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Expressions are derived for the heat and mass transfer coefficients for laminar free convection 
driven by simultaneous differences in temperature and composition for the asymptotic cases of 
equal Schmidt and Prandtl numbers approaching zero, equal Schmidt and Prandtl numbers 
approaching infinity, Schmidt number approaching infinity and Prandtl number approaching 
zero, and Schmidt number larger than Prandtl number and Prandtl number approaching infinity. 

The results are applicable for horizontal cylinders or vertical axisymmetric bodies with ar- 
bitrary body contours insofar as the approximations of boundary-layer theory are valid. The re- 
sults compare favorably with existing solutions and experimental results for particular condi- 
tions. 
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In either forced or free convection, the phenomena of 
heat and mass transfer are analogous, providing, of course, 
that effects due to variations in physical properties or in- 
terfacial velocity are negligible. For heat and mass trans- 
fer in forced convection, the flow field is known a priori. 
By contrast, in free convection the flow field is generated 
by and hence coupled with both the temperature and con- 
centration fields. Nevertheless, analytical expressions de- 
scribing the rates of transport with coupling can be devel- 
oped in several instances. 

The analyses herein are restricted to binary mixtures 
and laminar boundary-layer flows around submerged ob- 
jects whose outer surfaces are maintained at a uniform 
temperature and composition. Physical properties are con- 
sidered to be constant, except for the density term that is 
associated with the body force. Secondary phenomena, 
such as thermal diffusion (13 ) ,  interfacial velocity ( l ) ,  
and diffusing heat capacities, that is, the Ackerman effect 
as described by Merk ( 7 ) ,  are not considered. Hence the 
results describe only the gross features of the consequences 
of interaction. Notwithstanding these idealizations and re- 
strictions, results of considerable generality and applicabil- 
ity are obtained. 

The relatively simple situation which occurs when the 
Schmidt and Prandtl numbers are equal (an approximation 
for gaseous mixtures) is first treated in some detail. Next, 
the case of a small Prandtl number but a large Schmidt 
number (corresponding to liquid metals) is considered. 
After this, a model for large Prandtl and Schmidt numbers 
(representing the behavior of ordinary liquids) is analyzed. 

The analyses are based primarily on asymptotic methods 
such as those described by Meksyn (6) and van Dyke 
( 1 5 ) .  The results are, as a consequence, applicable to a 
wider variety of fluids than the results of Somers (12). 
In his study, the von Karman integral method was em- 
ployed, and the results are restricted to the case of equal 
or almost equal Schmidt and Prandtl numbers. Asymptotic 
methods are used herein for a number of reasons: first, 
they are relatively easy to apply and the resulting analytic 
forms are readily interpreted; second, they can usually be 
improved in a rational manner; third, their accuracy is 
frequently adequate; and fourth, intermediate cases can 
often be approximated by interpolation. 

D. A. Saville is at Princeton University, Princeton, New Jersey. S. W. 
Churchill is at the University of Pennsylvania, Philadelphia, Pennsylvania. 

The analysis starts with the generalized description of 
free convection previously presented by Saville and 
Churchill (10) in which the dependent variables are rep- 
resented by rapidly converging series which are universal 
with respect to body contours within a specified class of 
body shapes. Only the highlights of the subsequent deriva- 
tions are presented herein. Further details are given by 
Saville (9). 

BASIC EQUATIONS AND RELATIONSHIPS 

The objective is to relate the rates of transfer of momen- 
tum, heat and mass to the transport properties of the fluid, 
the body force, and the geometrical form of the submerged 
object. These relations express the Nusselt, Sherwood, and 
shear stress numbers as functions of the Prandtl, Schmidt, 
and Grashof numbers and a ratio of driving forces. 

The starting point is the familiar boundary-layer descrip- 
tion. The dependent variables are then expanded accord- 
ing to the procedure described by Saville and Churchill 
(10). This technique results in rapidly converging series 
in many instances. For horizontal cylinders or spheres 
(objects which do not admit similarity transformations) 
one-term approximations were found to be adequate for 
most purposes, even for low Prandtl numbers. For objects 
which do admit similarity transformations, the technique 
yields the proper transformation directly. 

