
divided into four sub-devices.

devices can be arranged with a common centroid in one di-
mension as for a differential pair, or in two dimensions as for a
capacitor or resistor array in data converters. 2-D arrangement
is desired especially when the number of devices is large since
close proximity is desirable for better electrical properties.

In placement of digital and analog circuits, there are also
other placement constraints, such as maximum separation (an
upper bound on the separation distance between pairs of
critically matched devices), alignment, abutment, boundary,
preplace, and range. There is no previous work on handling
common centroid constraint, symmetry constraint, and other
general placement constraints, simultaneously. In this paper,
we try to address this mixed constraint-driven placement
problem with all different kinds of constraints, simultaneously.
A global SP with center-based corner block list (C-CBL) [12]
is used as the representation in the simulated annealing engine.
Instead of handling the constraints passively by having a
penalty term in the cost function to penalize violations, we
will try to satisfy all the constraints constructively during
the placement realization step. Each symmetry or common
centroid group will be packed as close to each other as
possible. Experimental results do confirm the effectiveness
and scalability of our approach in handling different types of
constraints at the same time.1

II. Problem Definition and Preliminaries

We are given a set of n blocks of areas Ai and aspect ratio
bounds [li, ui] where i = 1 . . . n, together with a set of m nets
N1, N2 . . . Nm. We are also given the following:

1) a set of p common centroid groups G1, G2 . . . Gp,
where each group Gi contains si devices labeled by
{gi1, gi2 . . . gisi

} and gij denotes the area of the jth device
in group Gi;

2) a set of q symmetry groups H1, H2 . . . Hq where each
symmetry group Hi contains self (Hi) self-symmetry
blocks and pair(Hi) symmetry pairs;

3) a set of r placement constraints C1, C2 . . . , Cr where
each placement constraint Ci denotes a constraint in
placement between two arbitrary blocks.

1Executable and data sets can be downloaded from http://www.cse.cuhk.
edu.hk/fyyoung/project/source/analog.html.

Fig. 2. Example of the common centroid constraint.

Our objective is to obtain a placement F of the circuit
satisfying all the common centroid, symmetry, and gen-
eral placement constraints, while minimizing a cost function
cost(F) = area(F) + λ × wire(F), where area(F) is the total
area of F , wire(F) is the total wire length of F measured by
the half-perimeter estimation, and λ is a parameter specifying
the relative importance between these two terms. General
placement constraints include alignment, abutment, maximum
separation, boundary, preplace, and range constraint.

A. Common Centroid Constraint

Each common centroid group Gi contains si devices with
areas {gi1, gi2 . . . gisi

}. We want to place these devices in such
a way that they will all have the same center point. To achieve
this purpose, each device will be split into a number of smaller
devices of the same size and dimensions. An example is
shown in Fig. 2. Users can specify the number of smaller
devices split from each device and we will assume it to be
two if no specifications are given. Users can also specify their
requirements on the shapes of these sub-devices, if there is
any, by providing the aspect ratio bounds. We will treat these
smaller devices in pairs2 and require them to have the same
center point. In this way, all the original devices will also have
the same center point. Throughout this paper, we have used
ni to denote the total number of smaller devices in Gi after
the splitting process, and each original device gij is called a
subgroup of Gi.

B. Symmetry Constraint

Each symmetry group Hi has self (Hi) self-symmetry blocks
and pair(Hi) symmetry pairs. All of them are required to be
placed symmetrically with respect to a horizontal or a vertical
axis. An example is shown in Fig. 3. As for the common
centroid constraint, users can specify their requirements on
the shapes of these blocks by giving the aspect ratio bounds.
They can also specify the direction of the symmetry axis, and
both directions are feasible if no specifications are given.

III. Overview of Our Approach

Simulated annealing is employed as the basic searching
engine in our approach using SP as the representation [14].
A global SP is used to represent the placement. In order to

2If the number of sub-devices is not even, we can further split one of them
into two. In this way, we can still satisfy the common centroid constraint,
but may not be able to handle some special cases, e.g., when there are three
triplets, in a good way. In practice, we can consider identifying and handling
these special cases separately.

MA et al.: SIMULTANEOUS HANDLING OF SYMMETRY, COMMON CENTROID, AND GENERAL PLACEMENT CONSTRAINTS 87

Fig. 3. Example of the symmetry constraint.

place all the devices of a common centroid group in close
proximity without interleaving with other blocks not from
the same group, each common centroid group will be treated
as a super-block3 in the SP. The internal structure of each
common centroid group will be handled specifically in order to
satisfy the common centroid constraint. During the annealing
process, a set of random moves will be performed to perturb:
1) the global SP that contains the super-blocks representing the
common centroid groups and the other blocks of the circuits,
and 2) the internal structures of the common centroid groups.
In each step of the annealing process, a global SP x = (s1, s2)
will be generated. We will first have an initial scan to check if
x can be a feasible solution satisfying the constraints. After this
initial scan, the common centroid groups will be packed. Then,
a pair of constraint graphs (Gh, Gv) will be built according
to the global SP to represent the relative positions among
the modules and the superblocks. New nodes and constraint
edges will be added into Gh and Gv to satisfy the symmetry
constraint and the other general placement constraints.4 Some
of these newly inserted edges will have variable weights and
we need to determine their weights to minimize the packing
area and to get rid of positive cycles. Finally, if no positive
cycles exist in the graphs, all constraints can be satisfied
simultaneously and we will pack accordingly to obtain one
feasible placement solution. Details on how we handle the
general placement constraints, the symmetry constraint, and
the common centroid constraint will be given in the following
sections.

IV. Handling of General Placement Constraints

In our problem, we will handle the following general
placement constraints.

1) Alignment: we use the notation align(x, A, B) where x ∈
{l, r, t, b} to denote that two blocks A and B are required
to align vertically along the left (x = l) or the right (x = r)

3The super-blocks are rectangular in shape and some area might thus be
wasted. However, in order to reduce undesirable parasitic effects, devices
in the same common centroid group are better well separated from other
blocks, e.g., guard rings are sometimes used to separate the groups. It is thus
reasonable to treat each common centroid group as a super-block.

4These placement constraints can also be applied on those super-blocks rep-
resenting common centroid groups, e.g., we can have a shielding surrounding
a common centroid group by creating four dummy modules and can impose
an appropriate set of placement constraints between those dummy modules
and the common centroid group.

Fig. 4. Alignment constraint.

