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RESEARCH PAPER
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Abstract An analytical procedure for the simultaneous
determination of cyanide and thiocyanate in swine plasma
was developed and validated. Cyanide and thiocyanate
were simultaneously analyzed by high-performance liquid
chromatography tandem mass spectrometry in negative
ionization mode after rapid and simple sample preparation.
Isotopically labeled internal standards, Na13C15N and
NaS13C15N, were mixed with swine plasma (spiked and
nonspiked), proteins were precipitated with acetone, the sam-
ples were centrifuged, and the supernatant was removed and
dried. The dried samples were reconstituted in 10 mM ammo-
nium formate. Cyanide was reacted with naphthalene-2,
3-dicarboxaldehyde and taurine to form N-substituted
1-cyano[f]benzoisoindole, while thiocyanate was chemically
modified with monobromobimane to form an SCN-bimane
product. The method produced dynamic ranges of 0.1–50 and
0.2–50 μM for cyanide and thiocyanate, respectively, with
limits of detection of 10 nM for cyanide and 50 nM for
thiocyanate. For quality control standards, the precision, as
measured by percent relative standard deviation, was below
8 %, and the accuracy was within ±10 % of the nominal

concentration. Following validation, the analytical procedure
successfully detected cyanide and thiocyanate simultaneously
from the plasma of cyanide-exposed swine.

Keywords Bioanalysis .Method validation . Chemical
warfare agent . Monobromobimane .

Naphthalene-2,3-dicarboxaldehyde

Introduction

The analysis of cyanide (as HCN or CN−, inclusively repre-
sented as CN) in biological fluids is of forensic relevance
because cyanide is a highly toxic chemical which blocks
terminal electron transfer by binding to cytochrome c oxidase,
resulting in cyanide-mediated histotoxic anoxia [1–3].
Cyanide is enzymatically metabolized in vivo to thiocyanate
(SCN−), in the presence of a sulfur donor (e.g., thiosulfate) [2,
3], as the major metabolic pathway.

Several analytical techniques have been successfully per-
formed for the individual analysis of cyanide and thiocyanate
from biological fluids, including spectrophotometry [4–6],
gas chromatography–mass spectrometry (GC-MS) [7–9] and
liquid chromatography [10–12]. While analysis of CN and
SCN− can be performed separately, considering the large
number of samples produced for therapeutic and other studies
involving cyanide, there is a need for a rapid, accurate, and
reliable method which can simultaneously determine cyanide
and thiocyanate. Such an analytical method should simplify
analysis and significantly reduce labor costs. Although many
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methods exist for the individual analysis of CN and SCN− [3],
few methods have been developed for their simultaneous
determination in biological fluids [13–17]. These methods
are summarized in Table 1. Imanari, Toida and co-workers
[14, 15] reported high-performance liquid chromatography
(HPLC) methods based on the König reaction [18, 19] for
analysis of CN and SCN− in urine with spectrophotometric
detection [14] and blood with fluorometric detection [15]. For
both methods, CN and SCN− were separated using a strong-
base anion exchange column and subsequently reacted with
chloramine-T, pyridine, and barbituric acid. Although the
Imanari et al. [14] method only required 1 h to complete, a
much longer sample preparation time, 7 h, was necessary for
the modification of this method for blood samples [15]. In
1998, Chinaka et al. [16] reported an ion chromatographic
method for the simultaneous determination of CN and SCN−

in blood, where CN was derivatized with naphthalene-2,3-
dicarboxaldehyde (NDA) and taurine for fluorometric detec-
tion, while unreacted SCN− was detected spectrophotometri-
cally.While this method produced excellent limits of detection
(LODs) for CN and SCN−, the baseline found for SCN− was
high, other anions common to blood were found to interfere
with SCN− analysis, and the method took 1.5 h to complete. In
2006, Paul and Smith [17] reported a method for simultaneous
analysis of CN and SCN− using GC-MS after reaction of both
anions with pentafluorobenzyl bromide (PFB-Br). The meth-
od had a number of disadvantages, including relatively high
LODs, the method was only applicable to human saliva, and
the internal standard used did not correct for variations in the
derivatization reaction. Recently, we developed a similar
method for the simultaneous analysis of CN and SCN− in
swine plasma using PFB-Br with GC-MS analysis [13]. The
method featured excellent accuracy, precision, and LODs.
However, the analysis time was long with an overall analysis
time (sample preparation and GC-MS analysis) of approxi-
mately 2 h.