The one-term approximations for the local shear stress, 
Nusselt, and Sherwood numbers, as given by Saville and 
Churchill ( l o ) ,  are: 

NT NG,-% - + I ( % )  [4(~)]’/4 F ” ( 0 )  (1)  

where 

- %  d“$ 
= [ $1 
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with 8 = 0 for planar flows and 8 = 1 for axisymmetric 
flows. The numbers F ” ( O ) ,  T’(O), and M ‘ ( 0 )  are found 
by solving the following equations, derived from the laws 
governing the conservation of momentum, energy, and 
mass (9) :  

F”’ + FF” - KOF’F’ + T + oM = 0 (7)  

T” + NprF T’ = 0 (8) 

M” + NscF M‘ = 0 (9) 
and 

with 

F ( 0 )  = F ’ ( 0 )  = F’(co) = T ( w )  = M ( w )  = 0, 
T ( 0 )  = M ( 0 )  = 1 (10) 

Here K O  is the coefficient of the first term in an expansion 
of the principal function K in terms of [, where 

The procedure is first to determine [(x) and KO from the 
body contour. Then the differential equations are solved. 
Since the primary intent is to develop functional relations 
rather than detailed numerical solutions, only the asymp- 
totic forms of the differential equations for large and small 
values of the Schmidt and Prandtl numbers are investi- 
gated. 

ASYMPTOTIC SOLUTIONS FOR EQUAL SCHMIDT AND 
PRANDTL NUMBERS 

The interaction between heat and mass transfer is very 
simple for equal Schmidt and Prandtl numbers (the dimen- 
sionless concentration and temperature fields are equal), 
but the analysis serves to clarify more complex situations. 
Furthermore, the results are a reasonable approximation 
for many gaseous mixtures. 

Cooe A: Nsc and N P r +  0, with N s c  = N P ~  
The form of the differential equations and boundary 

conditions for Prandtl (and Schmidt) numbers of zero in- 
dicates that a singular perturbation analysis can be used. 
Hence, according to established procedures (1 5 ) ,  two sets 
of asymptotic expansions are introduced. In an outer 
region 

F ( v )  - ( 1  + a)” N P ~ - %  [ fo(y)  + O(Npr%)  I 
(12) 

T ( 7 )  - t o ( y )  + O(NPr%) (13) 

y =  (13-0)” Npr% 7 (14) 

and 

with 

In an inner region 

and 

with 

F ( 7 )  - (1  +a)Y4 K O - ~ .  [fi(y) + o ( N ~ r ) ” ~ l  (15) 

(16) 

(17) 

~ ( 7 1 )  - ti(y) + O ( N P r I 1 ’  

y = (1  +a)”* Ko-”4 7) 
- 

Substituting these expansions into the equations and letting 
the Prandtl number tend to zero, we obtain the following 
approximations for the inner region: 

and 
fi”’ + fifr” + Ko(1 - fi’fi’) = 0 (18) 

fi(0) = fi’(0) = 0, fi’(C9) = 1 (19) 
The temperature function ti is constant and equal to unity. 

The corresponding equations for the outer region are 

fofo” - Kofofo’ + t o  = 0, 

to‘? + fotd = 0 

(20) 

(21) 

f O ( O )  = f / ( w )  = to(co) = 0, t O ( O )  = 1 (22) 
and 

The boundary conditions have been determined by match- 
ing the inner and outer expansions to the same order in 
the Prandtl number. The result i s  that the inner stream 
function is determined by a differential equation and 
boundary conditions which are identical to those describ- 
ing forced convection past wedge nosed bodies, that is, 
the Falkner-Skan equation (11). As a consequence, the 
solution for fi can be regarded as known, The gradient of 
the temperature field is 

