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Simultaneous human intracerebral 
stimulation and HD-EEG, ground-
truth for source localization 
methods
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Precisely localizing the sources of brain activity as recorded by EEG is a fundamental procedure and a 

major challenge for both research and clinical practice. Even though many methods and algorithms 

have been proposed, their relative advantages and limitations are still not well established. Moreover, 

these methods involve tuning multiple parameters, for which no principled way of selection exists yet. 

These uncertainties are emphasized due to the lack of ground-truth for their validation and testing. 

Here we present the Localize-MI dataset, which constitutes the first open dataset that comprises EEG 
recorded electrical activity originating from precisely known locations inside the brain of living humans. 

High-density EEG was recorded as single-pulse biphasic currents were delivered at intensities ranging 

from 0.1 to 5 mA through stereotactically implanted electrodes in diverse brain regions during pre-
surgical evaluation of patients with drug-resistant epilepsy. The uses of this dataset range from the 

estimation of in vivo tissue conductivity to the development, validation and testing of forward and 

inverse solution methods.

Background & Summary
Electroencephalography (EEG) records brain electric potentials through electrodes placed on the scalp. �is tech-
nique has a relatively low spatial resolution as compared to others (i.e. intracranial EEG, functional Magnetic 
Resonance Imaging, etc.), mainly due to volume-conduction induced spatial averaging1,2. However, in the last 
decades, a plethora of methods have been developed aimed at reconstructing the sources of the activity recorded 
from the scalp3. �e procedure involves, �rst, creating a model of how electrical currents propagate from their 
origin to the recording electrodes, the so-called forward problem; and second, creating a model of the plausible 
locations and intensities of the current sources that gave rise to the recorded activity, the so-called inverse prob-
lem. Many methods exist for solving each of these two problems. Forward models range from a single spherical 
shell to a detailed reconstruction of the various tissues and geometrical characteristics of speci�c individuals (for 
a review see4). Likewise, inverse models range from estimating a single dipole at a �xed pre-established location 
to calculating thousands of them distributed following the cortical geometry of a particular subject (for a review 
see5).

Despite being widely used, validating and comparing these methods remains a controversial issue due to the 
lack of ground-truth data. Most methods’ validations rely on simulations in order to assess their accuracy and 
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robustness6,7. �at is, simulated electrical activity is placed inside a realistic volume-conductor model and pro-
jected onto the scalp surface in order to be used as input data for source localization algorithms, which are then 
tested on their ability to reconstruct the origins of these signals. Another common methodology is to try localiz-
ing functional activity whose origins are inferred from other imaging modalities8 (i.e. fMRI during somatosen-
sory stimulation). However, simulations lack realism and cross-modal functional mapping lacks spatial precision 
and can introduce relative biases in spatial arrangement due to the di�erent nature of the signals.

A fundamental element to �ll this gap could be o�ered by stereo-electroencephalography (sEEG), obtained 
from drug-resistant epileptic patients using stereotactically implanted electrodes. Once surgically implanted, 
patients are monitored continuously for several days to have one or more seizures recorded. During this time, 
sessions of intracortical stimulation are performed in order to induce habitual seizures and to provide a map of 
the physiological functions of the implanted sites9–14. �is procedure implies that a brief current pulse is injected 
between two adjacent leads, producing an electrical artifact whose localization can be accurately determined. 
When combined with simultaneous scalp EEG, this procedure is capable of generating real data of scalp recorded 
electrical signals originating from precisely known locations inside the human brain, and thus represents an ideal 
benchmarking scenario for validating and comparing both forward and inverse solution methods.

In line with this, the aim of this paper is to provide a consistent dataset of high-density scalp EEG recordings 
performed during the stimulation of intracortical leads. It contains the anonymized MRIs necessary to build 
forward models, the surfaces and forward models created using the subjects’ original MRIs, the spatial and ana-
tomical information of the stimulated sites, and EEG data from 256 channels with digitized positions. As a further 
element, stimulations were performed at di�erent current intensities, so as to favor not only a comparative per-
formance across di�erent topographical regions, but also an estimation of the role that the intensity of a source 
activity plays in its localization accuracy. �e value of this dataset is also increased by the dense sampling of the 
scalp, which allows spatial down-sampling procedures to test the performance of inverse solution algorithms 
under a montage-dependent perspective.