Fig. 5. Abutment constraint.

side, or to align horizontally along the top (x = t) or the
bottom (x = b) side (Fig. 4).

2) Abutment: we use the notation abut(x, A, B) where x ∈
{v, h} to denote that two blocks A and B are required to
abut horizontally (x = h) with A on the left and B on the
right, or to abut vertically (x = v) with A at the bottom and
B on top (Fig. 5). In our definition of abutment constraint,
the shorter abuting side must abut completely with the
longer abuting side.

3) Maximum separation: we use the notation
maxsep(x, A, B, y) where x ∈ {v, h} and y is a
positive real number to denote that two blocks A and B

can at most be separated by a distance y horizontally
(x = h) or vertically (x = v).

4) Boundary: we use the notation boundary(x, A) where x ∈
{l, r, t, b} to denote that block A is required to abut with
the left (x = l), right (x = r), top (x = t), or bottom (x = b)
boundary of the whole chip.

5) Preplace: we use the notation preplace(x, y, A) where
x, y are real numbers to denote that block A is required to
be placed with its lower left (LL) corner at the coordinates
(x, y).

6) Range: we use the notation range(x, y, x1, y1, A) where
x, x1, y, y1 are real numbers and x1 ≥ x and y1 ≥ y to
denote that block A is required to be placed with its LL
corner lying in the range from (x, y) to (x1, y1).

We will make use of the approach in [18] of adding pairs
of edges into the constraint graphs to handle these general
placement constraints. More details of the methodology can
be found in [18]. However, we will first perform an initial
scan on a candidate global SP to identify some of those
infeasible solutions. These checkings are only used to screen
out some infeasible solutions, but those remaining may still
be infeasible, and we cannot identify them until the constraint
graphs are built. The conditions being checked are as follows.

88 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 1, JANUARY 2011

Alignment condition Q1: If block A is required to align
with block B horizontally (vertically), the order of A and B

in s1 and s2 must be the same (reversed).
Abutment condition Q2: If block A is required to abut

with block B horizontally with A on the left (right), s1 and s2

must be of the form s1 = . . . A . . . B . . . (. . . B . . . A . . .) and
s2 = . . . A . . . B . . . (. . . B . . . A . . .), respectively. Similarly, we
can derive the condition for vertical abutment.

Boundary condition Q3: If block A is required to abut
with the left (right) boundary of the chip, there should not be
any block B such that B is before (after) A in both s1 and
s2. Similarly, if block A is required to abut with the bottom
(top) boundary, there should not be any block B such that B

is before (after) A in s1 and after (before) A in s2.

V. Handling of Symmetry Constraint

In order to handle symmetry constraint and other general
placement constraints simultaneously in a unified framework,
we will also augment the constraint graphs to enforce sym-
metry constraint. For each symmetry group Hi containing ri =
self (Hi) self-symmetry blocks Z1, Z2 . . . Zri

and si = pair(Hi)
symmetry pairs (X1, Y1), (X2, Y2) . . . (Xsi

, Ysi
), we will first

check if Hi should be symmetric horizontally or vertically
given a candidate global SP in an initial scan as described
below.5 W.l.o.g., we assume that the symmetry axis of Hi is
vertical in the following discussion. First of all, we need to add
constraint edges to the vertical constraint graph to align the
symmetry pairs in Hi horizontally. A dummy node di will then
be added to the horizontal constraint graph to represent the
symmetry axis of Hi. In order to ensure equidistant between
the symmetry pairs with respect to the axis, four edges,
e(Xj, di), e(di, Xj), e(di, Yj), and e(Yj, di), will be added with
weights xij , −xij , xij −w(Yj), and −(xij −w(Yj)), respectively,
for each j = 1 . . . si where w(Yj) is the width of block Yj

[notice that w(Xj) = w(Yj)] and xij ≥ w(Yj) is a positive real
number. For each self symmetry block Zj where j = 1 . . . ri,
a pair of edges, e(Zj, di) and e(di, Zj) of weights w(Zj)/2
and −w(Zj)/2 will be added to ensure that Zj will be lying
symmetrically on the axis. After adding these dummy nodes
and new constraint edges, we will determine the value of xij

for j = 1 . . . si such that no positive cycles exist in the graph
and max1≤j≤si

xij is minimized. We will discuss these steps in
detail in the following sections.

A. Initial Scan

It has been shown in [1] that a sufficient symmetry feasible
condition [8] in a SP (s1, s2) is the following.

Symmetry condition Q4:

s−1
1 (A) < s−1

1 (B) ⇔ s−1
2 (sym(B)) < s−1

2 (sym(A))

for horizontal symmetric groups where A and B are
any two distinct blocks in the group, s−1

1 (X) [s−1
2 (X)]

denotes the position of block X in s1 (s2), and sym(X)
denotes the symmetry counterpart of X [sym(X) of a

5If the direction of symmetry is specified by the user, this initial scan will
be used to check whether the candidate global SP is a feasible one.

Fig. 6. Dummy nodes and additional constraint edges for a symmetry group.

self-symmetry block X is X itself]. Notice that the above
condition holds for any two blocks in the group, e.g., we
can put B as sym(A) and the condition requires that A is
on the left of sym(A). According to this symmetry condi-
tion, the blocks of a horizontal symmetric group will ap-
pear in a mirror form in a SP, e.g., s1 = . . . A1 . . . A2 . . .

and s2 = . . . sym(A2) . . . sym(A1) For example, for
a symmetry group with two symmetry pairs, (a1, b1)
and (a2, b2), and one self-symmetry block, c, a feasible
SP allowing this group to be arranged symmetrically
about a vertical axis will be s1 = . . . a1 . . . a2 . . . c . . . and
s2 = . . . c . . . b2 . . . b1 Similarly, a sufficient symme-
try feasible condition for vertical symmetric groups is
as follows:

s−1
1 (A) < s−1

1 (B) ⇔ s−1
2 (sym(A)) < s−1

2 (sym(B))

where A and B are any two distinct blocks in the group.
In our implementation, we will only generate those global

SP satisfying the symmetry condition Q4 because this condi-
tion is complicated while checking for violation of the other
three conditions (Q1–Q3) can be done very effectively. This
is done by initializing a SP solution that trivially satisfies the
above condition for every symmetry group at the beginning
of the annealing process, and then by maintaining these
relationships throughout all the subsequent moving steps.