T’(0) - (1  + a ) %  N p , %  t / ( O )  (23) 
Equations (20) and (21) can be solved by various meth- 
ods. For KO = 2/3, corresponding to planar, sharp nosed 
bodies, the numerical solution of Lefevre ( 4 )  is t , ’(O) = 
-0.645. Use of a two-term approximation for fo(y), 
namely 

fo(y) = KO-% y + KoG(2Ko  - l)-’ t,’(0)y2/2 + . . . 
(24) 

and Meksyn’s method (6) yields t,,’(O) = -0.66. 
In the limit, as the Prandtl number tends toward zero, 

the flow near the surface is described by differential equa- 
tions which are independent of the Prandtl number; hence 

N~ ~ ~ , . - 3 / 4  [ t ( x ) l 3 ~  ( 1  +a)3, K,-% ft” (0) 
( 2 5 )  

On the other hand, the Nusselt number varies as the square 
root of the Prandtl number 

N N ~  N G ~ - ” ~  
- 4 z ( x )  [ [ ( ~ ) l - ” ~  (1 + u) NPr’ [- t / ( O ) ]  (26) 

Here fi“ (0) and t,’ (0) must be determined for each body 
shape from solutions of the appropriate equations. It is 
evident that the effects of temperature and concentration 
differences are additive in this situation. 

Case B: Nsc and Npr + co, with Nsc = N p r  

In this case, the inertial terms may be neglected near 
the surface of the object (8). Hence, the appropriate ex- 
pansions for the inner region are 

and 

Here 

When these expansions are substituted into the equations, 
the limiting forms for large Prandtl numbers are 

and 

with 

T ( d  - ti(y) + O ( N p r )  -”4 

y =  (1  +u)% Npr% 7) 

(28) 

(29) 

fi’“ + ti = 0 

ti” + fit( = 0 

(30) 

(31) 

fi(0) = fi’(0) = 0, ti(0) = 1 (32) 
The solution is 

(33) 
and 
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In the previous case, the undetermined constants in the 
inner and outer expansions of the solutions to the boundary- 
layer equations were determined by matching. A different 
procedure is used now. Allowing the Prandtl number to 
increase without bound in the complete set of conservation 
equations indicates that in the outer region, the tempera- 
ture function is identically zero. Hence, the flow can be 
considered irrotational to this approximation; that is, the 
Laplacian of the stream function for a planar flow is zero. 
As a consequence, the appropriate boundary conditions 
for the inner problem are 

t i (co)  = 0, fi '(co) < 00 t 35) 
That is, the velocity in the direction tangent to the surface 
is bounded. Integration by parts leads to 

Y2 
fi'(y) = ti'(0) s, g ( z ) d z  

- t l ( 0 )  s," c g ( z ) d z  (36) 

where 

It follows, then, that the appropriate boundary condition 
for the stream function is 

fF(co) = 0 (38) 
Although the differential equations have been solved nu- 
merically by Lefevre ( 4 ) ,  who found fF (0 )  = 1.08 and 
t ( ( 0 )  = -0.54, analytical methods can be used to obtain 
accurate approximations. The problem is to evaluate the 
integrals 

- f i " ( 0 )  = ti'(0) 1- zg(z)dz 
- [ti'(0)]-l = 1- g(z)dz 

(39) 

(40) 

and 

The Laplace method described by Erdelyi ( 3 )  is used, 
recognizing that the series which are obtained may be 
semiconvergent. If only the first two terms in the series 

are introduced, then 

f('(0) = - t ( (0)  [ 2-6-lj3 r ( f) [ f i " ( 0 ) ] - 2 / 3  

+ 2-l Cfi"(0) ] (42) 

and 

- [ t ( ( O ) ] - '  = 2.6413 r ( +) [fp(0)]-1/3 

+ 2-1.6-1/3 r (+) C f F ( 0 ) l - 5 / 3  (43) 

The solution is fi"(0) = 1.04 and t l ( 0 )  = -0.546, which 
is in excellent agreement with the numerical solution. 
Thus, for large Prandtl numbers, the asymptotic forms are 
(by using the exact solution) 
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Once again, the effects due to temperature and concentra- 
tion differences are additive. 