In order to demonstrate the validity and wide range of possible uses of this dataset, we performed six di�er-
ent analysis. First, we tested the performance of three widely used inverse solution methods, employing various 
montages and parameters’ con�gurations, and tested the best reachable performance. Second, we examined how 
misselection of parameters a�ected localization accuracy. �ird, we analyzed the spatial dispersion of the com-
puted solutions across methods and montages. Fourth, we assesed the spatial pro�le of the observed localization 
errors. Fi�h, we characterized the relationship between localization errors and depth of the stimulated sites. 
Finally, we evaluated how di�erent MRI anonymization procedures in�uence source localization results.

To the best of our knowledge, Localize-MI would be the �rst dataset providing the neuroscienti�c and tech-
nical community with ground truth to validate the e�cacy of forward and inverse solutions on EEG data, and to 
systematically evaluate the factors mostly contributing to the overall process accuracy.

Methods
Participants. Seven subjects (F = 4) participated in the study (X  age = 35.1; sd age = 5.4). A total of 61 ses-
sions were obtained (X̄  sessions per subject = 8.71; sd sessions per subject = 2.65). All subjects were patients 
undergoing intracranial monitoring for pre-surgical evaluation of drug-resistant epilepsy (Table 1). All of them 
provided their Informed Consent before participating, the study was approved by the local Ethical Committee 
(protocol number: 463-092018, Niguarda Hospital, Milan, Italy) and it was carried out in accordance with the 
Declaration of Helsinki. All subjects underwent surgical or thermocoagulation procedures with less than two 
years of follow-up time, therefore proper Engel surgical outcome classification scores15 were not available. 
However, their corresponding values would be Ia for all of them; with the exception of sub-02, where it would be 
IIa, and sub-05, where the procedure was carried out with less than 2 months of follow-up time and we cannot 
provide an approximative score.

Electrical stimulation. Intracranial sha�s were implanted using a robotic assistant (Neuromate; Renishaw 
May�eld SA), with a work�ow detailed elsewhere13. �e position of the implanted electrodes was decided exclu-
sively following clinical needs. Stimulation sites were chosen in collaboration with the epileptologist in charge of 
the patients. We selected contacts that were located in anatomically normal brain regions, outside the epilepto-
genic zone and without pathological sEEG activity. Electrical currents were delivered through platinum-iridium 
semi�exible multi-contact intracerebral electrodes (diameter: 0.8 mm; contact length: 2 mm, inter-contact dis-
tance: 1.5 mm; Dixi Medical, Besançon, France). Single-pulse biphasic currents lasting 0.5 ms were delivered 
at intensities ranging from 0.1 to 5 mA (number of sessions: 0.1 mA = 22; 0.3 mA = 17, 0.5 mA = 8; 1 mA = 9; 
5 mA = 5) through pairs of adjacent contacts by a Nihon-Kohden Neurofax-100 system (Fig. 1). �e stimulation 
frequency (i.e. number of pulses per second) was of 0.5 Hz when stimulating at 1 and 5 mA and 1 Hz otherwise 
(with the exception of 3 sessions at 1 mA on which the stimulation frequency was 1 Hz). A total of 60 trials were 
obtained from each stimulation site when stimulating at 0.1, 0.3 and 0.5 mA, and a total of 40 when stimulating 
at 1 and 5 mA (Fig. 2). We chose to use the stimulation artifacts instead of speci�c brain rhythms because of the 
precise spatial location of the former, given that in the case of brain rhythms, their generators might not be exactly 
at the location of the intracranial contact, and may therefore bias the estimation of the methods’ accuracy.

