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Summary. The paper considers construction of simultaneous confidence tubes for time varying
regression coefficients in functional linear models. Using a Gaussian approximation result for
non-stationary multiple time series, we show that the constructed simultaneous confidence
tubes have asymptotically correct nominal coverage probabilities. Our results are applied to the
problem of testing whether the regression coefficients are of certain parametric forms, which
is a fundamental problem in the inference of functional linear models. As an application, we
analyse an environmental data set and study the association between levels of pollutants and
hospital admissions.
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1. Introduction

Consider the time varying coefficients linear model

Y.t/=XT.t/β.t/+ ".t/, .1/

where t is the time index, X.·/, β.·/, ".·/ and Y.·/ represent the .p × 1/-dimensional covariate
process, time varying regression coefficients, residual process and response process respectively.
Here ‘T’ denotes matrix transpose. The model has been studied in Hoover et al. (1998), Wu
et al. (1998), Fan and Zhang (2000), Lin and Ying (2001), Huang et al. (2004) and Ramsay and
Silverman (2005) among others. Many of these references consider estimation of β.·/ in the
longitudinal setting where many subjects are measured at multiple times. In our setting, how-
ever, we assume that only one realization is available and X.·/ and Y.·/ are observed at time
points ti = i=n, 1 � i � n; see Section 6 for an application to the Hong Kong circulatory and
respiratory data. Then model (1) becomes

yi =xT
i βi + "i, i=1, . . . , n, .2/

where xi = X.ti/, "i = ".ti/, yi = Y.ti/, βi = β.ti/ and β.·/ is a smooth function on [0, 1]. We
assume that both .xi/ and ."i/ are locally stationary processes: a special class of non-stationary
processes. Our formulation is attractive in situations in which we expect that the underlying
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data-generating mechanisms change smoothly over time. We shall study asymptotic properties
of estimates of β.·/ on the basis of the data .xT

i , yi/
n
i=1. The time varying model (2) has applica-

tions in various areas including environmental science, finance and econometrics. It has attracted
considerable attention; see Robinson (1989, 1991), Orbe et al. (2005, 2006) and Cai (2007) among
others.

With the regression parameter β.·/ being time varying, we shall be able to explore the dynamic
associations between the response series .yi/ and the explanatory series .xi/. For example, we
may be interested in testing whether a particular coefficient function βj.·/ is different from 0,
or whether it is really time varying or whether it is increasing in time. To address the latter two
questions, we shall construct simultaneous confidence regions instead of pointwise confidence
intervals which do not reflect the overall pattern of the regression functions. Specifically, let
C be a fixed p × s matrix with rank s � p, and βC.·/ = CT β.·/ be a linear combination of the
regression function β.·/. For some preassigned significance level α∈ .0, 1/, we shall construct
in Rs × [0, 1] a 100.1 −α/% asymptotic simultaneous confidence tube (SCT) {Υα.t/, 0 � t � 1}
for βC.·/ in the sense that

lim
n→∞[P{βC.t/∈Υα.t/, 0� t �1}]=1−α: .3/

We can apply limit (3) to test hypotheses on patterns of β.·/. For example, to test whether
β1.·/ is a constant function, we can let s = 1 and CT = .1, 0, . . . , 0/. If a horizontal line can be
embedded in the SCT {Υα.·/}, then we accept the constancy hypothesis. Simultaneous confi-
dence regions are more informative and they provide an important means to address the overall
variability of the estimated curves. For the pointwise version, one constructs Υ̇α.t/ such that,
for all t ∈ [0, 1], limn→∞[P{βC.t/∈ Υ̇α.t/}]=1−α.

The construction of simultaneous confidence regions has been a very difficult problem when
dependence between errors is present. Earlier researchers obtained conservative simultaneous
confidence bands since the Bonferroni correction procedure is used (Wu et al., 1998; Huang
et al., 2004). Such simultaneous confidence bands are usually too wide and are thus of limited
use. Assuming that the observations are independent, we can construct simultaneous confidence
bands that have asymptotically correct coverage probabilities; see Bickel and Rosenblatt (1973),
Eubank and Speckman (1993), Johnston (1982), Neumann and Polzehl (1998) and Fan and
Zhang (2000) among others.

As a key step in the construction of simultaneous confidence bands that have asymptotically
correct coverage probabilities, we need to obtain a limit theory for the normalized maximum
deviations of the estimated functions from the true functions. This problem can be solved if we
have

(a) an extreme value theory of Gaussian processes and
(b) a Gaussian approximation result for the partial sum process or the empirical process.

Wu et al. (1998) mentioned that the fundamental difficulty is (b), namely there had been no
development on Gaussian approximations when dependence is present.

Recently Wu and Zhou (2009) obtained a Gaussian approximation principle for non-
stationary multiple time series with nearly optimal rates. With their result, together with the
deep extreme value theory of vector-valued Gaussian processes, we can construct SCTs that
have asymptotically correct coverage probabilities.

The rest of the paper is organized as follows. Section 2 imposes model assumptions and
dependence structures on .xi/ and ."i/. Asymptotic theory for the local linear estimate of β.·/
is presented in Section 3. Section 4 deals with various issues in constructing the SCT, including
bias correction, bootstrap simulations and estimation of covariance matrices. Section 5 provides
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a simulation study on the performance of our SCTs. Section 6 shows an application to a speci-
fication test and we study the relationship between levels of pollutants and hospital admissions
in the Hong Kong pollution data. Proofs are given in Appendix A.

2. Model assumptions

We shall estimate the regression coefficient function β.·/ by the local linear approach (Fan
and Gijbels, 1996); see Section 3. To conduct asymptotic analysis of the estimates, we need to
impose structural assumptions on the covariate process .xi/ and the error process ."i/. Let ζi,
i∈Z, be independent and identically distributed (IID) random variables and Fi = .. . . , ζi−1, ζi/.
We assume that both .xi/ and ."i/ are locally stationary processes (Draghicescu et al., 2009), a
special class of non-stationary time series:

xi =G.ti, Fi/ and "i =H.ti, Fi/, i=1, . . . , n, .4/

where G := .G1, . . . , Gp/T and H.·, ·/ are measurable functions such that G.t, Fi/ and H.t, Fi/

are well defined for each t ∈ [0, 1] and E."i|xi/ = 0. To help to understand the formulation, we
shall consider two special cases.