The functional relations 

NNu a Npr'", N P ~ +  w (46) 

cc Npr'/z, N p r +  0 (47) 
have been known for some time. According to Ede ( 2 ) ,  
the former relation was derived by Lorenz in 1881, while 
the latter was suggested by Davis in 1921 and indepen- 
dently by Lefevre in 1956. These relations have been 
rederived here by using formal perturbation methods in 
order to provide a rationale for the assumptions which 
have heretofore been largely based on intuitive arguments. 
Furthermore, this development serves as a basis for the 
systematic construction of higher order terms in the ex- 
pansions. 

ASYMPTOTIC SOLUTIONS FOR SMALL PRANDTL 
NUMBERS AND LARGE SCHMIDT NUMBERS 

Large Schmidt numbers and small Prandtl numbers are 
characteristic of liquid metals. Inner and outer expansions 
are developed in a manner similar to the previous analysis 
for small Prandtl numbers. For the inner region 

f? + f&" + K O (  1 + ami - fi'fi') = 0 (48) 

m(' + Nsc f i  mil = 0 (49) 
with 

f i ( 0 )  = fi'(0) = mi( co) = 0, fi'( co) = mi(0) = 1 
(50) 

In the outer region 

fofo" - KO fo'fo' + t o  = 0 

t," + tot; = 0 

(51) 
(52) 

(53) 

with 

f o ( 0 )  = fo'( W )  = to( co) = 0, t o (0 )  = 1 
The problem for the outer stream and temperature func- 
tions is the same as that treated previously, while the inner 
problem has the form of the equations for combined free 
and forced convection. The technique described by 
Meksyn (6) is applied to the inner problem to describe 
the effects of the Schmidt number and the ratio of driv- 
ing forces, a. 

First, the expansions for small y are 

(54) 

and 

Then, following Meksyn 

f ( (  00) - 2 ( ~ / 6 ) ~ / ~  r (f) 

mi(y) = 1 + by + . . . ( 5 5 )  

5 
16 

- - K o ( l  + u) ( 6 / ~ ) ~ / ~  r ($) + . . . (56)  

so that retaining the first two terms gives 

(57) 
For KO = 1 (circular cylinders), u = 0 (forced convec- 
tion), and a Schmidt number of 10, the result is ~ ' ( 0 )  = 
-1.46. The exact value, as obtained by Squire ( 1 4 ) ,  is 

March, 1970 Journal 



TABLE 1. FUNCTIONAL DEPENDENCE OF THE SHEAR STRESS, NUSSELT, AND SKERWOOD NUMBERS 
ON THE GRASHOF, PRANDTL, AND SCHMIDT NUMBERS AND THE BUOYANCY FORCE RATIO 

NT NNU N s h  

N P ~ ,  N s ~  -+ 0 ( N p r  = N s ~  ) 
N P ~ ,  M s c  3 w ( N p r  = N s c )  
Npr  + 0, Nsc + w 
N P ~  NSC + 00 ( NSC >> N p r )  t 

Ncr3/4 ( 1  + u ) 3 / 4  
N ~ r 3 / 4  ( 1  + ~ ) 3 / 4  Npr-1/4 
NCr3/4 ( 1  + u)3/4 
Nc$/4 Npr--114 

N&lf4 ( 1 + u)1/4 Npr1/2 
Ncr1/4 ( 1  + u)1 /4  Npr1/4 
Ncr1/4 ( 1 + u)1/4 Npr1/2 
N ~ , 1 / 4  Npr1/4 

Ncr1/4 (1 + u)1/4 Nsc1/2 
N ~ r 1 / 4  (1 + u)1/4 Nsc1/4 
Ncr114 Nsc113' 
NGr1/4 Npr-l/12 NSc+1/3 

O The dependence on u is described by Equation (57). 
t The dependence on c is descnid  by Equation (77).  