B. Bounds on the Variable Edge Weights

Fig. 6 shows the scenario of a simple symmetry group Hi

with only two symmetry pairs (X1, Y1) and (X2, Y2), and one
self-symmetry block Z1. Now, we want to determine the values
of xi1 and xi2 such that no positive cycles will be created
and the value max{xi1, xi2} is minimized in order to obtain a
more compacted solution. Consider any positive cycle possibly
forming, the cycle must contain the dummy node di. In the
following, we will enumerate all these potential positive cycles
involving only one symmetry group and possibly other mod-
ules that are not in any other symmetry group. The variable
dist(A, B) denotes the longest path length (can be negative)
from node A to node B in the original constraint graph before
adding those dummy nodes and additional constraint edges
for symmetry groups and is equal to −∞ if there are no such
paths. There are in total four types of positive cycles possibly
forming enumerated as follows.

1) A cycle Xj → Yj → di → Xj (Yj → Xj → di → Yj)
for some j = 1 . . . si of total weight dist(Xj, Yj)− (xij −

MA et al.: SIMULTANEOUS HANDLING OF SYMMETRY, COMMON CENTROID, AND GENERAL PLACEMENT CONSTRAINTS 89

w(Yj)) − xij (dist(Yj, Xj) + xij + (xij − w(Yj))) may be
formed. To avoid positive cycles, it is required to have
2xij ≥ dist(Xj, Yj)+w(Yj) (2xij ≤ w(Yj)−dist(Yj, Xj)).

2) A cycle Xj → Yk → di → Xj (Yk → Xj → di →
Yk) for some j, k = 1 . . . si and j �= k of total weight
dist(Xj, Yk) − (xik − w(Yk)) − xij (dist(Yk, Xj) + xij +
(xik − w(Yk))) may be formed. To avoid positive cycles,
it is required to have xij + xik ≥ dist(Xj, Yk) + w(Yk)
(xij + xik ≤ w(Yk) − dist(Yk, Xj)).

3) A cycle Xj → Zk → di → Xj (Zk → Xj →
di → Zk) for some j = 1 . . . si and k = 1 . . . ri of
total weight dist(Xj, Zk) + w(Zk)/2 − xij (dist(Zk, Xj) +
xij −w(Zk)/2) may be formed. To avoid positive cycles,
it is required to have xij ≥ dist(Xj, Zk) + w(Zk)/2
(xij ≤ w(Zk)/2 − dist(Zk, Xj)). Similarly, there may be
cycles between Yj and Zk resulting in the constraints
xij ≥ dist(Zk, Yj) − w(Zk)/2 + w(Yj) and xij ≤ w(Yj) −
w(Zk)/2 − dist(Yj, Zk).

4) A cycle Xj → di → Xk → Xj (Yj → di → Yk → Yj)
for some j, k = 1 . . . si and j �= k of total weight xij −
xik +dist(Xk, Xj) (−xij +w(Yj)+xik−w(Yk)+dist(Yk, Yj))
may be formed. To avoid positive cycles, it is required
to have xik − xij ≥ dist(Xk, Xj) (xij − xik ≥ w(Yj) −
w(Yk) + dist(Yk, Yj)).

The total number of such inequalities will be 2×pair(H) +
4 × pair(H)2 + 4 × pair(H) × self (H) for a symmetry group
H , where pair(H) is the number of symmetry pairs in H and
self (H) is the number of self-symmetry blocks in H . The first
term 2 × pair(H) is due to those type 1 cycles, the second
terms 4×pair(H)2 is due to type 2 and type 4 cycles, and the
last term 4 ×pair(H) × self (H) is due to those type 3 cycles.

C. Computations of the Variable Edge Weights

From the above analysis, we can obtain upper and lower
bounds for a single variable xij , for the sum of two variables
xij + xik and for the difference of two variables xij − xik. The
bounds involve some pair-wise longest paths in the original
acyclic constraint graph and the widths of some blocks, which
can be computed effectively. Our goal is to evaluate all xij’s
satisfying these bounds and minimizing max1≤j≤si

xij . This
can of course be solved optimally by a linear solver but it
will be too expensive to invoke a solver in every iteration of
the annealing process. Therefore, we will solve this system
of linear equations directly. Our approach can obtain the
optimal solution when there are only lower bound constraints,
e.g., when there are no general placement constraints. When
there are both upper and lower bound constraints, the solution
obtained by our method may be suboptimal, but this occurs
very rarely as verified by the experiments (8 out of 2626 trials).

When there are only lower bounds, we can basically in-
crease the values of the variables until all the lower bounds
are satisfied. However, we do also want to minimize the value
max1≤j≤si

xij . This can be achieved by carefully accounting a
slack for each variable (how much a variable can be increased
without increasing the value of the objective function value).
When there are both upper and lower bounds, we will keep
account of a largest possible slack for each variable due
to the upper bound constraints. For example, consider two

Pseudocode SolveConstraints()
// Given a set U = U1 + U2 of upper bound constraints involving
// a single variable (U1) or the sum of two variables (U2) and a set
// L = L1 + L2 + L3 of lower bound constraints involving a single
// variable (L1), the sum of two variables (L2) or the difference of
// two variables (L3), we want to assign a value to each variable
// so that all the constraints are satisfied and the objective function,
// the largest variable value, is the smallest.

1. For each variable x, set it to its smallest possible value
according to L1.

2. Construct a constraint graph G with vertices representing
variables according to the difference constraints in L3.

3. For each variable x, update its value and its slack(x)
according to G.

4. For each variable x, initialize its largest possible slack,
Lslack(x), as ∞.

5. For each variable x, update its Lslack(x) as min{Lslack(x),
min(x≤a)∈U1 {a − x}, min(x+y≤b)∈U2 {b − x − y}}

6. While some constraints in L2 are not satisfied yet
7. For each constraint C : (x + y ≥ b) ∈ L2

8. If Lslack(w) < 0 for some variable w, return “failure”
and exit.

9. If C is not satisfied:
10. x = min{x + slack(x), x + Lslack(x), b − y}
11. Update Lslack(x) according to the formula in step 5.
12. Update Lslack(z) according to the formula in step 5

for every variable z forming a constraint with x in U2.
13. Update the value of each variable w and its slack(w)

from G.
14. If C is still not satisfied:
15. y = min{y + slack(y), y + Lslack(y), b − x}
16. Update Lslack(y) according to the formula in step 5.
17. Update Lslack(z) according to the formula in step 5

for every variable z forming a constraint with y in U2.
18. Update the value of each variable w and its slack(w)

from G.
19. If C is still not satisfied:
20. Increase both x and y by (b − x − y)/2.
21. Update Lslack(x) and Lslack(y) according to the

formula in step 5.
22. Update Lslack(z) according to the formula in step 5 for

every variable z forming a constraint with x or y in U2.
23. Update the value of each variable w and its slack(w)

from G.

upper bound constraints xij ≤ a and xij + xik ≤ b (notice
that a difference constraint can always be written as a lower
bound constraint), the largest possible slack of xij will be
min{a−x′

ij, b−x′
ij−x′

ik} where x′
ij and x′

ik are the current values
of xij and xik, respectively. Then, by adjusting the values of the
variables according to the slacks and the largest possible slacks
(which are updated dynamically), we can obtain a solution for
the system of linear equations efficiently. The pseudocode is
shown above.