(a) Independent model: assume that ."i/i∈Z are IID, .ξi/i∈Z are also IID and ."i/i∈Z is
independent of .ξi/i∈Z. Let ζi = ."i, ξi/

T, G.t, Fi/ = G0{t, .. . . , ξi−1, ξi/} and H.t, Fi/ =
H0{t, .. . . , "i−1, "i/}, where G0 and H0 are measurable functions. In this case the pre-
dictors and errors are two independent non-stationary processes. Under some further
restrictions, this type of model was studied in Robinson (1989) and Orbe et al. (2005,
2006).

(b) Heteroscedastic model: define xi = G.ti, Fi/ as in the independent model (a). Let "i =
B{ti, .. . . , ξi−1, ξi/}H0{ti, .. . . , "i−1, "i/}. Then the errors and the covariates are depen-
dent. Such models are suitable when the errors exhibit heteroscedasticity with respect to
time and independent variables. A special case was considered in Cai (2007). If H0{t, .. . . ,
"i−1, "i/} has mean 0 and variance 1, then B2 is the conditional variance of "i given ."j/.

We can interpret series (4) as physical systems with Fi (and xi and "i) being the inputs (and the
outputs respectively), and G and H being the transforms that represent the underlying physical
mechanism. By allowing G and H to vary smoothly in t, we have local stationarity (see condi-
tions 2 and 3 in Section 3.1). Our formulation is different from the locally stationary processes
in Dahlhaus (1997) who discussed time varying spectral representations.

To facilitate an asymptotic study of estimates ofβ.·/, we shall introduce appropriate time series
dependence measures. For a vector v = .v1, . . . , vp/ ∈ Rp, let |v| = .Σp

j=1 v2
j /1=2. For a random

vector V, write V ∈ Lq (q > 0) if ‖V‖q := E.|V|q/1=q < ∞. Following Wu (2005), we have the
following definition.

Definition 1 (physical dependence measures). Assume, for all t ∈ [0, 1], L.t, Fj/ ∈ Lq, q > 0.
Let .ζ ′

j/j∈Z be an IID copy of .ζj/j∈Z. For j � 0 let FÅ
j = .F−1, ζ ′

0, ζ1, . . . , ζj−1, ζj/. Define the
physical dependence measure for the stochastic system L.t, Fj/ as

δq.L, j/= sup
t∈[0,1]

{‖L.t, Fj/−L.t, FÅ
j /‖q}: .5/

If L.t, Fj/ does not functionally depend on the input ζ0, then δq.L, j/=0. So δq.L, j/ measures
the dependence of the output L.t, Fj/ on the input ζ0. If j < 0, δq.L, j/= 0. The above depen-
dence measure is closely related to the data-generating mechanism and it is easy to work with.
Section 4 of Zhou and Wu (2009) contains calculations of δq.L, k/ for some locally stationary
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linear and non-linear processes. Our input–output-based dependence measure is different from
the classical strong mixing conditions and the measure that was proposed in Doukhan and
Louhichi (1999) which concerns covariances of past and future values of a process. Under suit-
able conditions on physical dependence measures, we can have Gaussian approximations with
nearly optimal rates (Wu, 2007; Liu and Lin, 2009).

3. Asymptotic theory

In this section we shall present an asymptotic theory for the local linear estimate of β.·/ from
model (2). We first define the local linear estimate. Since β.s/≈β.t/+ .s− t/β′.t/ for s close to
t, it is natural to estimate β.·/ and β′.·/ by

.β̂bn
.t/, β̂

′
bn

.t//=arg min
η0,η1∈Rp

[
n∑

i=1
{yi −xT

i η0 −xT
i η1.ti − t/}2 Kbn.ti − t/

]
, .6/

where K is a kernel function, bn > 0 is the bandwidth and Kc.·/ = K.·=c/, c > 0. Throughout
this paper we shall always assume that the kernel K ∈K, the collection of symmetric density
functions K with support [−1, 1] and K ∈C1[−1, 1]. A popular choice is the Epanechnikov ker-
nel K.u/ which is 3.1 − u2/=4 if |u| � 1 and 0 if |u| > 1. We can interpret equation (6) as the
weighted least squares estimate of the linear model yi = xT

i η0 + xT
i η1.ti − t/ + ei with weights

Kbn.ti − t/, n.t −bn/� i�n.t +bn/. Define

Sn,l.t/= .nbn/−1
n∑

i=1
xixT

i {.ti − t/=bn}l Kbn.ti − t/,

for l=0, 1, . . . ; here we let 00 =1, and

Rn,l.t/= .nbn/−1
n∑

i=1
xiyi{.ti − t/=bn}l Kbn.ti − t/:

Let η̂bn
.t/= .β̂

T
bn

.t/, bn.β̂
′
bn

.t//T/T. Then

η̂bn
.t/=

(
Sn,0.t/ ST

n,1.t/

Sn,1.t/ Sn,2.t/

)−1 (
Rn,0.t/

Rn,1.t/

)
:=S−1

n .t/Rn.t/: .7/

We shall omit the subscript bn in η̂, β̂ and β̂
′
hereafter if no confusion will be caused. Section 3.1

presents a central limit theorem for β̂.·/. Previously when dealing with the time varying coeffi-
cients model (2), either .xi/ or ."i/ or both were assumed to be stationary and strong mixing
(Cai, 2007). Our dependence measure seems more convenient for constructing SCTs with locally
stationary covariates and error processes. Section 3.3 concerns the uniform behaviour of {β̂.t/−
β.t/, t ∈ [bn, 1−bn]}.

3.1. Asymptotic normality
For a family of stochastic processes .L.t, Fi//i∈Z, we say that it is Lq stochastic Lipschitz contin-
uous on [0, 1] if sup0�s<t�1{‖L.t, F0/−L.s, F0/‖q=.t − s/}<∞. Denote by Lipq the collection
of such systems. Let ClI, l ∈ N, be the collection of functions that have ith-order continuous
derivatives on the interval I ⊂R. We shall make the following assumptions.

Assumption 1. The smallest eigenvalue of M.t/ :=E{G.t, F0/G.t, F0/T} is bounded away from
0 on [0, 1].

Assumption 2. G.t, Fi/∈Lip2 and sup0�t�1{‖G.t, Fi/‖4}<∞:
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Assumption 3. U.t, Fj/ :=G.t, Fj/H.t, Fj/∈Lip2 and sup0�t�1{‖U.t, Fj/‖r}<∞, r �2.

Assumption 4. Short-range dependence condition: Σ∞
k=0{δ4.G, k/+ δ2.U, k/}<∞.