-1.34, indicating that the accuracy of the method is ade- 

quate.' Then 
and 

where 
Finally, for large Schmidt and small Prandtl numbers 

NSh h ' ~ r -  % N 4 2  ( x )  5' (x) - 4" KO- y4 ( d 6 )  

The functional dependence on the one-third power of the 
Schmidt number is the expected result, since the flow near 
the surface is analo ous to forced convection driven by 
the temperature fied The relations for the Nusselt num- 
ber and the shear stress are still given to the present order 
of approximation by Equations (25) and (26) .  

ASYMPTOTIC SOLUTIONS FOR LARGE PRANDTL 
AND SCHMIDT NUMBERS 

The Schmidt and Prandtl numbers characteristic of 
many viscous liquids are large compared with unity, with 
the Schmidt number larger (usually) than the Prandtl 
number. Adopting expressions similar to those used pre- 
viously in the region near the object, namely 

F ( T )  Y N P ~ - %  Cfi(y) + O ( N p r ) - % I  

T ( 7 )  N ti(y) + O ( N p r ) - %  

M ( d  - mi(!/) -I- O ( N P r )  -% 

(60) 

(61) 

(62) 

y = N P r S  q (63) 

f i ' " + t i + U  m = o  (64) 

ti" + fit( = 0 (65)  

with 

we get 

where a = N p , / N s c  is constant. The boundary conditions 
are 

fi(0) = f i ' ( 0 )  =fi"(w) = t i ( 0 0 )  = r n i ( 0 O )  = 0, 
ti(0) = ~ ( 0 )  = 1 (67) 

The boundary conditions at infinity have been adopted 
for the reasons cited previously. Once again, the Laplace 
method is used to calculate the integrals 

m 

fi"(0) = - tt'(0) 1 z g(z)dz 

- u  m(0) la z h ( z ) d z  (68)  

O If two terms are used in the asymptotic expansion of the integral as- 
sociated with mc'(O), the result is - 1.40 at Nsc = 10. 

and 

h(z1) = exp( - a f i (Z )dZ)  (72) 

Then, by using the first two terms in the expansion for f i  

about the origin 

+ ( 1  + u 1 2 - 1  [ f i " ( 0 ) ] - 2  ] 

+ (1 + u)2-' [ f i"(0)-z a21 (73) 

- Ct((0)l-l = 2 - 6-213 r (+) [ti" (0) I -113 

+ ( 1  48-lI3 r (t) [fi"(0)]-5/3 (74) 

and 
- 1 - 1  = 2 - 6-213 r ($) [ f i " (o)] - ' /3  a113 

+ (1 + 48-lI3 r (%> [f i"(0)]-5/3 a513 (75) 

These three equations can be reduced to a single cubic 
equation. In terms of 

X = [ f T ( 0 ) ] 4 / 3 ,  al = ($)l" r (f> , 
% =  ( l + u ) / 2 ,  a = N p r / N s c ,  b l = 2 * 6 - 2 / 3 P  

b2 = (1  (48)-lI3 r (%) (76)  

this cubic is 

b12 x 3  + [b&z (1 + ,4/3) - Ulbl(1 + u d ' 3 )  ] x 2  

+ [b22 ,413 - alb2 (a413 + u a113 ) 

- %b1 (1  +a a 3 / 5 ) ]  X 

- azb&/4 (1  + u &3) = o (77) 
Equation (77) can be solved to obtain approximate values 
of f i " ( O ) ,  m+'(O), and t ( ( 0 )  for specified values of a and 
U. The asymptotic behavior for small a, that is, N p r / N s c  
+ 0, is 
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fi"(0) = O(1) (78) 

ti '(0) = O ( 1 )  (79) 
and 

m / (  0) = 0 (a-lI3) = 0 ( N s ~ ~ / ~ / N ~ ~ ~ / ~ )  (80)  