D. Summary

The pseudocode at the top of the next page shows a sum-
mary of the steps to handle symmetry constraint. Notice that
step 9 above is needed since there may be cycles formed be-
tween different symmetry groups after inserting those dummy
nodes and additional constraint edges. For efficiency purpose,
we have chosen to determine the edge weights of each group
separately and check for positive cycles once at the end. An

90 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 1, JANUARY 2011

Pseudocode Symmetry()
// Given a pair of acyclic constraint graphs (G′

h, G
′
v) which are

// already augmented with edges to handle other general place-
// ment constraints, this procedure either announces that the
// symmetry constraint cannot be satisfied simultaneously or
// further augments them to satisfy the symmetry constraint.

1. For each symmetry group Hi

2. Determine the longest path between every pair of blocks
in Hi in the constraint graphs (G′

h, G
′
v).

3. For each symmetry group Hi

4. Insert a dummy node di to G′
h (G′

v).
/* Assume that the symmetry axis of Hi is vertical. */

5. Insert additional constraint edges between di and the blocks
in Hi according to Section V.

6. Determine the weights of the new constraint edges.
7. If no solutions is obtained, return(fail).
8. Check for positive cycles in (G′

h, G
′
v).

9. If positive cycles found in (G′
h, G

′
v), return(fail).

10. Return(G′
h, G

′
v).

alternative will be solving a system of linear equations involv-
ing all the variable edge weights. In that case, we must invoke
a solver since the upper and lower bound constraints will be
more general, e.g., involving many variables. Notice that if
different symmetry groups do not interleave and no negatively
weighted paths exist between different symmetry groups in
(G′

h, G
′
v), e.g., no other general placement constraints between

symmetry groups, the two approaches are the same, i.e., the
variable edge weights in different groups will not affect each
other.

VI. Handling of Common Centroid Constraint

One straightforward way to handle common centroid
constraint is by extending the approach in Section V on
symmetry constraint. The extension can be done easily by
adding dummy vertices and new edges with variable weights
to both the vertical and horizontal constraint graphs to ensure
equidistance between the block pairs with respect to the
center point in both the x and y directions. However, this
approach is time consuming and we will demonstrate this in
Section VIII on experimental results. In the following, we
will propose a more effective approach to handle the common
centroid constraint, by simply representing each common
centroid group with a data structure that must correspond to
a common centroid way of packing. Similar to the symmetry
constraint, we will split each device into two smaller ones of
the same dimension, and require all these pairs from the same
group to be placed with a common centroid.6 This approach
is good since the total number of devices after splitting will
be as small as possible. Now, each common centroid group
Gi contains si pairs of devices (ai1, bi1), (ai2, bi2) . . . (aisi

, bisi
)

with sizes gi1

2 ,
gi2

2 . . .
gisi

2 . In order to represent a common
centroid placement of all these si pairs of blocks, a new
representation called C-CBL [12] is used. C-CBL is a natural
extension of the corner block list (CBL) representation [7]

6The users can specify the number of smaller devices split from each device,
and we can then handle them similarly in pairs to satisfy the common centroid
constraint. If the specified number is not even, we can just split one of them
into two.

Fig. 7. (a) Mosaic packing. (b) Horizontal constraint graph. (c) Vertical
constraint graph.

to handle common centroid groups. In the following, we will
first briefly review CBL and then define C-CBL.

A. C-CBL

Fig. 7 shows a mosaic packing and its horizontal and
vertical constraint graphs. In these constraint graphs, the nodes
represent the vertical or horizontal segments in the packing
while the edges represent the rooms for placing the modules.
Additional nodes, labeled by W , E, S, and N, are inserted
to represent the west, east, south, and north sides. A block
is called a corner block if its corresponding edges in the two
constraint graphs are pointing to the E and N nodes. The
orientation of a corner block is defined by the orientation of
the T-junction at its LL corner. If the T-junction is rotated
by 90° counterclockwise, its orientation is vertical and is
denoted by a bit zero; if the T-junction is rotated by 180°
counterclockwise, it is horizontal and is denoted by a bit one.

The C-CBL [12] extends the basic CBL to represent the
placement of a common centroid group. It is different from
the original CBL that C-CBL works on corner block pairs.
Given a mosaic packing, we can define the following.

Definition 1: UR corner block: A block is a upper right
(UR) corner block if its corresponding edges in the horizontal
and vertical constraint graphs are pointing to the E and N

nodes, respectively. Its orientation is horizontal (vertical) if
the T-junction at its LL corner is rotated by 180° (90°)
counterclockwise. A UR corner block can be deleted from
the packing by sliding the non-crossing segment of its LL
T-junction to the right (top) if it is horizontal (vertical). The
T-junction information is the number of T-junctions uncovered
if the corner block is deleted from the packing. When there is
only one pair of blocks in the packing, the UR corner block is
horizontal (vertical) if its counterpart is on its left (below it).

Definition 2: LL corner block: A block is a LL corner
block if its corresponding edges in the horizontal and vertical
constraint graphs are pointing from the W and S nodes, respec-
tively. Its orientation is horizontal (vertical) if the T-junction
at its UR corner is rotated by 0° (270°) counterclockwise. An
LL corner block can be deleted from the packing by sliding
the non-crossing segment of its UR T-junction to the left
(bottom) if it is horizontal (vertical). When there is only one
pair of blocks in the packing, the LL corner block is horizontal
(vertical) if its counterpart is on its right (above it).