EEG recordings. EEG Recordings were performed at the end of the pre-surgical evaluation. �e EEG cap 
was sterilized and, a�er the protective bandage was removed, the skin was disinfected and the cap placed in 
position. At the end of the recording session the skin was disinfected again. �e whole procedure was carried out 
by neurosurgeons using sterile technique. EEG signals were recorded from 256 channels (Geodesic Sensor Net; 
HydroCel CleanLeads) sampled at 8000 Hz with an EGI NA-400 ampli�er (Electrical Geodesics, Inc; Oregon, 
USA), using a custom-built acquisition so�ware written in C++ and Matlab (�e Mathworks Inc.), based on 
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EGI’s AmpServerPro SDK. All so�ware �lters were disabled during acquisition. �e spatial locations of EEG 
electrodes and anatomical �ducials were digitized with a SofTaxicOptic system (EMS s.r.l., Bologna, Italy), coreg-
istered with a pre-implant MRI (Achieva 1.5 T, Philips Healthcare).

Electrode localization. �e location of the intracranial electrodes was assessed registering the post-implant 
CT (O-arm 1000 system, Medtronic) to the pre-implant MRI by means of the FLIRT so�ware tool16. �e posi-
tion of every single lead was assessed with respect to the MRI using Freesurfer17, 3D Slicer18 and SEEG assis-
tant19. When the pre-implant MRI and the EEG digitization MRI were not the same, contacts positions were 
transformed from the SEEG space to the EEG space using an a�ne transformation between MRIs calculated 
employing the ANTs so�ware20. Normalized contacts’ coordinates were estimated by performing a non-linear 
registration between the subject’s skull stripped MRI and the skull-stripped MNI152 template21 (ICBM 2009a 
Nonlinear Symmetric) using ANTs’ SyN algorithm. Contact positions were plotted on a �atmap of the MNI152 
template built using Pycortex22, by projecting each contact’s coordinates to the closest vertex of the brain surface 
reconstruction. �e accuracy of the normalization procedure was veri�ed by visual inspection.

Data preprocessing. Raw data were imported and preprocessed in Python employing custom-built scripts 
and the MNE so�ware23,24. Continuous data were high-pass �ltered at 0.1 Hz (FIR �lter; zero phase; Hamming 
window; automatic selection of length and bandwidth). Data from two subjects (sub-05 and sub-07) were also 
notch �ltered at 50, 100, 150 and 200 Hz (FIR �lter; zero phase; Hamming window; bandwidth = 0.1 and auto-
matic length selection) due to considerable line noise. Bad channels were identi�ed by visual inspection (i.e. �at 
channels, presence of artifacts, etc.). Next, epochs were generated from −300 ms to 50 ms with respect to the 
stimulation electrical artifact and baseline corrected (mean subtraction method, from −300 ms to −50 ms). �e 
baseline period was speci�cally chosen to avoid any possible contamination by cortico-cortical evoked responses 
from previous trials, even with the fastest stimulation frequency25. Bad epochs were identi�ed by visual inspec-
tion and rejected. Given that EGI’s trigger channel is sampled at 1000 Hz, which introduced jitter between the 
onset of the trigger and the onset of the stimulation, epochs were �ne-aligned by matching the peaks of the stimu-
lation artifacts within sessions. All good epochs were saved in MNE’s �f format in the interval between −250 and 
10 ms and subsequently converted to BIDS format26,27.

Source localization. �e source localization procedure was carried out using the MNE so�ware. Surface 
reconstructions were obtained with Freesurfer and a 3-layer Boundary Element Method (BEM) model was cre-
ated with 5120 triangles and conductivities set to 0.3, 0.006 and 0.3 S/m, for the brain, skull and scalp compart-
ments respectively. Source spaces were created with 4098 sources per hemisphere. Epochs were re-referenced to 
the average of all good channels and covariance was estimated with automated method selection28. Subsequently, 
epochs were averaged and cropped from −2 to 2 ms with respect to the stimulation artifact. Inverse solutions were 
calculated with three di�erent methods: Minimum Norm Estimate (MNE), dynamic Statistical Parametric Maps 
(dSPM) and exact Low Resolution Electromagnetic Tomography (eLORETA)5,29–31. �ese methods were selected 
based on two criteria. �e chosen methods had to be (1) widely used by researchers, in order to be representative 
of currently used methods, and (2) implemented in an open-source and free to access so�ware platform, in order 
to favor its access and facilitate reproducibility.