Assumption 5. The smallest eigenvalue of Λ.t/ is bounded away from 0 on [0, 1], where

Λ.t/=
∞∑

j=−∞
cov{U.t, F0/, U.t, Fj/}: .8/

Assumption 6. The coefficient function β.·/∈C3[0, 1], namely βj.·/∈C3[0, 1], j =1, . . . , p.

Under assumption 2, M.t/ is well defined and is Lipschitz continuous on [0, 1]. Conditions 3
and 4 guarantee that Λ.t/ is positive definite and continuous on [0, 1]. Let

μl =μl,K =
∫

R
xlK.x/dx and φl =φl,K =

∫
R

xlK2.x/dx, l=0, 1, . . .:

Theorem 1. Let Σ.t/ = M−1.t/Λ.t/M−1.t/ and β′′.t/ be the second-order derivative of β.t/.
Assume that conditions 1–6 hold with r = 2, nbn → ∞ and nb7

n → 0. Then, for any fixed
t ∈ .0, 1/,

.nbn/1=2{β̂.t/−β.t/−b2
n β′′.t/μ2=2}⇒N{0, φ0 Σ.t/}: .9/

We now comment on the regularity conditions of theorem 1. Condition 1 avoids asymptotic
multicollinearity and assumption 5 prevents singularity of the limiting asymptotic covariance
matrix. Condition 2 means local stationarity in the sense that, for a sequence m → ∞ with
m=n→0, the process .xi/

l+m
i=l−m can be approximated by the stationary process .G.tl, Fi//

l+m
i=l−m

in view of supl−m�i�l+m ‖xi −G.tl, Fi/‖=O.m=n/=o.1/, by the L2 stochastic Lipschitz conti-
nuity. If G.t, Fi/ does not depend on t, then it becomes a stationary process. Here assumptions
2 and 3 can be checked by the results in Section 4 of Zhou and Wu (2009). The short-range
dependence condition 4 means that the cumulative effect of ζ0 on future values is bounded and
it is easily verifiable for a large class of locally stationary processes.

3.2. Gaussian approximations
Let {Zi = W.ti, Fi/}n

i=1 be an s-dimensional locally stationary process with mean 0. We con-
sider approximating the partial sum process SZ.l/ = Σl

i=1 Zi by multiple Gaussian processes.
This problem has an extensive history; see the references in Wu (2007) and Liu and Lin (2009).
Wu and Zhou (2009) obtained a Gaussian approximation result with nearly optimal bounds
for non-stationary multiple time series. Let Ids denote the s-dimensional identity matrix. For a
positive semidefinite matrix A with eigendecomposition A = QDQT, where Q is orthonormal
and D is a diagonal matrix, define A1=2 =QD1=2QT, where D1=2 is the elementwise root of D.

Theorem 2. Assume

(a) sup0�t�1{‖W.t, Fl/‖4}<∞,
(b) W.t, Fl/∈Lip2 and
(c) δ4.W, k/=O.k−2/.

Then, on a richer probability space, there is an IID V1, V2, . . .,∼N.0, Ids/ and a process S0
Z.i/

such that {SZ.i/}n
i=0 =D {S0

Z.i/}n
i=0 and

max
i�n

∣∣∣∣S0
Z.i/−

i∑
j=1

ΣW,jVj

∣∣∣∣=oP{n3=10 log.n/}, .10/
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where ΣW,j =ΣW.tj/,

ΣW.t/=
[∑

l∈Z

cov{W.t, F0/, W.t, Fl/}
]1=2

: .11/

Theorem 2 follows from corollary 2 in Wu and Zhou (2009). Owing to the non-stationarity,
the approximated Gaussian process .Σi

j=1 ΣW,jVj/n
i=1 has independent but possibly non-

identically distributed increments. The covariance matrix of the increments Σ2
W,i equals the

long-run covariance matrices of series .Zi/ as defined in equation (11) and it accounts for the
dependence of the series. The Gaussian approximation is the key theoretical tool for proving
asymptotic properties of the SCT in theorem 3 in Section 3.3. It also suggests a bootstrap
procedure for the construction of the SCT and non-parametric supremum-type tests; see
Section 4.2.

3.3. Maximum deviations
Theorem 3 is for constructing SCTs in the sense of expression (3). Let C be a fixed p× s matrix
with rank s�p, AC.t/=M−1.t/C, Σ2

C.t/=AT
C.t/Λ.t/AC.t/ and β̂C.t/=CT β̂.t/.

Theorem 3. Assume that conditions 1–6 hold with r =4. Further assume that

(a) δ4.U, k/=O.k−2/,
(b) Σ∞

k=0δ4.G, k/<∞,
(c) Λ.t/ is Lipschitz continuous on [0, 1] and
(d) log3.n/=n2=5bn +nb7

n log.n/→0.

Then, as n→∞, we have

P

[√
.nbn/√
φ0

sup
t∈T

∣∣∣∣Σ−1
C .t/

{
β̂C.t/−βC.t/− μ2b2

nβ
′′
C.t/

2

}∣∣∣∣−BK.mÅ/� u√{2 log.mÅ/}

]
= exp{−2 exp.−u/}, .12/

where β′′
C.·/=CT β′′.·/, T = [bn, 1−bn], mÅ =1=bn and

BK.mÅ/=√{2 log.mÅ/}+ log.CK/+ .s=2− 1
2 / log{log.mÅ/}− log.2/√{2 log.mÅ/} .13/

with

CK =

{∫ 1

−1
|K′.u/|2 du=φ0π

}1=2

Γ.s=2/
:

4. Construction of simultaneous confidence tube

We now apply theorem 3 to construct an SCT. Let β̂
′′
C.t/ and Σ̂C.t/ be uniformly consistent

estimates of β′′
C.t/ and ΣC.t/ respectively. Let α∈ .0, 1/. Then the SCT of βC.t/

β̂C.t/− μ2b2
n β̂

′′
C.t/

2
+

√
φ0√

.nbn/

[
BK.mÅ/− log[log{.1−α/−1=2}]√{2 log.mÅ/}

]
Σ̂C.t/Bs, .14/

where Bs ={u ∈Rs : |u|�1} is the unit ball, has asymptotic coverage probability 1−α. Sections
4.1–4.4 concern some implementational issues.
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4.1. Bias correction
To use expression (12) or (14), we need to deal with the bias term that involves β′′.t/. It is gen-
erally not easy to obtain a good estimate of β′′.t/. One way out is to use undersmoothing by
choosing a bandwidth bn = o.n−1=5/; see for example the discussion in Neumann and Polzehl
(1998). However, as mentioned in Neumann and Polzehl (1998), it is unclear how to choose such
a bandwidth and most automatic bandwidth selectors choose the mean-squared error optimal
bandwidth bn ∼ cn−1=5 with some c> 0. Here, without estimating β′′.t/, we shall use the simple
jackknife bias-corrected estimator:

β̃bn
.t/=2 β̂bn=

√
2.t/− β̂bn

.t/: .15/

The bias of β̃.t/ is of order o.b3
n/ and is asymptotically negligible under the conditions of

theorem 3. Implementing estimator (15) is asymptotically equivalent to using the fourth-order
kernel KÅ.x/=2

√
2K.