The goal of the work presented here was to develop a rapid
and robust HPLC-MS-MS method for the simultaneous de-
termination of CN and SCN− as a complementary method to
those already established, with anticipated advantages includ-
ing rapid analysis time, low LODs, and high selectivity. The

developed method was applied to simultaneously determine
CN and SCN− in the plasma of cyanide-exposed swine.

Experimental

Materials

Reagents and standards

Sodium cyanide, sodium hydroxide (NaOH), and all solvents
(HPLC-grade or higher) were purchased from Fisher
Scientific (Fair Lawn, NJ, USA). Sodium thiocyanate was
purchased from Acros Organics (Morris Plains, NJ, USA).
NDA was obtained from Tokyo Chemical Industry, America
(Portland, OR, USA). Taurine was acquired from Alfa Aesar
(Ward Hill, MA, USA). Monobomobimane (MBB) was pur-
chased from Fluka Analytical through Sigma-Aldrich (St.
Louis, MO, USA). Ellman's reagent (5,5′-dithiobis 2-
nitrobenzoic acid) was obtained from Thermo Scientific
(Hanover Park, IL, USA). Isotopically labeled internal stan-
dards, NaS13C15N and Na13C15N, were acquired from Isotech
(Miamisburg, OH, USA). Ammonium formate was purchased
from Sigma-Aldrich (St. Louis, MO, USA).

Single cyanide and thiocyanate stock solutions (1 mM each)
were prepared and diluted to the desiredworking concentrations
for all experiments. Stock solutions of NDA (4mM) and taurine
(50 mM) were prepared in methanol and deionized water,
respectively. Ellman's reagent (10 mM) was prepared in phos-
phate buffer (0.01 M, pH 7). A MBB solution (4 mM) was
prepared in 0.1 M borate buffer (pH 8.0). The NDA, taurine,
Ellman's reagent, and MBB solutions were stored at 4 °C in the
dark. (Note: Cyanide is released as HCN from solutions with
pH values near or below the pKa of HCN (pKa=9.2). Thus, all
aqueous standards containing cyanide were prepared in 10mM
NaOH and handled in a well-ventilated hood).

Biological fluids

Citrate anti-coagulated swine (Sus scrofa ) plasma was obtain-
ed through the Veterinary Science Department at South

Table 1 Comparison of some
important features of available
methods for simultaneous cya-
nide and thiocyanate analysis
from biological fluids

a Total estimated time including
sample preparation and final
analysis
b Time necessary for completion
of the analytical technique (not
including sample preparation)

Study Analytical technique LOD (μM) Time

CN SCN− Totala (h) Analysisb

(min)
Biofluid(s)

Imanari et al. [14] HPLC-UV 0.2 0.2 1.0 30 Urine

Toida et al. [15] HPLC-FLD 0.02 0.02 7.0 24 RBC/plasma

Chinaka et al. [16] IC-UV-FLD 0.0038 0.086 1.5 30 Blood

Paul and Smith [17] GC-MS 1.0 5.0 0.9 6 Saliva

Bhandari et al. [13] GC-MS 1.0 0.05 1.8 18 Plasma
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Dakota State University and plasma from cyanide-exposed
swine was obtained from the laboratory of Dr. Vikhyat S.
Bebarta at Wilford Hall Medical Center (Lackland Air Force
Base, TX). For the cyanide-exposed swine, 11 swine (about
50 kg each) were intramuscularly injected with 1.7 mg/kg
potassium cyanide. Blood samples were collected (4 mL),
placed in EDTA tubes, and centrifuged to separate the plasma.
The plasma samples (500 μL) were then frozen and shipped
on ice to South Dakota State University. Upon receipt, all
plasma samples were stored at -80 °C until analyzed. All
animal procedures were conducted with the guidelines stated
in “The Guide for the Care and Use of Laboratory Animals”
(National Academic Press, 1996). The research facility where
the plasma was gathered was AALAS (American Association
for Laboratory Animal Science) accredited and all the animal
protocols were approved by the appropriate institutional re-
view board.