Various parameter con�gurations were assessed. �e regularization parameter was set as 1/SNR2 with SNR set 
to 1, 2, 3, and 4. �e depth and loose weighting parameters varied between 0.1 and 1 in 0.1 steps. Four di�erent 
EEG montages were tested: all good channels, and channels corresponding to EGI’s 128, 64 and 32 montages. 

subject sex age laterality pharmacology ictal zone irritative zone

sub-01 M 37 R
Carbamazepine: 400/0/400 mg; 
Lacosamide: 150/0/150 mg

Right midcingulate cortex
Right midcingulate cortex and right 
medial superior frontal gyrus

sub-02 F 39 R
Carbamazepine: 400/200/400 mg; 
Levetiracetam: 1000/750/1000 mg; 
Clobazam: 0/0/10 mg

Le� medial temporal regions 
(amygdala, hippocampus and 
parahippocampus)

Le� medial temporal regions

sub-03 M 35 R
Levetiracetam: 1500/0/1500 mg; 
Lacosamide: 200/0/200 mg; 
Carbamazepine: 800/0/600 mg

Le� temporal pole and le� medial 
tempoal regions

Le� temporal pole, medial temporal 
regions and anterior insula

sub-04 M 44 R
Carbamazepine: 400/200/400 mg; 
Perampanel: 6/0/0 mg

Right medial temporal 
regions (hippocampus and 
parahippocampus)

Right medial temporal regions

sub-05 F 28 R
Carbamazepine: 600/0/600 mg; 
Perampanel: 6 mg

Le� temporal pole and le� medial 
temporal regions

Le� temporal pole, medial temporal 
regions and temporal neocortex

sub-06 F 32 R
Carbamazepine: 400/0/400 mg; 
Zonisamide: 100/0/100 mg; Clobazam: 
0/0/10 mg;

Right middle temporal gyrus and 
anterior inferior temporal gyrus

Right temporal neocortex and medial 
temporal regions

sub-07 F 31 R
Carbamazepine: 600/600 mg; 
Topiramate: 50/100 mg

Right superior temporal gyrus
Right superior temporal gyrus, medial 
temporal regions and temporal pole

Table 1. Participants’ demographic and clinical information. Subject code, sex, age at the time of evaluation, 
language dominant hemisphere, pharmacology (morning/noon/night intakes; when only one value is present it 
corresponds to a single day intake), ictal zone and irritative zone.
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When a channel selected for the subsampled montage was marked as bad, we replaced it by its closest neighbour. 
A total of 4800 solutions were calculated for each session.

�e Euclidean distance between the coordinates of the center of the pair of stimulating contacts and the coor-
dinates of the maximal activation in the source estimates were computed as well as the distance on each spatial 
axis (le�-right, anterior-posterior and inferior-superior) as measures of accuracy. We then computed the best 
solution across all montages and parameter’s con�gurations.

We also calculated number of sessions on which each method and montage reached the minimum distance 
and the proportion of solutions for each of these sessions on which they were able to reach it (i.e. the number of 
solutions for a session and method or montage on which it reached the minimum distance divided by the total 
number of solutions computed for that montage or method).

In order to further evaluate the performance of each method and montage we also computed the Spatial 
Dispersion metric32,33, which is calculated as shown in Eq. 1:
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Where dk represents the distance from the stimulation site to the position of the kth source and Rk is the estimated 
current value of the kth source at time point of maximum current across sources. �is measure assesses the disper-
sion of the estimated solution by weighting the current values by their distance to the real source.