√
2x/−K.x/. Then the mean-squared error optimal bandwidth is of the

form cn−1=9 for some c>0. In our data analysis, we recommend using b′
n =2b̂n, for this biased-

corrected estimator, where b̂n is the bandwidth selected for the original local linear estimator.

4.2. Convergence issues
We see from equation (12) that the convergence therein is of logarithmic rate and it is very slow.
To circumvent the problem, we shall adopt a bootstrap method which can have a better perfor-
mance (Härdle and Marron, 1991; Hall, 1991; Neumann and Kreiss, 1998). The key ingredient
is the following proposition. Let β̃C.t/=CT β̃.t/.

Proposition 1. Assume that conditions 1–3 and 5 hold with r =4. Further assume conditions
(a)–(c) of theorem 3 and bn =O.n−θ/ with 1=7 < θ < 2=5. Then, on a richer probability space,
there are IID V1, V2, . . . ,∼N.0, Ids/ such that

sup
t∈T

|β̃C.t/−βC.t/−Ξ.t/|=OP

{
n−ν

√
.nbn/ log1=2.n/

}
, .16/

where ν =min.3θ=4, 7θ=2−1=2, 1=5−θ=2/> 0 and

Ξ.t/=ΣC.t/μbn
.t/,

where

μbn
.t/=

n∑
i=1

Vi KÅ
bn

.ti − t/=nbn:

Proposition 1 follows from a careful check of the proof of theorem 3 (see expressions (34)
and (35) and lemma 2 in Appendix A). Details have been omitted. For the mean-squared error
optimal bandwidth with θ =1=5, ν =1=10. Equation (16) implies that simultaneous stochastic
variation of Σ−1

C .t/{β̃C.t/−βC.t/} can be well approximated by that of μbn
.t/. Hence the dis-

tribution of supt∈T |Σ−1
C .t/{β̃C.t/−βC.t/}| can be approximated by supt∈T |μbn

.t/|, which can
be obtained by generating a large number of IID copies

μ
†
bn

.t/=
n∑

i=1
V†

i KÅ
bn

.ti − t/=nbn

via the wild bootstrap. Here V†
i are IID N.0, Ids/. In proposition 1, Vi are not wild bootstrap

random variables. Note that, at a fixed point t, cov{μbn
.t/} is proportional to the identity matrix.

Summarizing the above discussion, we propose the following simulation-based procedure for
constructing the SCT.
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(a) Find an appropriate bandwidth b̂n for estimating βC.·/ by using methods that are pro-
posed in Section 4.4. Let b′

n =2b̂n and calculate β̃C,b′
n
.t/.

(b) Generate IID Gaussian vectors V†
1, V†

2, . . . ,∼N.0, Ids/ and calculate sup0�t�1 |μ†
b′

n
.t/|.

(c) Repeat step (b) for 104 (say) times and obtain the estimated .1 −α/th quantile q̂1−α of
sup0�t�1 |μb′

n
.t/|.

(d) Calculate Σ̂C.t/={CTM̂
−1

.t/Λ̂.t/M̂
−1

.t/C}1=2 by using the method in Section 4.3.
(e) Construct the .1−α/th SCT of βC.t/ as β̃C,b′

n
.t/+ Σ̂C.t/q̂1−αBs.

4.3. Estimation of covariance matrices
To apply theorems 1 and 3, we need to estimate M.t/ and Λ.t/, the long-run covariance matrix
function of the locally stationary time series .xi"i/ that is given in equation (8). We estimate M.t/

by M̂.t/= Sn,0.tÅ/, where tÅ = max{bn, min.t, 1 −bn/}. Since M.·/ is Lipschitz continuous, by
lemma 6, in Appendix A, supt∈[0,1] |M̂.t/−M.t/|=OP.bn +n−1=2b−1

n /=oP.1/ if nb2
n →∞. The

problem of estimating Λ.t/ is not easy and in our case it is further complicated by the fact that
the errors "i cannot be observed but need to be estimated instead.

Here we shall first establish a convergence result on the estimation of Λ.t/ by assuming that "i

are known. The result is important in its own right since it provides convergence on covariance
matrices estimates of multivariate locally stationary time series. Let Li = xi"i, i= 1, . . . , n, and
Qi =Σm

j=−m Li+j. Note that E.Li/=0. If the series .Li/ were stationary and hence Λ.·/ were not
time varying, then for each i, as m →∞, Δi := QiQT

i =.2m + 1/ would converge to a distribu-
tion with expectation Λ, by the central limit theorem. In the locally stationary case, we could
make use of the fact that a block of .Li/ is approximately stationary when its length is small
compared with n. Hence E.Δi/≈Λ.ti/ as m→∞ and m=n→0. Since Λ.·/∈C2[0, 1], we can use
the Nadaraya–Watson-type estimator. Let τn be the bandwidth and γn = τn + .m + 1/=n. For
t ∈I = [γn, 1−γn]⊂ .0, 1/, let

Λ̂.t/=
n∑

i=1
ω.t, i/Δi, ω.t, i/=Kτn.ti − t/

/ n∑
k=1

Kτn.tk − t/: .17/

We define Λ̃.t/ over the whole interval [0, 1] by letting Λ̃.t/ = Λ̃.γn/ if t ∈ [0, γn] and Λ̃.t/ =
Λ̃.1 − γn/ if t ∈ [1 − γn, 1]. Note that Λ̂.t/ is always positive semidefinite. In practice "i are not
known. In theorem 5 we use Λ̃.t/ = Σn

i=1 ω.t, i/Δ̄i, where Δ̄i is defined as Δi with Li therein
replaced by L̄i :=xi"̂i. Write ‖·‖=‖·‖2.