Definition 3: Corner block pair: The UR corner block and
the LL corner block of a packing are called a corner block

MA et al.: SIMULTANEOUS HANDLING OF SYMMETRY, COMMON CENTROID, AND GENERAL PLACEMENT CONSTRAINTS 91

Fig. 8. Obtaining a C-CBL from a packing.

pair if and only if they have the same orientation and have the
same number of T-junctions uncovered after their deletions.

Given a mosaic packing of n pairs of blocks7 satisfying the
common centroid constraint, we can decompose the packing
iteratively by removing its UR and LL corner blocks. Each
removed pairs, representing a pair of devices aij and bij , will
have the same orientation and T-junction information, i.e., they
form a corner block pair. The C-CBL representation can thus
be defined naturally according to this deletion process. In the
following definition, we assume that there is always a single
block located at the center position of the placement, for the
sake of unified representation. This center block will be a
dummy one with zero width and height when there are only
n pairs of blocks.

Definition 4: C-CBL: A C-CBL is a four-tuple (C, S, L, T)
where:

1) C is the name of the center block;
2) S is a sequence of x block names;
3) L is a list of x bits representing the orientations;
4) T is a list of x integers representing the T-junction

information.

B. Obtaining C-CBL from a Packing

Given a mosaic packing satisfying the common cen-
troid constraint, we can obtain the corresponding C-
CBL by recursively deleting the corner block pairs.
For example, suppose that we are now given a com-
mon centroid placement containing five pairs of blocks
{g1(a1, b1), g2(a2, b2), g3(a3, b3), g4(a4, b4), g5(a5, b5)}.
Fig. 8 shows the process to obtain the corresponding C-CBL
by iteratively performing corner block pair deletion. Note that
the center block labeled as cdmy denotes a dummy center. We
can prove the following theorem constructively.

Theorem 1: A unique C-CBL can be obtained from a
mosaic packing with n pairs of blocks (or n pairs plus one
block) satisfying the common centroid constraint.

7The C-CBL can also handle n pairs of blocks plus one single block.

Fig. 9. Obtaining a packing from a C-CBL.

Proof: The proof can be done by induction on the number
of blocks. The base case is the case when there is only one
block C (this can be a dummy block with zero size). For
this base case, the C-CBL is obviously (C, {}, {}, {}). Now,
consider the inductive case that there are k + 1 pairs plus one
blocks in the mosaic packing P . Since P satisfies the common
central constraint, the blocks occupying the rooms at the UR
corner and the LL corner of P must belong to the same device
Y . According to the symmetric property, these two blocks
must have the same orientation and cover the same number
of T-junctions. Consider deleting these two blocks from P by
sliding them out of the packing either horizontally or vertically,
depending on their orientations. Now, we are left with another
mosaic packing with k pairs plus one blocks, which can be
represented uniquely by a C-CBL (C, S, L, T) according to
the inductive hypothesis. Let S′ be obtained by appending Y

to the end of S, L′ be obtained by appending to L, a bit
that represents the orientation of the two blocks, and T ′ be
obtained by appending to T a positive integer that represents
the number of T-junctions covered by the blocks. Then, the
packing P can be represented by the C-CBL (C, S′, L′, T ′)
uniquely.

C. Obtaining a Packing from a C-CBL

A mosaic packing satisfying the common centroid constraint
can be constructed from a C-CBL(C, S, L, T) by initializing
the packing with the center block C and then inserting
the corner block pairs one by one according to the lists’
information. Fig. 9 shows this packing procedure for the
previous example, with the C-CBL given as (C = cdmy, S =
(g4, g2, g5, g1, g3), L = (1, 0, 0, 1, 1), T = (0, 1, 1, 0, 1)). Sim-
ilar to the CBL representation, an arbitrary four-tuple may
not correspond to a feasible packing since the number of
available T-junctions may be less than the required number of
T-junctions to be covered (according to the T list) when we try
to insert the UR and LL corner blocks. However, this condition
can be checked and maintained easily in the implementation.

92 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 1, JANUARY 2011

D. Realization of a Common Centroid Placement

To obtain a valid packing of a common centroid group
Gi from a C-CBL, we need to adjust the coordinates of
the blocks since they may not satisfy the common centroid
constraint after the bottom-left-compacted packing process.
We will recompute the coordinates of those UR corner blocks
(assume that they are bij) as follows:

bij.x = w(Gi) − aij.x − width(bij)

bij.y = h(Gi) − aij.y − height(bij)

where w(G) and h(Gi) are the width and height of Gi,
(bi,j.x, bi,j.y) are the coordinates of block bi,j , and width(bi,j)
and height(bi,j) are the width and height of bi,j . In addition,
the coordinates of the center block bc (if it is not a dummy)
can be computed as (w(Gi)/2 − w(bc)/2, h(Gi)/2 − h(bc)/2).
Obviously, after this adjustment, the blocks in Gi will satisfy
the common centroid constraints, while staying within the
smallest possible region w(Gi) × h(Gi) without any overlap-
ping. Similar to the floorplan realization step for the corner
block list representation [7], this procedure will take O(n) time
where n is the number of blocks. This step will be performed
whenever the C-CBL of any common centroid group Gi is
perturbed, after which Gi will be regarded as a super-block
with width w(Gi) and height h(Gi) in the global SP describing
the whole circuit. We can thus prove the following theorem.

Theorem 2: The packing of a common centroid group Gi

constructed from a C-CBL as described in Section VI-D
satisfies the common centroid constraint.

Proof: First of all, consider any pair of blocks aij and
bij in this group. The x-coordinate of aij’s center is aij.x +
width(aij)/2 and that of bij’s center is bij.x + width(bij)/2 =
w(Gi) − aij.x − width(aij)/2. The center of these two blocks
is thus at x = w(Gi)/2. Similarly, we can compute the y-
coordinate of the center of these two blocks and it is at
y = h(Gi)/2. Therefore, all pairs will have the same center,
which is (w(Gi)/2, h(Gi)/2). Last, for the single block bc at
the center, if there exists such a block, the coordinates of its
LL corner will be computed as (w(Gi)/2−w(bc)/2, h(Gi)/2−
h(bc)/2) as described above. Thus, its center will also be at
(w(Gi)/2, h(Gi)/2). Therefore, the packing of this group will
satisfy the common centroid constraint.

VII. Simulated Annealing

Globally, we use SP as the representation. In the global
SP, each block is denoted by a label, except that each
common centroid group Gi is regarded as one super-block,
whose internal structure is manipulated by the aforementioned
C-CBL representation. Simulated annealing is used as our
basic searching engine.