Methods

Sample preparation

Plasma (spiked or non-spiked, 200 μL) was added to a 2 mL
micro-centrifuge vial along with 50 μL each of 100 μM
NaS13C15N and Na13C15N. Acetone (400 μL) was added to
the sample to precipitate plasma proteins and the vial was
vortexed for 2 min and then centrifuged for 5 min at
13,200 rpm (16,200×g; Thermo Scientific Legend Micro
21R Centrifuge, Waltham, MA, USA). An aliquot (500 μL)
of the supernatantwas then transferred to a4-mLglass screw-
topvial anddriedunderN2 (g) for 15minat roomtemperature
(RT) (Reacti-vap III, Pierce, Rockford, IL, USA). After dry-
ing, the sample was reconstituted with 200 μL of 10 mM
aqueous ammonium formate. NDA and taurine (50μL each)
were added and mixed thoroughly to produce an N-
substituted 1-cyano[f]benzoisoindole (CBI) (Fig. 1). An

aliquot (100 μL) of Ellman's reagent was added to react with
free thiols in solution and vortex-mixed (1 min). MBB
(100 μL) was then added to produce the SCN-bimane com-
plex shown inFig. 2.The samplewasheatedonablockheater
(VWR International, Radnor, PA, USA) at 70 °C for 15 min.
After filtrationwith a 0.22μmtetrafluoropolyethylenemem-
branesyringefilter,analiquotofthepreparedsample(100μL)
was transferred into a screw-topautosampler vial (2mL)with
a150-μLglass insert forsubsequentHPLC-MS-MSanalysis.
The analysis of cyanide through reaction with NDA to form
CBI was originally suggested by Sano et al. [20]. To our
knowledge, the analysis of SCN− using MBB to produce
an SCN-bimane product is first suggested here. In previ-
ous studies, it was thought that MBB reacts with free
thiols only [21, 22].

HPLC-MS-MS analysis

Prepared samples were simultaneously analyzed for CBI and
SCN-bimane (Figs. 1 and 2) using a Shimadzu HPLC (LC-
20AD, Shimadzu Corp., Kyotu, Japan) with a Phenomenex
Kinetex XB-C18 RP column (50×2.10 mm, 2.6 μ 100 Å)
protected by a Synergi 2.5 μ Fusion-RP 100 Å C18 (both
Phenomenex, Torrance, CA, USA) guard cartridge (10×
2.00 mm, i.d.). Each chromatographic analysis was carried
out with mobile phase components of aqueous 10 mM am-
monium formate (mobile phase A) and 10 mM ammonium
formate in methanol (mobile phase B). An aliquot (10 μL) of
the prepared sample was separated by gradient flow at
0.25 mL/min and 40 °C. The concentration of B, initially
50 %, was increased linearly to 100 % over 3 min, held at
100 % for 1 min, decreased linearly to 50 % over 1 min, and
held constant for 2 min to re-equilibrate the column between
samples. An AB Sciex Q-trap 5500 MS-MS (Applied
Biosystems, Foster City, CA, USA) with multiple reaction
monitoring (MRM) was used to detect CBI and SCN-
bimane using electronspray ionization (ESI)-MS-MS operated
in negative polarity. Nitrogen gas (30 psi) was used as the
curtain and nebulization gas. The dwell time was 100 ms for
all MRM transitions. The ion source was operated at −4,500 V
and 500 °C with neubilizer (GS1) and heater (GS2) gas
pressures at 40.0 and 60.0 psi, respectively. The collision cell
was operated with an entrance potential of −5.0 V and a cell
potential of −7.4 V, with a medium collision gas pressure.