Theorem 4. Assume condition 3 with r = 4, Λ.t/ ∈ C2[0, 1], δ4.U, k/ = O[{k log.k/}−2], m =
mn →∞, m=O.n1=3/, τn →0 and nτn →∞. Then

(a) for any fixed t ∈ .0, 1/,

‖Λ̂.t/−Λ.t/‖=O

{√(
m

nτn

)
+ 1

m
+ τ2

n

}
, .18/

(b) for I = [γn, 1−γn]⊂ .0, 1/, where γn = τn + .m+1/=n,∥∥∥∥sup
t∈I

|Λ̂.t/−Λ.t/|
∥∥∥∥=O

{√(
m

nτ2
n

)
+ 1

m
+ τ2

n

}
: .19/

Theorem 5. Assume that conditions (a)–(d) of theorem 3 and the conditions of theorem 4
hold. Further assume conditions 1 and 5, G.t, Fi/ ∈ Lip2, sup0�t�1{‖G.t, Fi/‖κ} < ∞, for
some κ> 4, and ϑn =o.1/, where ϑn =n2=κ√

m log.n/2{1=
√

.nbn/+b2
n}. Then
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sup
t∈I

|Λ̃.t/−Λ.t/|=OP

{
ϑn +

√(
m

nτ2
n

)
+ 1

m
+ τ2

n

}
: .20/

The bound in equation (18) is minimized and it becomes O.n−2=7/ if m�n2=7 and τn �n−1=7.
Here for two positive sequences .rn/ and .sn/ we write rn � sn if sn=rn + rn=sn are bounded for
all large n. If m � n1=4 and τn � n−1=8, then the uniform bound in equation (19) is O.n−1=4/.
Theorem 5 requires stronger conditions: if m�nq1 , bn �n−q2 and τn �n−q3 , where q1, q2, q3 >0,
then we need q1=2+2=κ<min.2q2, 1

2 −q2=2/ and q1 <1−2q3. Under the latter conditions, since
Λ.t/∈C2[0, 1], we have by theorem 5 that supt∈[0,1] |Λ̃.t/−Λ.t/|=OP.n−ν/ for some ν >0, which
by lemma 6 in Appendix A implies that the estimate Σ̂C.t/ in step (d) satisfies supt∈[0,1] |Σ̂C.t/−
ΣC.t/| = OP.n−λ/ for some λ > 0. So the convergence in expression (12) still holds if ΣC.t/

therein is replaced by Σ̂C.t/.

4.4. Selection of smoothing parameters
In algorithmic implementation of the foregoing procedures, we need to choose smoothing
parameters bn, m and τn. Theorem 1 suggests that the minimum asymptotic mean integrated
squared error bandwidth for estimating β.·/ is

bÅ
n =

⎡
⎢⎢⎣

φ0

∫ 1

0
tr{Σ.t/}dt

μ2
2

∫ 1

0
|β′′.t/|2 dt

⎤
⎥⎥⎦

1=5

n−1=5:

Hence we can estimate the second derivative β′′ and tr{Σ.·/} and then plug them in bÅ
n . Another

selector, which we adopt in our simulations and data analysis, is the generalized cross-validation
(GCV) method (Craven and Wahba, 1979). For estimating β.·/, we can write Ŷ = Q.b/Y for
some square matrix Q, where Y and Ŷ denote the vector of observed values and estimated values
respectively, and b is the bandwidth. We can choose

b̂n =arg min
b

{GCV.b/}, GCV.b/= n−1|Y − Ŷ|2
[1− tr{Q.b/}=n]2

: .21/

The GCV selector works reasonably well in our simulations.
We now discuss the choice of m and τn for estimating the long-run covariance matrix. By

equation (18) of theorem 4, for an easy implementation, we could simply choose mÅ =
n2=7�
and τÅ

n = n−1=7. For refinements, we recommend the following extended minimum volatility
method which is an extension of the minimum volatility method that was proposed in chapter 9
of Politis et al. (1999). The idea behind the extended minimum volatility method is that, if
a pair of block size and bandwidth is in a reasonable range, then confidence regions for the
local mean constructed by Λ̃.t/ should be stable when considered as a function of block size
and bandwidth. Hence we could first propose a grid of possible block sizes and bandwidths
and then choose the pair that minimizes the volatility of the boundary points (curves) of
the confidence regions near this pair. More specifically, let the grid of possible block sizes
and bandwidths be {m1, . . . , mM1} and {τ1, . . . , τM2} respectively and let the estimated long-
run covariance functions be {Λ̃mh,τj .t/}, h = 1, . . . , M1, j = 1, . . . , M2. For each pair .mh, τj/,
calculate

ise[∪2
r=−2 {Λ̃mh,τj+r .t/} ∪ ∪2

r=−2 {Λ̃mh+r ,τj .t/}],

where ise denotes the integrated standard error
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ise[{Λ̃l.t/}k
l=1]=

∫ 1

0

{
1

k −1

k∑
l=1

|Λ̃l.t/− ¯̃Λ.t/|2
}1=2

dt

with ¯̃Λ.t/ =Σk
l=1Λ̃l.t/=k. Then we choose the pair .mÅ

h , τÅ
j / that minimizes ise. In our simula-

tions, the extended minimum volatility selector performs reasonably well and it is also found
that the estimated covariance functions are not sensitive to the choice of .m, τ / as long as
this pair is not very different from the pair that is chosen by the extended minimum volatility
method.

4.5. Simultaneous confidence tubes with minimal volumes
Our SCT is optimal in the sense that it has asymptotically smallest average volume. To see this,
we apply the Lagrange multiplier argument. For illustration, we focus on the one-dimensional
case and write β, C, A and Σ as β, c, a and σ respectively. Let sl = .2l − 1/bn

√
2, l = 1, . . . , gn,

where gn = 
1=2bn
√

2�. From equation (16), β̃c.sl/ − βc.sl/ are asymptotically independent
N{0, φ0,KÅσ2

c .sl/=nbn}. Suppose that a band [l.sl/� β̃c.sl/−βc.sl/�u.sl/], l=1, . . . , gn, achieves
the preassigned coverage probability 1 −α. Owing to the asymptotic independence, we have,
asymptotically,

c.n, bn/ :=
gn∏

l=1

[
Φ

{
u.sl/

√
.nbn/

σc.sl/
√

φ0,KÅ

}
−Φ

{
l.sl/

√
.nbn/

σc.sl/
√

φ0,KÅ

}]
=1−α,

where Φ.·/ is the normal distribution function. To achieve the minimum average length, we
choose l.sl/ and u.sl/ that minimize the target function

gn∑
l=1

{u.sl/− l.sl/}−λ[log{c.n, bn/}− log.1−α/]: .22/

Simple calculations show that the minimum is achieved at u.sl/ = −l.sl/ = g.n, bn, α/σc.sl/,
where g.n, bn, α/ is a deterministic function. It suggests that the asymptotically optimal SCT
should have a length that is proportional to the long-run standard deviation at each time point,
which is satisfied by our construction procedure.