A. Set of Moves

We employ the following set of moves to perturb a cur-
rent candidate solution. The moves can be divided into two
categories.

TABLE I

Benchmark Circuits for Comparison

Data Block # of Sym. Mod. Total Area

ami33 33 6 1.16 mm2

ami49 49 4 35.45 mm2

biasynth 2p4g 65 8 + 12 + 5 4.7 µm2

lnamixbias 2p4g 110 16 + 6 + 6 + 12 + 4 46.00 µm2

1) Global SP Perturbations: This category of moves is
used to perturb the global SP representation. Starting with a
SP satisfying the symmetry condition Q4, another candidate
SP satisfying Q4 can be generated.

1) Swapping two symmetry groups: two symmetry groups
are picked randomly and swapped. Notice that we do
not consider interleaving of symmetry groups in our
implementation, so this operation is well-defined.

2) Swapping two blocks of the same symmetry group: two
blocks A and B, which are not symmetry pair of each
other, are picked randomly from a symmetry group. We
then swap A and B in s1 and swap sym(A) and sym(B) in
s2. Notice that the blocks A and B can be self-symmetry
or belong to a symmetry pair.

3) Moving an asymmetric block: in this move, an asym-
metric block (including the super-blocks) is picked
randomly and its position in the sequence s1 or s2 is
modified.

4) Rotating a symmetry group: a symmetry group is picked
randomly and its orientation is changed (from horizontal
to vertical, or vice versa). To perform this rotation, we
only need to reverse the order of the related blocks
in s2.

5) Changing aspect ratio of a soft block: a soft block A that
is not a super-block is picked randomly and its aspect
ratio is changed. If A belongs to a symmetry pair, we
also need to make the corresponding change to sym(A).

2) C-CBL Perturbations: This category of moves modifies
the internal structure of a common centroid group by perturb-
ing its C-CBL representation and the shape of the blocks in
this group.

1) Changing aspect ratio: a randomly chosen pair of blocks
in an arbitrary common centroid group are selected and
have their shapes changed.

2) Swapping two devices: two pairs are randomly chosen
from an arbitrary group and their positions in the corre-
sponding S list are swapped.

3) Changing orientation: a randomly chosen bit in the L

list of an arbitrary group is toggled.
4) Changing T-junction information: the value at a ran-

domly chosen position in the T list of an arbitrary group
is changed. The new value must not exceed the number
of T-junctions available.

B. Cost Function and Annealing Schedule

We use the cost function cost(F) = area(F) + λ × wire(F)
to evaluate a packing F where area(F) is the area of F , and
wire(F) is the total wire length estimated by the half perimeter

MA et al.: SIMULTANEOUS HANDLING OF SYMMETRY, COMMON CENTROID, AND GENERAL PLACEMENT CONSTRAINTS 93

TABLE II

Comparison With Previous Works

Data SP [1] SP+LP [8] Plantage [19] SFSP [20] This Paper
Area Time Area Time Area Time Area Time Area Time

(mm2) (s) (mm2) (s) (mm2) (s) (mm2) (s) (mm2) (s)
ami33 1.24 684 – – – – 1.22 2 1.24 23
ami49 37.82 2038 – – – – 37.05 5.1 38.32 29
biasynth 2p4g – – 4960 206 4933 337 4945 13.5 5570 134
lnamixbias 2p4g – – 50 150 3027 49 533 387 48 530 53 52 210 227

All experiments were performed on Pentium 4 3.2 GHz 1 GB RAM, except SP on Sun Sparc Ultra-60 433 MHz and
symmetric feasible sequence pair (SFSP) on Intel Xeon 2.2 GHz 1 GB RAM.

TABLE III

Comparing C-CBL Approach and the Dummy Node Approach

Data Block CC Groups Net C-CBL Dummy Node Approacha

Set No. No. Device No. Area Dead HPWL Run Area Dead HPWL Run
No. Space (%) Time (s) Space (%) Time (s)

c1 30 1 8 36 513.4 4.32 326.3 4.92 518.3 5.23 327.4 98.50
c2 50 1 10 62 821.6 6.83 574.6 10.72 825.5 7.26 573.2 215.7
c3 70 2 8, 10 104 1241 6.92 612.3 20.53 1287 10.3 653.9 451.6
c4 100 3 8, 9, 10 138 1835 8.63 685.7 40.46 1922 12.8 714.5 1272
c5 120 4 10, 10, 10, 10 187 2673 9.34 839.2 52.62 – – – –
c6 150 5 10, 10, 10, 10, 10 242 3269 10.8 1135 108.3 – – – –
c7 200 5 10, 10, 10, 10, 10 379 4103 12.6 1979 172.6 – – – –
c8 300 6 10, 10, 10, 10, 10, 10 622 5062 16.1 2437 563.2 – – – –

Average – 9.44 – – – – – –

aNo result is reported for data c5–c8 because the running times are too long.

method. The parameter λ is a factor that specifies the relative
importance between area and wire length. Before the annealing
process, a random walk with 1000 moves will be performed to
determine the value of the parameter λ in the cost function. In
this preprocessing step, we will perform 1000 random moves
to estimate the average area cost Aavg and the average wire
length Wavg. We will then compute λ in such a way that the
ratio of Aavg : λ×Wavg is approximately equal to 1 : 1. In our
annealing engine, the temperature is set to 105 at the beginning
and will drop at a rate of 0.99. At each temperature, n random
moves are performed, where n is the number of blocks in the
data set. The annealing process stops when the temperature
falls below 10−5.

VIII. Experimental Results

Our placer was implemented in C and run on a Sun Blade
2500 with a 1.6 GHz CPU and 2 GB RAM. All the data sets
used are either real industrial analog designs (biasynth 2p4g
and lnamixbias 2p4g), derived from the Microelectronics
Center of North Carolina (MCNC) benchmarks (ami33 and
ami49) or randomly generated by us for testing purpose (c1-
8, D40a-b, D70a-d, D100a-d, and c1 arr-c8 arr).