Calibration, quantification, and LOD

The calibration and quality control (QC) standards were pre-
pared from aqueous cyanide and thiocyanate stock solutions
(200 μM each). All the calibration standards for CN (0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, and 100 μM) and
SCN− (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and
100 μM)were prepared in swine plasma. The peak area signal

CHO

CHO

+ H2N-CH2-CH2-SO3H + CN-

2H2O

N CH2-CH2-SO3H

CN

NDA
Taurine

CBI

Fig. 1 Schematic representation of the reaction of NDA and
taurine in the presence of cyanide to form an N-substituted 1-
cyano[f]benzoisoindole (CBI) complex
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ratios (i.e., the peak area of the analyte transition divided by
the peak area of the internal standard transition) were plotted
as a function of calibrator concentration. Both nonweighted
and weighted (1/x and 1/x2) linear calibration curves were
prepared by least squares and a nonweighted linear fit was
found to best describe the calibration data for cyanide, with a
1/x2 weighted linear fit used for thiocyanate. A computer
workstat ion running Analyst™ software 1.4.1.
(Farmingham, MA, USA) was used for data acquisition and
peak integration.

The upper limit of quantification (ULOQ) and the lower
limit of quantification (LLOQ) were defined by investigation
of calibrators which satisfied the following inclusion criteria:
(1) a percent relative standard deviation of <10 % (as a
measure of precision) and (2) a percent deviation within
±20 % back-calculated from the nominal concentration of
each calibration standard (as a measure of accuracy). Three
QC standard concentrations were prepared in swine plasma
for CN (0.3, 3 and 15 μM as low, medium, and high, respec-
tively) and SCN− (0.7, 4, and 15 μM as low, medium, and
high, respectively) and were analyzed in quintuplicate (N =5)
each day for 3 days. These QC standards were analyzed in
parallel with the calibration standards. Intra-assay precision
and accuracy of the method was assessed by analyzing repli-
cates of the QC standards from each day's analysis. Inter-assay
precision and accuracy of the method were calculated by
comparing the QC standards from three separate days. The
intra- and inter-assay investigations were performed within
seven calendar days.

The LODs were estimated by analysis of multiple concen-
trations of CN and SCN− below their respective LLOQ. The
LOD was defined as the lowest analyte concentration repro-
ducibly producing a signal-to-noise ratio of 3 which contained
both MRM transitions. Noise was calculated as the peak-to-
peak noise directly adjacent to the analyte peak.

Selectivity, stability, and recovery

The ability to differentiate and quantify CBI and SCN-bimane
in the presence of other plasma components (assay selectivity)
was determined by comparing blank swine plasma (triplicate)
with spiked swine plasma (15 μM, triplicate) by the procedure
described earlier. Matrix effects were also investigated by

creating a calibration curve in aqueous solution and one in
plasma and evaluating the similarity of the curves. There was
no significant difference between the two curves, indicating
that matrix effects were not important. Symmetry of the chro-
matographic peaks, as measured by peak asymmetry (As),
was evaluated by dividing the front-width by the back-width
at 10 % peak height [23].

The short- and long- term storage stability of cyanide and
thiocyanate was evaluated using swine plasma spiked with
high and low QC concentrations of each analyte. For short-
term stability, both the low and high QC samples were eval-
uated in the autosampler, on the bench-top, and under multiple
freeze–thaw (FT) conditions. The autosampler stability of CBI
and SCN-bimane was evaluated for prepared cyanide and
thiocyanate QC standards (both high and low) after placing
the QC standards in the LC autosampler at 15 °C and analyz-
ing at approximately 0, 1, 2, 4, 8, 12, and 24 h. The bench-top
stability of CBI and SCN-bimane was evaluated using QC
standards which were allowed to stand at room temperature
(RT) for 0, 1, 2, 4, 8, 12, and 24 h prior to analysis. FTstability
was evaluated by initially analyzing three aliquots each of the
high and low QC concentrations (i.e., the same day of sample
preparation) and then freezing and storing all standards at
−80 °C for 24 h. The standards were then thawed unassisted
at RT, analyzed and compared with the initial analysis. The
remaining standards were again frozen, thawed, and analyzed.
In total, this process was performed for three FT cycles. It
should be noted that internal standards were added to the QCs
directly prior to sample preparation, exclusive of autosampler
stability, to correct for variations due to sample preparation
and instrumental errors.