5. Simulation study

In this section we shall perform a simulation to study the finite sample coverage probabilities of
our SCT under scenarios (a) and (b) in Section 2. We are particularly interested in investigating
whether heteroscedasticity of errors would result in inaccurate coverage probabilities. For this
purpose, consider the time varying coefficient model

yi =β1.i=n/+β2.i=n/xi + "i, i=1, . . . , n: .23/

where β1.t/= sin.2πt/=4 and β2.t/=exp{−.t − 1
2 /2}=2. We shall consider the following two cases

which correspond to scenarios (a) and (b) in Section 2 respectively.

(a) Let H.t, Fi/ = 4−1 Σ∞
j=0 a.t/jζi−j, "i = H.i=n, Fi/, G.t, Fi/ = .1, Σ∞

j=0 c.t/jεi−j/ and xi =
.1, xi/=G.i=n, Fi/, i=1, . . . , n, where a.t/= 1

2 − .t − 1
2 /2, c.t/= 1

4 + t=2, and εh, ζl, h, l∈Z,
are IID N.0, 1/.

(b) Let xi, εh, ζl and a.·/ be the same as in (a) and "i =H.ti, Fi/, where H.t, Fi/=8−1[Σ∞
j=0{a.t/j

× ζi−j}]{Σ∞
j=0 c.t/jεi−j}. Then E."i|εi, εi−1, . . ./=0.

In these two examples, the variances of "i are roughly of the same order. In our simulations,
for each of the above two cases we generate 5000 samples of size n=500. For each sample the
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Table 1. Simulated coverage probabilities of the SCT of β2.�/ and .β1.�/, β2.�//T at 90%
and 95% nominal levels for model (23) with two cases (a) and (b)

b Results for case (a) Results for case (b)

β2(t) (β1(t),β2(t))T β2(t) (β1(t),β2(t))T

90% 95% 90% 95% 90% 95% 90% 95%

0.1 0.864 0.917 0.784 0.875 0.873 0.92 0.836 0.915
0.125 0.875 0.940 0.821 0.886 0.874 0.925 0.865 0.930
0.15 0.905 0.948 0.861 0.921 0.895 0.940 0.895 0.941
0.175 0.901 0.943 0.869 0.922 0.889 0.940 0.903 0.940
0.2 0.900 0.949 0.896 0.945 0.899 0.942 0.884 0.955
0.225 0.904 0.947 0.893 0.945 0.898 0.943 0.910 0.955
0.25 0.910 0.955 0.900 0.943 0.908 0.956 0.899 0.946
0.275 0.902 0.950 0.902 0.946 0.908 0.949 0.912 0.956
0.3 0.911 0.957 0.912 0.953 0.909 0.953 0.914 0.946
0.325 0.909 0.957 0.910 0.956 0.903 0.946 0.914 0.952
0.35 0.904 0.952 0.913 0.952 0.908 0.944 0.908 0.949

local linear estimation together with the jackknife bias reduction are performed with bandwidths
bj =0:025j, j =4, . . . , 14, to obtain estimates β̃i,bj

.t/, i=1, 2. We then calculate σ̂.0,1/.t/ and Σ̂.t/

with smoothing parameters selected by the extended minimum volatility method. We use 3000
bootstrap samples to estimate q̂1−α for α=0:1 and α=0:05. SCTs for β2.t/ and .β1.t/, β2.t//T

are then constructed for two levels: 90% and 95%. Table 1 reports the simulated coverage prob-
abilities. The coverage probabilities depend on the bandwidth in a complicated way, and in
finite samples it is difficult to know whether they are conservative or anticonservative. GCV
selects bandwidth 0.25 and 0.17 for models (a) and (b) respectively. Table 1 suggests that for
both models the simulated coverage probabilities are reasonably close to the nominal levels for
the GCV-selected bandwidths.

6. Specification tests

Let {f.t, θ/} be a parametric family of functions with t ∈ [0, 1] and θ ∈Θ⊂ Rk. To test the null
hypothesis H0 : βC.·/ = f.·, θ/ for some unknown θ ∈ Θ at level α, we construct a 1 − α SCT
for βC.·/ and check whether, for some θ ∈ Θ, f.·, θ/ is fully contained in the SCT. If there is
one such θ, then the null hypothesis is accepted. If the structure of {f.t, θ/} is complicated,
then the checking may be tedious. However, under the null hypothesis, model (2) is essen-
tially a semiparametric model and we could expect to obtain a root n consistent estimate f.t, θ̂/

of βC.t/. For example, if f.t, θ/ = .θT
1 g1.t/, . . . , θT

s gs.t//
T, where θl ∈ Rdl and gl : [0, 1] → Rdl

are fixed functions l = 1, . . . , s, with known forms, the profile least squares method (Fan and
Huang, 2005) can be used to obtain a root n consistent estimate of θ̂. The convergence rate
of our SCT is always slower than root n. Hence, if the null hypothesis is true, f.t, θ̂/ can be
treated as the true value of βC.t/ and the null is rejected if the SCT does not fully contain
f.t, θ̂/.

As an application, we consider the Hong Kong circulatory and respiratory data. They consist
of daily measurements of pollutants and daily hospital admissions in Hong Kong between
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January 1st, 1994, and December 31st, 1995. The purpose is to investigate the dynamic associa-
tion between the levels of pollutants and the total number of hospital admissions of circulation
and respiration. In the context of varying-coefficient models, this data set has been studied by
Fan and Zhang (1999, 2000) and Cai et al. (2000). Most of the previous results assumed that the
observations were IID. Here we shall investigate the data under framework (4) where both the
covariates and the errors are modelled as non-stationary time series and we shall also compare
our findings with the previous results. More specifically, consider the model

yi =β1.i=n/+
4∑

p=2
βp.i=n/xip + "i, i=1, . . . , n, .24/

where .yi/ is the series of daily total number of hospital admissions of circulation and respiration
and .xip/, p=2, 3, 4, represent the series of daily levels of sulphur dioxide (SO2) (in micrograms
per cubic metre), nitrogen dioxide (NO2) (in micrograms per cubic metre) and dust (in micro-
grams per cubic metre) respectively. Here n=2 ×365=730. Following Fan and Zhang (2000),
we first centre each of the three pollutants by their averages so that the intercept β1.·/ can be
interpreted as the expected number of admissions when the pollutants are set at their averages.
Fig. 1 summarizes the data and it suggests that neither the response nor the covariates are IID.
In particular, seasonal patterns can be found in the NO2 series and the dust series.