Fig. 1 Illustration of the experimental setup. (a) Depiction of the stimulation and acquisition systems’ 
temporal synchronization and spatial co-registration. (b) Top: example of an intracerebral sha� containing 
eight contacts coregistered with the subject’s MRI. Bottom: Illustration of an intracranial sha�. (c) Top: Example 
of a stimulation artifact recorded by a scalp EEG channel. Bottom: Scalp EEG topographies at the time of the 
stimulation onset.
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Finally, in order to evaluate the performance of each method as a function of the depth of the stimulated site, 
we performed a mixed-e�ects linear regression analysis with distance to the stimulation site as dependent vari-
able, distance to the skin as predictor and subject as random factor (intercept). �e mixed-e�ects approach was 
chosen due to the nested nature of the data (i.e. stimulation sites within subjects)34. For one method (eLORETA) 
the mixed-e�ects model resulted in a “singular �t” due to a lack of variance in the random intercept and we there-
fore performed a standard linear regression analysis. �e distance to the skin was calculated as the minimum 
distance from the position of the stimulated contacts and the skin surface obtained with the watershed algorithm 
used for the BEM model. Marginal R2 was used to calculate the variance explained by the models35, and Adjusted 
R2 for the standard linear regression analysis.

MRI anonymization. MRIs were anonymized employing two di�erent tools: Pydeface (https://github.com/
poldracklab/pydeface) and Maskface36 (Fig. 2e). In order to investigate the in�uence on source localization results 
of the geometrical distortions induced by the anonymization procedures, we recreated the forward-models with 
the anonymized MRIs and computed the inverse solutions of all the parameters’ con�gurations that reached the 
minimum distance of each session. We then compared the distances to the stimulation sites obtained with the 
anonymized MRIs with the ones obtained with the original ones.

Data Records
�e Localize-MI dataset is available at the Human Brain Project platform37 (https://doi.org/10.25493/NXN2-
05W) and at G-Node38 (https://doi.org/10.12751/g-node.1cc1ae). �e dataset comprises high density-EEG data 
from a total of 61 sessions, obtained from 7 subjects (Online-only Table 1). In addition, it includes the spatial loca-
tions of the stimulating contacts in native MRI-space, MNI152-space and Freesurfer’s surface-space, and the dig-
itized positions of the 256 scalp EEG electrodes. It also contains the surfaces used for creating the BEM models, 
the pial and in�ated surface reconstructions created with the subjects’ original MRIs, as well as the source-spaces 
and forward-models from them derived. Furthermore, it includes the anonymized MRIs of each subject.

Fig. 2 Localize-MI dataset description. (a) Flatmap of stimulation sites by subject. (b) Location of stimulation 
sites by stimulation intensity. (c) Number of sessions by stimulation intensity. (d) Number sessions by brain 
region. (e) Scatterplot of stimulation intensity and distance from the stimulated site to the skin. (f) Example of 
the anonymization methods. �e MRI shown belongs to an open dataset39.
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Technical Validation
Methods, montages and parameters. �e minimum distance between the stimulation sites and the 
location of the maximum current values was between ~2 and ~12 mm when optimal parameters were selected (X̄ 
minimum distance = 5.39 mm; sd minimum distance = 2.61, min minimum distance = 2.30, max minimum dis-
tance = 12.16; Fig. 3a). Instead, when all parameters’ con�gurations were considered, the distance between the 
stimulation site and the location of the maximum current values was generally between ~2 mm and ~50 mm 
(Fig. 3b,e).

�e mean of the proportion of solutions for each session on which each method reached the optimal solution 
was 0.02 for MNE on a total of 11 sessions, 0.02 for dSPM on a total of 30 sessions and 0.06 for eLORETA on a 
total of 32 sessions (Fig. 3c). �e mean Spatial Dispersion was 38.6 for MNE, 40.7 for dSPM and 40.6 for eLO-
RETA (Fig. 3d).

�e mean of the proportion of solutions for each session on which each montage reached the optimal solution 
was of 0.06 for all channels on a total of 15 sessions, 0.05 for 128 channels on a total of 22 sessions, 0.04 for 64 
channels on a total of 26 sessions, and 0.04 for 32 channels on a total of 27 sessions (Fig. 3f). �e mean Spatial 
Dispersion was 38.6 for all channels, 38.4 for 128 channels, 40.8 for 64 channels and 43.5 for 32 channels (Fig. 3g).

�e di�erences between the stimulation site and the location of the maximum current value of the solutions 
that reached the best solution for each session were approximately centered around zero and symmetrical across 
the three spatial axes (Fig. 3h).