Both low and high QC standards were also used for long-
term stability studies. The QC standards were stored at
−80 °C, −20 °C, 4 °C, and RT. These standards were analyzed
in triplicate on the day they were prepared, and after 1, 2, 5,
10, 20, and 30 days. Cyanide and thiocyanate were considered
stable if the calculated concentrations were within ±10 % of
the original concentration.

The assay recovery of each compound was determined
from spiked swine plasma and spiked aqueous samples at
low, medium, and high QC concentrations. Recoveries of
cyanide and thiocyanate were determined as a percentage by
comparing peak areas obtained from the spiked swine plasma

N

N

CH3
H3C

H3C CH2Br

O O

+ SCN-

N

N

CH3
H3C

H3C CH2SCN

O O

MBB

Br-

SCN-bimane

Fig. 2 Schematic representation
of the MBB thiocyanate reaction
to form a SCN-bimane product
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with spiked aqueous samples at the same concentrations. All
recovery experiments were performed in triplicate.

Results and discussion

HPLC-MS-MS analysis of CN and SCN−

The method presented includes the chemical modification of
CN and SCN- with a mixture of NDA/taurine and
monobromobimane (MBB), respectively (Figs. 1 and 2), in a
one-pot sample preparation method. The mass spectra of
cyanide (as CBI) and thiocyanate (as SCN-bimane) produced
by ESI(−)-MS are shown in Fig. 3a, b, respectively, with the
major abundant ions identified. The m/z ratios of 298.6 and

248.0 correspond to the molecular ion of the CBI complex and
SCN-bimane product of cyanide and thiocyanate, respectively
([M–H]−). For cyanide, the 298.6→190.7 and 298.6→80.9
transitions were selected as the quantification and identifica-
tion transitions, respectively, using the corresponding transi-
tions for isotopically labeled cyanide as internal standard
signals, 300.6→192.7 and 300.6→80.9. For thiocyanate,
the 248.0→111.0 and 248.0→124.1 transitions were selected
as the quantification and identification transitions, respective-
ly, while the corresponding transitions for labeled thiocyanate
internal standard were 250.0→111.0 and 250.0→126.1. The
optimized declustering potentials (DPs) and collision energies
(CEs) for the detection of CBI were −70 and −25 V, respec-
tively. For SCN-bimane, the optimized DPs and CEs were
−185 and −19 V, respectively. Identical DPs and CEs were
used for the applicable isotopically labeled internal standards.

Representative HPLC-MS-MS chromatograms of cyanide
and thiocyanate, as CBI and SCN-bimane, are depicted in
Fig. 4. Initially, the analysis of SCN− followingMBB addition
was not possible because MBB reacted with abundant thiol
groups present in plasma, which competed with the MBB-
SCN reaction [21, 22]. Thus, Ellman's reagent was added in
excess to react with the free thiols in plasma, prior to MBB
addition, to allow increased production of the SCN-bimane
complex. As seen in Fig. 4, the peak shapes for both thiocy-
anate (1.7 min) and cyanide (2.1 min) were sharp and sym-
metrical with peak asymmetries of 1.0 and 1.1, respectively.
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H3C
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Fig. 3 ESI(-) product ion mass spectra of CBI (a) and SCN-bimane (b)
with identification of the abundant ions. Molecular ions of CBI and SCN-
bimane [M–H]− correspond to 298.6 and 248.0, respectively. Insets ,
structures of CBI (a) and SCN-bimane (b) with abundant fragments
indicated
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Fig. 4 HPLC-MS-MS chromatograms of 10 μM cyanide and 20 μM
thiocyanate spiked into swine plasma with internal standard (50 μM
each). The chromatograms represent signal response to the MRM transi-
tions of cyanide (298.6→190.7, 298.6→80.9, 300.6→192.7, and
300.6→80.9) and thiocyanate (248.0→111.0, 248.0→124.1, 250.0→
111.0, and 250.0→126.1). Thiocyanate and cyanide (as SCN-bimane
and CBI) eluted from the column at approximately 1.7 and 2.1 min,
respectively
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Overall, the sample preparation and analysis was rapid
and simple. The duration of sample preparation was approx-
imately 40 min, with the chromatographic analysis lasting
approximately 8 min (including equilibrium for the following
sample), for a total analysis time of approximately 50 min.
Therefore, using conservative estimates, it is estimated that
approximately 170 parallel samples could be processed and
analyzed within a 24-h period. The duration of analysis for
this method is shorter than previous methods for simultaneous
analysis of CN and SCN− (Table 1), and although the duration
of the Imanari et al. [14] and Paul and Smith [17] methods are
certainly comparable, these twomethods were not used for the
analysis of plasma or blood.