In the data analysis we use the Epanechnikov kernel. Following the procedures in Section 4.4,
the smoothing parameters bn, τn and m are selected as 0.21, 0.2 and 14 respectively. For each of
the three pollutants, we are interested in testing whether it is significantly associated with the
number of hospital admissions. This amounts to testing βh.t/≡ 0 for h= 2, 3, 4. Furthermore,
we also check whether the intercept or the pollutants’ effect are really time varying. So the
four hypotheses βh.t/ ≡ ch, h = 1, 2, 3, 4, are tested. To obtain estimates of ch, the profile least
squares method (Fan and Huang, 2005) is used with bandwidth bn =0:15. It turns out that all
hypotheses are rejected at the 0.01 level. Therefore we conclude that all three pollutants are
associated with the response and the pollutants’ effect varies significantly with time. Under the
assumption of IID observations, Fan and Zhang (2000) claimed that the effect of SO2 was not
significant. Note that their simultaneous confidence bands were constructed according to the
asymptotic distributions which converge at the slow logarithmic rate. Additionally, the auto-
correlation function plots show that there is substantial dependence between the fitted residuals
"̂i. In comparison with our Fig. 2, the bands in their Fig. 2 are generally wider.
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Appendix A

A.1. Proof of theorem 1
By assumption 6 and Taylor’s expansion, if |tj − t|�bn, β.tj/=β.t/+β′.t/.t − tj/+{β′′.t/=2+O.bn/}.t −
tj/

2. Since K has support [−1, 1], by expression (7),

Sn.t/{η̂.t/−η.t/}=
(

b2
n Sn,2.t/{β′′.t/+O.bn/}=2

b2
n Sn,3.t/{β′′.t/+O.bn/}=2

)
+

(Tn,0.t/
Tn,1.t/

)
, .25/

where η.t/= .βT.t/, bn β′T.t//T, Tn.t/= .TT
n,0.t/, TT

n,1.t//
T and
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Tn, l.t/= .nbn/−1
n∑

i=1
xi"i{.ti − t/=bn}l Kbn .ti − t/, l=0, 1, . . .:

Let M̃.t/ = diag{M.t/, μ2M.t/}, χn = .nbn/−1=2 + bn and ρn = .nbn/−1=2 + b2
n. By lemma 6, Sn.t/ − M̃.t/ =

OP.χn/. Note that E{Tn.t/}= 0. By assumptions 3 and 4 and the Cramer–Wold device, proposition 6 in
Zhou and Wu (2009) implies the central limit theorem

.nbn/1=2 Tn.t/⇒N{0, Λ̃.t/}, Λ̃.t/=diag{φ0 Λ.t/, φ2 Λ.t/}: .26/

By expressions (25) and (26) we have η̂.t/−η.t/=OP.ρn/, and

Sn.t/{η̂.t/−η.t/}=
(

μ2 M.t/β′′.t/b2
n=2+OP.b2

nχn/
OP.b2

nχn/

)
+Tn.t/: .27/

Since nb7
n →0, .nbn/1=2{Sn.t/− M̃.t/}ρn =oP.1/. By expressions (26) and (27), expression (9) follows. �

Lemma 1. Let Fn.t/=Σn
i=1 Vi Kbn .ti − t/, where Vi, i∈Z, are IID N.0, Ids/. Suppose that K ∈K, bn →0

and nbn= log2.n/→∞. Let mÅ =1=bn. Then

lim
n→∞

(
P

[
1√

.φ0nbn/
sup
t∈T

|Fn.t/|−BK.mÅ/� u√{2 log.mÅ/}
])

= exp{−2 exp.−u/}: .28/

Proof. Let {B.t/, t ∈R} be an s-dimensional standard Brownian motion. Then

Y.t/ :=
∫

R
K.t −u/ dB.u/=

√
φ0

is a stationary Gaussian process. Note that Yj.·/, 1 � j � s, the jth components of Y.·/, are IID with
var{Yj.t/}=1, cov{Yj.0/, Yj.t/}=1−λ2t

2=2+o.t2/, where λ2 =∫ 1
−1 |K′.x/|2 dx=φ0. Since the support of K

is within [−1, 1], cov{Yj.0/, Yj.t/}=0 if |t|�2. By theorem 3.1 in Lindgren (1980) and Slutsky’s theorem,
we have

lim
n→∞

(
P

[
max

t∈[1,mÅ−1]
|Y.t/|−BK.mÅ/� u√{2 log.mÅ/}

])
= exp{−2 exp.−u/}: .29/

Let Ỹ.t/ = ∫ mÅ

0 K.t − 
1 + knu�=kn/ dB.u/=
√

φ0, where kn = nbn. Then, by the argument in the proof of
lemma 2 of Wu and Zhao (2007), we have

max
t∈[1,mÅ−1]

|Y.t/− Ỹ.t/|=OP

[√{
log.n/

kn

}]
=oP

{
1√

log.n/

}
: .30/

Since the process Fn.t=mÅ/=
√

.φ0kn/ is identically distributed as Ỹ.t/ over t ∈ [1, mÅ −1], lemma 1 follows.

Lemma 2. Let DW.t/ = .nbn/−1Σn
i=1 ZiKbn .ti − t/, where W.·, ·/ and .Zi/

n
1 are as defined in theorem 2.