Near the object, the functional relationship between the 
mass transfer rate and the transport properties is similar 
to that for forced convection. The numerical results cal- 
culated from Equation (77) differ only slightly from re- 
sults obtained by Mathers, Madden, and Piret ( 5 ) ,  who 
used an analogue computed to obtain a few solutions to 
the same equations, namely (64) to (67).  The asymptotic 
results, for Npr and Nsc  -+ 00, are 

Nt  N c , - X - + i ( x )  ~ T ( x ) l ? "  Npt--v4 [fi"(O)] (81) 

N ~ J ~  Ncr-"4 -&(x)  [ t (x)]-y4 Npr% [- t ( ( O ) ]  
(82) 

(83) 
Nsr  N G ~ - ' " N # ~ ( x )  [ T ( X ) ] - "  N P ~ ' ~  [- mi'(O)] 

and all of the derivatives depend on the ratio of the Prandtl 
number to the Schmidt number. 

CONCLUSIONS 

Asymptotic expressions were developed for the shear 
stress, Nusselt, and Sherwood numbers for free convection 
driven by simultaneous differences in temperature and 
composition. The results apply for laminar boundary-layer 
flows past horizontal cylinders and vertical axisymmetric 
bodies with fairly general bod contours. In all cases, 

shown to give relatively accurate approximations to solu- 
tions obtained by numerical methods. 

The functional relationships between the relevant di- 
mensionless groups are shown in Table 1. The physically 
exceptional cases of ( N p ,  + 00, Nsc  + 0 )  and ( N P ,  > 
Nsc  += 0 0 )  have not been included. The relations for 
these situations can be derived from those already given 
by simply interchanging the roles of the Schmidt and 
Prandtl numbers. The results show that the effects of 
temperature and concentration differences are not always 
additive, that is, the effective Grashof number is not al- 
ways the sum of the Grashof numbers for heat and mass 
transfer. The effective body force results from density 
gradients due to temperature and composition variations 
in the fluid. The formulas reported in this paper apply 
principally to cases where these variations reinforce one 
another. However, in some instances, for example, for 
equal Schmidt and Prandtl numbers, the results apply ir- 
respective of whether or not the variations reinforce one 
another. The first-order results obtained here by systematic 
perturbation methods can be extended in a rational manner. 

simple formulas were develope c r  and, in some instances, 

NOTATION 

a 

(11 = constant, Equation (76) 
+ = constant, Equation (76) 
b 

bl = constant, Equation (76) 
b2 = constant, Equation (76) 
D A B  = molecular diffusivity of component A in the fluid, 

F = dimensionless stream function, that is, 

= coefficient in the series expansion of fi, Equation 
(54) 

= coefficient in the series expansion of r r ~ ,  Equation 
(55) 

lengthz/time 

f i  

f o  

g 

= dimensionless stream function for the inner re- 

= dimensionless stream function for the outer re- 

= gravitational constant, length/ (time)2 

gion, Equations (15), (27), (60) 

gion, Equations (20) and (51) 

]A 
k 

K 
KO 
1 = characteristic length 
M 
mi 

N G ,  = Grashof number, ~ S A @ / V ~  
N N ~  = Nusselt number, ql/kAO 
Np ,  = Prandtl number, u / a t  
Nsc = Schmidt number, u / D A B  

N S h  = Sherwood number, ]A~/PDABAO 
NT = shear stress number, d2 /vp  
O ( c )  = of the order of c 
q = heat-flux density at surface, energy/(time) 

r (  x )  = dimensionless radius of revolution, rl/l 
r l ( x )  = radius of revolution of an axisymmetric body 
S ( X )  = sine of the angle between the body force vector 

and a normal to the surface of the immersed ob- 
ject 

= mass flux density at surface, mass/(time)(length)2 
= thermal conductivity, energy/ (time) (length) 

= principal function, Equation (11) 
= first term in the series expansion of K 

= scaled mass fraction, ( o - o,) / ( os - o,) 
= scaled mass fraction in the inner region, Equa- 

(temperature) 

tions (49) and (62) 