Calibration and quantification

Calibration curves for cyanide and thiocyanate were construct-
ed in the range of 0.01–100 μM in swine plasma. For cyanide,
calibration standards at 0.01, 0.02, 0.05, and 100 μM were
found to be outside the LLOQ or ULOQ, while calibration
standards at 0.01, 0.02, 0.05, 0.1, and 100 μMwere found to be
outside the LLOQ or ULOQ for thiocyanate, resulting in linear
dynamic ranges from 0.1 to 50 to 0.2 to 50 μM, for cyanide and
thiocyanate, respectively. The linear ranges for both cyanide
and thiocyanate are comparable to typical bioanalytical LC-
MS-MS methods, which generally span at least two orders of
magnitude [24–26]. For both cyanide and thiocyanate, the

calibration curves were found to be highly stable over 3 days
in terms of slopes and correlation coefficients (Table 2).

LOD, accuracy, and precision

The accuracy, precision, and LOD for CN and SCN− are
reported in Table 3. The LODs found for cyanide and thiocy-
anate are in the nM range; lower than methods previously
reported for simultaneous analysis of CN and SCN− (Table 1).
While the significantly lower LODs for cyanide and thiocya-
nate in plasma are not necessarily essential (i.e., significant
endogenous CN and SCN− concentrations mitigate the need
for extremely low LODs), they should allow for quantification
of cyanide and thiocyanate concentrations in other biological
matrices where they may be present at extremely low levels.

Table 2 Comparison of the stability of the slope, R2, accuracy and
precision for cyanide, and thiocyanate analysis from spiked swine plasma
over 3 days

Analyte Day R2 Slope Accuracy (%) Precision
(%RSD)

CN 1 0.9997 0.019 100±8.5 <7.5

2 0.9999 0.018 100±8.4 <5.4

3 0.9996 0.019 100±8.8 <6.5

SCN− 1 0.9994 0.022 100±5.9 <5.6

2 0.9997 0.021 100±5.3 <6.8

3 0.9998 0.020 100±6.1 <7.3

Table 3 The accuracy, precision,
LOD, and recovery of cyanide
and thiocyanate analysis from
spiked swine plasma by HPLC-
MS-MS

aQC method validation (N =5)
for day 3
bMean of three different days of
QC method validation (N =15)

Analyte LOD
(μM)

QC Concentration
(μM)

Recovery
(%)