A. Comparisons with Previous Approaches

We compare with several representative previous works
on handling symmetry constraints. Table I describes detailed
information of the data used for comparison. The first two
data sets are based on the MCNC benchmarks and the last
two are real industrial analog circuits commonly used in many
previous works on analog placement. The second column

TABLE IV

Handling Mixed Placement Constraints

Data Block CC Sym. General Area Dead Run
Set No. Group Group Const. Space Time

No. No. No. (%) (s)
D40a 40 1 1 4 74 557 5.69 79.44
D40b 40 2 1 3 70 708 6.29 77.34
D70a 70 1 4 6 17 924 5.63 749.92
D70b 70 2 3 6 18 355 8.67 497.64
D70c 70 3 2 10 18 894 11.28 318.37
D70d 70 4 1 6 18 986 11.71 1098.63
D100a 100 2 4 6 29 860 9.31 1257.21
D100b 100 3 3 10 30 023 7.26 990.68
D100c 100 3 3 6 30 783 9.11 980.33
D100d 100 4 2 8 29 983 6.68 808.35

Average – 2.5 2.4 6.5 – 8.163 685.791

shows the total number of blocks, the third column shows the
symmetry group information, e.g., for data set biasynth 2p4g,
there are three symmetry groups with 8, 12, and 5 modules,
respectively. The fourth column shows the total area of all the
modules. The comparison is shown in Table II. Some results
are not available and they are denoted by “-.” We can see
that SFSP [20] performs the best in terms of both area and
runtime. However, it does not consider other general placement
constraints.

B. Experiment One

In order to study the effectiveness of using the C-CBL
representation for common centroid groups, we have imple-
mented another direct method to solve the same problem. One
straightforward way to handle common centroid constraint is

94 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 1, JANUARY 2011

TABLE V

Comparison of C-CBL With Grid-Based Approach

Data Block CC Groups Net C-CBL Approach Grid-based Approach
Set No. No. Area Ratios of Each Group No. Area Dead HPWL Run Area Dead HPWL Run

Space (%) Time (s) Space (%) Time (s)
c1 arr 30 1 {2, 4, 8, 16} 36 247.5 4.24 121.1 7.18 249.2 4.88 118.3 4.46
c2 arr 50 1 {2, 4, 8, 16} 62 266.8 3.54 165.9 18.7 265.3 3.02 152.6 13.17
c3 arr 70 1 {2, 4, 8, 16} 104 868.9 5.01 622.7 39.9 865.8 4.67 588.4 27.48
c4 arr 100 1 {2, 4, 8, 16} 138 1171 6.31 919.3 96.75 1165 5.88 920.1 85.0
c5 arr 120 2 {4, 8, 16}, {2, 4, 8, 16} 187 1267 5.78 1279 199.6 1270 6.03 1204 150.2
c6 arr 150 2 {4, 8, 16}, {2, 4, 8, 16} 242 1495 8.02 1795 352.4 1489 7.65 1680 257.3
c7 arr 200 2 {4, 8, 16}, {2, 4, 8, 16} 379 2093 6.98 3472 739.6 2096 7.11 3382 510.3
c8 arr 300 2 {4, 8, 16}, {2, 4, 8, 16} 622 3179 8.20 6482 2310 3162 7.72 6435 1857

Average 1323.5 6.01 1857.1 470.5 1320.2 5.87 1810 363.2

by extending the approach in Section V on symmetry con-
straint. The extension can be done by simply adding dummy
vertices and edges with variable weights to both the vertical
and horizontal constraint graphs. In symmetry constraint, a
pair of blocks are required to be placed symmetrically with
respect to an axis; thus, a pair of edges weighted zero are
inserted between the two blocks in the vertical or horizontal
constraint graph to align them, while in the other constraint
graph, a dummy node representing the axis will be added
together with some equally weighted constraint edges between
the dummy node and the two blocks. To satisfy the common
centroid constraint, pairs of blocks are placed symmetrically in
both the x and y directions. This can be achieved by adding
a dummy node di, representing the centroid C(Gi), to both
the horizontal and vertical constraint graphs and adding a set
of constraint edges between di and the two blocks to ensure
equidistance from the center point in both directions. However,
this approach is time consuming since the variable edge
weights have to be determined in each annealing iteration.
Table III is a comparison between this direct method and
our C-CBL approach. Results show that our C-CBL approach
can perform much better. In Table III, the column Block
No. refers to the number of blocks without common centroid
constraints, and the column CC Groups shows the information
of the common centroid groups, e.g., for data set c3, there
are two common centroid groups with eight and ten devices,
respectively (note that each of them will be split into two
resulting in a total of eight and ten pairs). The deadspace
percentage is 9.44% on average.

C. Experiment Two

In this second set of experiments, we want to study the
performance of our placer when there is a mixed set of
constraints. The results of this set of experiments are shown
in Table IV, where the columns CC Group No., Sym. Group
No., and General Const. No. display the number of common
centroid groups, the number of symmetry groups, and the
number of general placement constraints in the data sets,
respectively. The average deadspace percentage is 7.16%,
with all placement constraints satisfied, which confirm the
effectiveness of our placer to handle the common centroid
constraints, symmetry constraints, and other general placement
constraints, simultaneously.

Fig. 10. Resultant packing of data set D70a with one common centroid
group (c1), four symmetry groups (s1–s4), range constraint (group 1),
alignment constraint (group 2), abutment constraint (group 3), and maximum
separation constraint (group 4).

Fig. 11. Resultant packing of data set D100b with three common centroid
groups (c1–c3), three symmetry groups (s1–s3), and alignment constraint
(group 1).

Figs. 10 and 11 are several resultant packings generated
by our placer. In these figures, the blocks in the common
centroid groups are colored in light blue and labeled with “c#”
(“#” denotes its group index), while the blocks with symmetry
constraints are colored in yellow and are labeled with “s#.”
The blocks with general placement constraints are colored in
green, and the blocks labeled with the same number belong
to the same general constraint group, e.g., the blocks labeled
with “3” in Fig. 10 belong to an abutment constraint group.

MA et al.: SIMULTANEOUS HANDLING OF SYMMETRY, COMMON CENTROID, AND GENERAL PLACEMENT CONSTRAINTS 95

D. Comparison with the Grid-Based Approach in [12]

Finally, we compare the C-CBL approach with the grid-
based approach in [12] on handling arrays of sub-devices with
regular shape and size. Notice that the grid-based approach
in [12] is designed specifically for this purpose of placing
a set of regular sub-devices in a 2-D array. In the grid-
based approach, a collection of feasible placement solutions
for each group will first be generated and stored in a look-up
table. Different solutions will be picked from the look-up table
during the moves of the annealing process. The result is shown
in Table V. We can see that the results in area and wirelength
are very close. The C-CBL approach takes longer runtime.
This is reasonable since the grid-based approach is designed
specifically to handle regular sub-device arrays. However, this
grid-based approach can only handle these cases when the
sub-devices have the same shape and dimension, while the
C-CBL approach is a general one that can handle sub-devices
with arbitrary shapes and dimensions.