Fig. 3 Validation. (a) Distance between stimulation site and location of the maximum current value of the 
best solution for each session. Colors represent subjects. Insert: Position of the stimulated site, localized source 
and estimated current values for a representative session. (b) Density plot of distances between stimulation site 
and location of the maximum current value across all parameters’ combinations by inverse solution method. 
(c) Proportion of solutions by session on which each inverse solution method reached the minimum distance. 
(d) Spatial dispersion of optimal solutions by inverse solution method. Black circles represent the median 
of the distribution and black lines represent the Inter Quartile Range. (e) Density plot of distances between 
stimulation site and location of the maximum current value across all parameters’ combinations by montage 
sub-sampling. (f) Proportion of solutions on which each montage subsampling reached the minimum distance. 
(g) Spatial dispersion of optimal solutions by montage sub-sampling. Black circles represent the median of the 
distribution and black lines represent the Inter Quartile Range. (h) Density plot, boxplot and scatterplot of the 
di�erence between stimulation site and location of maximum activation of the best solution for each session 
by spatial axis (L-R: le�-right; A-P: anterior-posterior; I-S: inferior-superior). (i) Scatterplot and mixed-e�ects 
regression line of distance from the position of the source with maximum current to the stimulation site and 
distance from the stimulation site to the skin. Inserts: slope and coe�cient of determination of the estimated 
regression lines.
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Finally, the mixed-e�ect linear regression analysis (Fig. 3i) showed that the performance of MNE was remark-
ably related to the depth of the stimulation site, with positive slope and a high coe�cient of determination 
(β = 0.70, R2 = 0.71). Conversely, for dSPM the relationship was negative, with a relatively low coe�cient of deter-
mination (β = −0.27, R2 = 0.27). Finally, for eLORETA the slope was positive, but the coe�cient of determination 
was low (β = 0.16, R2 = 0.18).

MRI anonymization. �e distance between the stimulation sites and the location of the maximum current 
values remained equal in a relatively large number of solutions when employing the anonymized MRIs for the 
calculation of the forward models, with both anonymization methods (% equal deface = 0.89; % equal mask-
face = 0.89). However, a number of them proved to produce di�erent results.

Usage Notes
�e Localize-MI dataset is provided in BIDS format and contains all the necessary information to allow research-
ers to perform their analysis on any so�ware. However, please note that, at the time of publication of this article, 
the BIDS speci�cation for Common Electrophysiological Derivatives has not been established yet and therefore 
the dataset structure might not be compatible out-of-the-box with all so�ware. However, adjusting the structure 
for speci�c purposes should be straight-forward and, importantly, once the speci�cation will be published, we 
will update the database in order to conform to it. Interactive scripts of usage demonstration are provided as part 
of the repository accompanying this article.

�is dataset has multiple potential uses, for instance: estimating in-vivo tissue conductivities; evaluating the 
impact of di�erent forward-models on inverse solutions; developing, validating and testing di�erent inverse solu-
tion methods; studying interactions between forward and inverse solution methods; performing linear combi-
nations of stimulation sessions in order to test the ability of diverse methods to retrieve the correct sources; etc.

It is worth mentioning that the artifacts generated by intracranial stimulation are non-physiological, therefore 
generalization of results to physiological signals should be done conscientiously. Also, in some cases, the tails of 
the intracranial sha�s, which protruded from the scalp, precluded the contact with the skin of a number of EEG 
electrodes. Nevertheless, the analysis performed revealed good localization accuracy, demonstrating that this 
was not an issue. Another limitation corresponds to the fact that anatomical areas sampled tend to be clustered 
within subjects, which should be taken into consideration when performing topographical analysis. However, 
the Localize-MI dataset will be extended with data from new subjects in the future, which will provide a more 
comprehensive spatial coverage and allow more detailed spatial analyses.

Code availability
Usage demonstration scripts and the code used for the preparation, pre-processing and technical validation of the 
Localize-MI dataset are publicly available at https://github.com/iTCf/mikulan_et_al_2020.
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