Intraassay Interassay

Accuracy
(%)a

Precision
(%RSD)a

Accuracy
(%)b

Precision
(%RSD)b

CN 0.01 0.3 72.9 100±7.5 1.1 100±7.2 1.5

3 81.6 100±8.4 7.3 100±9.4 5.4

15 83.1 100±7.3 2.2 100±4.2 4.1

SCN− 0.05 0.7 73.1 100±4.4 4.2 100±5.3 6.8

4 78.6 100±5.9 3.4 100±5.9 3.4

15 80.8 100±1.9 5.6 100±1.9 3.9
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Fig. 5 Chromatograms of potassium cyanide-exposed (1.7 mg/kg) swine
plasma (upper trace) and nonexposed swine plasma (lower trace), both
without internal standard. The chromatograms represent the signal re-
sponse of the MRM transition 298.6→190.7 and 248.0→111.0 m/z
transition for CBI and SCN-bimane, respectively
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Our method produced excellent accuracy and precision for
all the conditions tested. The accuracy and precision reported
in Table 2 is the aggregate of all QC standards for 3 days.
The accuracy was within 8.8 and 6.1 % of the nominal
concentration for CN and SCN−, respectively, and the preci-
sion was not higher than 7.5 % relative standard deviation
(RSD) for either CN or SCN−. Moreover, the absolute values
of the accuracy and precision were very consistent for each
analyte. The accuracy and precision reported in Table 3 was
calculated in aggregate for low, medium, and high QC stan-
dards analyzed on three different days. The intra- and inter-
assay precision and accuracy were below 8%RSD and within
±10 % of the nominal concentrations for all intra- and inter-
assay analyses.

Stability and recovery

The short-term stabilities of cyanide and thiocyanate in swine
plasma were evaluated in the autosampler and on the bench-
top over 24 h. In the autosampler, both cyanide and thiocya-
nate demonstrated excellent stability for prepared samples,
with the measured concentrations within 10 % of the initial
concentration at all times tested. On the bench-top, cyanide
and thiocyanate concentrations were stable for up to 1 and 8 h,
respectively. In addition, the concentrations of cyanide and
thiocyanate were within 10% of the original concentration for
both low and high QC standards for only one FT cycle.

For long-term stability investigations, both cyanide and
thiocyanate were evaluated for 1 month at −80, −20, and
4 °C. Cyanide was stable for 2 days at −80 and −20 °C but
was quickly eliminated from plasma at 4 °C for both the low
and high QC standards. Thiocyanate was stable for 5 days at
−80 and −20 °C, and for 2 days at 4 °C. The results from
investigations of long-term stability suggest that both cyanide
and thiocyanate should be analyzed immediately. If this can-
not be done, the plasma samples should be frozen and ana-
lyzed within 2 days.

The limited stability of cyanide under typical storage con-
ditions may be due to its volatile nature with rapid loss of
hydrocyanic acid from biological samples at pH values below
7–8 (HCN pKa=9.2). Alternatively, cyanide can be produced
or utilized through single-carbon metabolism [27, 28]. Other
studies have implicated microbial metabolism for alteration in
CN levels [29–31]. It has been suggested that additives, such
as addition of silver ions or ascorbic acid, may increase the
stability of cyanide [29, 32], which may be an area of future
investigation. The instability of SCN− could be due to thiocy-
anate protein binding, resulting in the loss of free thiocyanate
in plasma samples [8, 33].

The recoveries of cyanide and thiocyanate are reported in
Table 3 and ranged from 72 to 83 % for cyanide and 73–81 %
for thiocyanate. The recoveries for this method are similar to
previous reports [16, 17, 34].

Application of the method

Potassium cyanide-exposed swine plasma samples were col-
lected and analyzed for plasma cyanide and thiocyanate using
the method presented here. Figure 5 shows representative
chromatograms of potassium cyanide-exposed (1.7 mg/kg;
upper trace) and non-exposed (lower trace) swine. The peaks
for thiocyanate and cyanide were observed around 1.7 and
2.1 min, respectively, with the presence of endogenous con-
centrations detected in the nonexposed swine. In Fig. 5, the
non-spiked swine plasma contained small amounts of cyanide
(3.58 μM) and thiocyanate (4.35 μM). These levels were
attributed to endogenous concentrations which likely come
from multiple sources, such as diet [3, 13, 35, 36]. The assign-
ment of endogenous CN and SCN− was verified by identical
retention times as compared with spiked plasma possessing the
quantitation and identification ions. Overall, the method per-
formed well for the diagnosis of cyanide exposure in swine.

Conclusions

A highly selective method featuring simple sample prepara-
tion with excellent accuracy and precision was developed and
validated in swine plasma. The reportedmethod has the ability
to simultaneously detect cyanide and thiocyanate at low con-
centrations and proved useful for their detection from the
plasma of cyanide-exposed swine. To our knowledge, this is
the first description of an HPLC-MS-MS method for the
simultaneous analysis of cyanide and thiocyanate from any
matrix.
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