IX. Conclusion

In this paper, an analog placement framework was proposed
to handle mixed placement constraints. The symmetry and
general placement constraints were solved by inserting addi-
tional constraint edges properly into the constraint graphs. The
common centroid groups were regarded as super-blocks, and
their internal structures were manipulated by a novel C-CBL
representation. Extensive experimental results demonstrated
the effectiveness of our approach.

References

[1] F. Balasa and K. Lampaert, “Symmetry within the sequence-pair repre-
sentation in the context of placement for analog design,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 19, no. 7, pp. 712–731,
Jul. 2000.

[2] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy, “On the exploration
of the solution space in analog placement with symmetry constraints,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 23, no. 2,
pp. 177–191, Feb. 2004.

[3] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-Trees: A
new representation for non-slicing floorplans,” in Proc. 37th ACM/IEEE
Des. Automat. Conf., 2000, pp. 458–463.

[4] J. Cohn, D. Garrod, R. A. Rutenbar, and L.R. Carley,
“KOAN/ANAGRAMII: New tools for device-level analog layout,”
IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 330–342, Mar. 1991.

[5] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley, Analog
Device-Level Layout Automation. Norwell, MA: Kluwer, 2000.

[6] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-Tree representation
of non-slicing floorplan and its applications,” in Proc. 36th ACM/IEEE
Des. Automat. Conf., 1999, pp. 268–273.

[7] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner block list: An effective and efficient topological representation
of non-slicing floorplan,” in Proc. Int. Conf. Comput.-Aided Des., 2000,
pp. 8–12.

[8] S. Kouda, C. Kodama, and K. Fujiyoshi, “Improved method of cell
placement with symmetry constraints for analog IC layout design,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 4, pp. 659–
668, Apr. 2007.

[9] K. Lampaert, G. Gielen, and W. Sansen, “A performance-driven place-
ment tool for analog integrated circuits,” IEEE J. Solid-State Circuits,
vol. 30, no. 7, pp. 773–780, Jul. 1995.

[10] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal coupling of P*-
admissible representations for general floorplans,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 24, no. 6, pp. 968–980, Jun.
2004.

[11] P.-H. Lin, Y.-W. Chang, and S.-C. Lin, “Analog placement based on
novel symmetry-island formulation,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 28, no. 6, pp. 791–804, Jun. 2009.

[12] Q. Ma and E. F. Y. Young, “Analog placement with common centroid
constraints,” in Proc. Int. Conf. Comput.-Aided Des., 2007, pp. 579–585.

[13] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli, “Au-
tomation of IC layout with analog constraints,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 15, no. 8, pp. 923–942, Aug. 1996.

[14] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” in Proc. IEEE Int. Conf. Comput.-
Aided Des., 1995, pp. 472–479.

[15] Y.-X. Pang, F. Balasa, K. Lampaert, and C.-K. Cheng, “Block placement
with symmetry constraints based on the O-tree nonslicing representa-
tion,” in Proc. 37th ACM/IEEE Des. Automat. Conf., 2000, pp. 464–467.

[16] Y. C. Tam, E. F. Y. Young, and C. C. N. Chu, “Analog placement with
symmetry and other placement constraints,” in Proc. Int. Conf. Comput.-
Aided Des., 2006, pp. 349–354.

[17] G.-M. Wu, J.-M. Lin, Y.-W. Chang, and R.-H. Chuang, “Placement with
symmetry constraints for analog layout design using TCG-S,” in Proc.
IEEE Asia South Pacific Des. Automat. Conf., 2005, pp. 1135–1138.

[18] E. F. Y. Young, C. C. N. Chu, and M. L. Ho, “Placement constraints in
floorplan design,” IEEE Trans. Very Large Scale Integr. Syst., vol. 12,
no. 7, pp. 735–745, Jul. 2004.

[19] M. Strasser, M. Eick, H. Grab, U. Schlichtmann, and F. M. Johannes,
“Deterministic analog circuit placement using hierarchically bounded
enumeration and enhanced shape functions,” in Proc. IEEE Int. Conf.
Comput.-Aided Des., 2008, pp. 306–313.

[20] L. Xiao and E. F. Y. Young, “Analog placement with common centroid
and 1-D symmetry constraints,” in Proc. IEEE Asia South Pacific Des.
Automat. Conf., 2009, pp. 353–360.

Qiang Ma received the B.Eng. degree in electrical
engineering from Zhejiang University, Hangzhou,
China, in 2006, and the M.Phil. degree in computer
science from the Chinese University of Hong Kong,
Hong Kong, China, in 2008. He is currently pursuing
the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Illinois at
Urbana-Champaign, Urbana.

His current research interests include physical de-
sign of chips, packages, and printed circuit boards.

Linfu Xiao received the Bachelors degree in micro-
electronics from Fudan University, Shanghai, China,
in 2007. He is currently pursuing the Ph.D. degree
in computer science from the Department of Com-
puter Science and Engineering, Chinese University
of Hong Kong, Shatin, Hong Kong.

His current research interests include very large
scale integration computer-aided design, physical
design, and analog layout automation.

Yiu-Cheong Tam received the Bachelors degree from the Department of
Computer Science and Engineering, Chinese University of Hong Kong, Shatin,
Hong Kong, in 2005.

He became a Research Assistant with the VLSI CAD Laboratory, De-
partment of Computer Science and Engineering, Chinese University of Hong
Kong, in 2006.

Evangeline F. Y. Young received the B.S. and
M.Phil. degrees in computer science from the
Chinese University of Hong Kong (CUHK), Shatin,
Hong Kong, and the Ph.D. degree from the Univer-
sity of Texas at Austin, Austin, in 1999.

She is currently an Associate Professor with the
Department of Computer Science and Engineering,
CUHK. Her current research interests include algo-
rithms and computer-aided design of very large scale
integration circuits. She is now working actively on
floorplanning, placement, routing, and algorithmic

designs.
Dr. Young has served on the technical program committees of several major

conferences, including ICCAD, ASP-DAC, ISPD, and GLSVLSI, and also the
editorial board of IEEE TCAD.