(length) 2 

T 
ti 

to 

.T 

XI 

x2 

= dimensionless temperature ( 0  - e,)/(es - 8,) 
= dimensionless temperature function for the inner 

= dimensionless temperature function for the outer 

= dimensionless distance along the surface, xl/l 
= distance along the surface of the immersed object, 

= distance normal to the surface of the immersed 

region, Equations ( 16), ( 18), (61) 

region, Equations (13) and (52) 

length 

object, length 
X = [ f P ( O ) ] 4 / 3  

y - (14) and (29) 
y 

Z, z1, 22, z3 = dummy integration variables 

Greek Letters 

(Y = Np,/Nsc 
at 
/3 

= scaled distance normal to the surface, Equations 

= scaled distance normal to the surface, Equation 
(17) 

= thermal diffusivity of the fluid, (length)2/time 
= coefficient of expansion for temperature changes, 

= coefficient of expansion for composition changes, 
( temperature) -1  

dimensionless 
r (  ) = gamma function 
6 = zero for planar flows, unity for axisymmetric flows 
A@ = characteristic temperature difference, (6s - 8,) 
AO = characteristic fraction mass difference, (0s  - o,) 
8, &, e, = temperature, temperature at surface, tempera- 

q 
ture far from surface 

= scaled normal distance, = 

t~ = viscosity, mass/ (length) (time) 
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u 
5 
p 
u = yAo/W$ 
7 

41, 4 2  = variables defined by Equations (4 )  and ( 5 )  
W, ws, W, = mass fraction of component undergoing trans- 

fer, mass fraction at surface, mass fraction far 
from surface 

= kinematic viscosity, (length) 2/time 
= scaled tangential distance, Equation (6) 
= density, mass/ ( length)3 

= shear stress at surface, force/ (length) 
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Combined Reactors: Formulation of Criteria 
Operation 

Sem if I u id ized Reactor 
and of a Mixed Tubular 

KOTHAPALLI BABU RAO and L. K. DORAISWAMY 
National  Chemical Laboratory, Poona, India 

Combined reactors in which the mixed reactor is followed by a tubular reactor can be optimal 
for a large number of simple adiabatic exothermal reactions. In the present paper, optimality 
criteria defined earlier for simple reactions involving a single reactant species have been 
extended to reactions involving two reactant species and for a system of consecutive reactions. 

The oxidation of benzene has been studied in an adiabatic semifluidized mixed tubular (MT) 
reactor. A definite improvement is possible when the oxidation is carried out in this reactor, as 
observed by a cornparisan of the experimental results obtained in tubular, mixed, and MT 
reactors under adiabatic conditions. 

The methods of optimizing the performance of a 
chemical reactor by introducing a temperature sequence 
in the case of stirred tank reactors and imposing an ex- 
ternal temperature gradient in the case of tubular reactors 
have been described by Denbigh (7) who has also 
summarized (8) other important contributions in th is  
area. In addition, the behavior of mixed and tubular 
reactors can also form a valuable basis for optimizing 
reactor performance. 

In an elaborate analysis of mixing, Cholette, Blanchet, 
and Cloutier (5, 6) considered the case of a reactor which 
is partially mixed. The system was analyzed in terms of 
fully mixed and plug flow zones, and short circuiting 
was omitted from the analysis. The performance of a 
partially mixed reactor would then be determined by 

the location of the fully mixed zone in the reactor. TWO 
cases were considered: the fully mixed zone is present 
in the first part of the reactor and the second part is 
in tubular flow, and the first part of the reactor is in 
tubular flow while the second part is fully mixed. These 
two combinations were called, respectively, MT and TM 
combinations. Equations were then proposed for simple 
chemical reactions of different kinetics to predict the 
performance of MT and TM combinations under iso- 
thermal conditions. 

These investigators also considered adiabatic systems 
(again for simple reactions) and formulated equations 
for the optimum combination of the mixed and tubular 
portions of a combined reactor. The studies were then 
extended by Aris ( 1 )  and by Douglas (9) who presented 
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