Assume that ΣW.t/ is Lipschitz continuous and bounded away from 0 on [0, 1] and log3.n/=n2=5bn +
bn log2.n/=o.1/. Then, under conditions of theorem 2, we have

lim
n→∞

(
P

[
sup
t∈T

{√
.nbn/√
φ0

|Σ−1
W .t/ DW.t/|

}
−BK.mÅ/� u√{2 log.mÅ/}

])
= exp{−2 exp.−u/}: .31/

Proof. By theorem 2 and the summation-by-parts formula, simple calculations show that there are IID
s-dimensional standard Gaussian random vectors {Vi} such that

sup
t∈T

|DW.t/−ΞW.t/|=OP

{
n3=10 log.n/

nbn

}
=oP

{
1√

.nbn/ log1=2.n/

}
, .32/

where ΞW.t/= .nbn/−1Σn
i=1ΣW, iVi Kbn .ti − t/. Since ΣW.·/ is Lipschitz, we have

sup
t∈T

|ΞW.t/− .nbn/−1ΣW.t/
n∑

i=1
Vi Kbn .ti − t/|=OP

{
bn log.n/√

.nbn/

}
: .33/

So equation (31) follows from equations (32) and (33) and lemma 1 since log3.n/=n2=5bn +bn log2.n/→0.
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A.2. Proof of theorem 3
Applying lemma 2 to the process Zi = xi"i, we have supt∈T |Tn.t/| = OP{.nbn/−1=2 log.n/}. Let χ′

n =
n−1=2b−1

n +bn and ρ′
n = .nbn/−1=2 log.n/+b2

n. By equation (25) and lemma 6, we have supt∈T |η̂.t/−η.t/|=
OP.ρ′

n/, and hence

sup
t∈T

∣∣∣∣M.t/{β̂.t/−β.t/}− b2
nμ2 M.t/β′′.t/

2
−Tn,0.t/

∣∣∣∣=OP.ρ′
nχ

′
n/: .34/

Let

ΩC.t/= .nbn/−1
n∑

i=1
AT

C.ti/xi"i Kbn .ti − t/:

By the proof of proposition 7 in Zhou and Wu (2009) and the differentiability of AC.t/, we have

sup
t∈T

|AT
C.t/ Tn,0.t/−ΩC.t/|=OP{.nbn/−1=2b3=4

n }=oP

{
1√

.nbn/ log1=2.n/

}
: .35/

Note that .AT
C.ti/xi"i/ is a locally stationary process of the form .W.ti, Fi// with long-run variance Σ2

W, i =
Σ2

C.ti/. Since the conditions of lemma 2 are satisfied for this W, by equations (34) and (35) and lemma 2,
theorem 3 follows. �

To prove theorem 4, we need lemmas 3–5. Recall that Qi =Σm
j=−m Li+j . Define

Q�
i =

m∑
j=−m

U.ti, Fi+j/

and

Δ�
i = Q�

i .Q�
i /T

2m+1
:

Note that Δi =QiQT
i =.2m+1/. For k ∈Z define the projection operator

Pk·=E.·|Fk/−E.·|Fk−1/:

Lemma 3. Under conditions of theorem 4, we have ‖Λ̂.t/−E{Λ̂.t/}‖=O{.mn−1τ−1
n /1=2}.

Proof. Since Qi is Fi+m measurable, we can find a measurable function f such that Qi =f.Fi+m/. Let
.ζ ′

i /i∈Z be an IID copy of .ζi/i∈Z, and, for j, l∈Z, define

QÅ
i,{l} =f.Fi+m,{l}/, Fj,{l} = .. . . , ζl−2, ζl−1, ζ ′

l , ζl+1, . . . , ζj/:

Fj,{l} is obtained by replacing ζl in Fj by an IID copy ζ ′
l , and Fj,{l} =Fj if l>j. Since Σ∞

k=0 δ4.U, k/<∞,
using the argument of theorem 1 in Wu (2007), we have supi.‖Qi‖4/=O.

√
m/. Since

‖Qi −Qi,{i−l}‖4 �
m∑

j=−m

δ4.U, l+ j/,

‖QiQT
i −Qi,{i−l}QT

i,{i−l}‖�‖Qi‖4‖QT
i −QT

i,{i−l}‖4 +‖Qi −Qi,{i−l}‖4‖QT
i,{i−l}‖4

=O.
√

m/
m∑

j=−m

δ4.U, l+ j/: .36/

By theorem 1 in Wu (2005), ‖Pi−l.QiQT
i /‖ � ‖QiQT

i − Qi,{i−l}QT
i,{i−l}‖. Define Ψl = Σn

i=1 ω.t, i/Pi−lΔi.
Since Pi−lΔi, 1� i�n, are martingale differences, we have

‖Ψl‖2 =
n∑

i=1
ω2.t, i/‖Pi−lΔi‖2 = O.1/

nmτn

{
m∑

j=−m

δ4.U, l+ j/

}2

:

Since Λ̂.t/−E{Λ̂.t/}=Σ∞
k=0 Ψk−m and Σ∞

k=0 δ4.U, k/<∞, the lemma follows.

Lemma 4. Under the conditions of theorem 4, we have

|E{Λ̂.t/}−E{Λ̂
�
.t/}|=O{√

.m=n/}, Λ̂
�
.t/=

n∑
i=1

ω.t, i/Δ�
i : .37/
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Proof. Let N .t/= [max.t − τn, 0/, min.t + τn, 1/]. For i=n∈N .t/, we have

|E.Δ�
i /−E.Δi/|� ‖Qi‖‖QT

i − .Q�
i /T‖+‖Qi −Q�

i ‖‖Q�
i ‖

2m+1
: .38/

As mentioned in the proof of lemma 3, supi.‖Qi‖4/=O.
√

m/. Let Rj =U.ti+j , Fi+j/−U.ti, Fi+j/, |j|�m.
By assumption 3, ‖Rj‖=O.m=n/. Also ‖Pi+j−kRj‖�2 δ2.U, k/, k �0. So

‖Qi −Q�
i ‖�

∞∑
k=0

∥∥∥∥ m∑
j=−m

Pi+j−kRj

∥∥∥∥=
∞∑

k=0
O.

√
m/ min{m=n, δ2.U, k/} .39/

uniformly over i with i=n∈N .t/. Since δ2.U, k/=O[{k log.k/}−2], ‖Qi − Q�
i ‖=O.mn−1=2/. By inequality

(38), expression (37) follows.

Lemma 5. Under the conditions of theorem 4, we have |Λ.t/−E{Λ̂
�
.t/}|=O.m−1 + τ 2

n /.

Proof. Let Γk =E{U.ti, F0/UT.ti, Fk/}, k ∈Z. Since U.ti, Fk/=Σj∈Z PjU.ti, Fk/ and Pj are orthogonal,
we have

|Γk|=
∣∣∣∣E

[ ∑
j∈Z

{Pj U.ti, F0/}×{PjUT.ti, Fk/}
]∣∣∣∣� ∑

j∈Z

‖Pj U.ti, F0/‖‖Pj U.ti, Fk/‖

� ∑
j∈Z

δ2.U, −j/ δ2.U, k − j/

=O{.|k| log |k|/−2},

in view of δ2.U, k/=O[{k log.k/}−2]. So we have uniformly over i∈N .t/ that

.2m+1/|E.Δ̃i/−Λ.ti/|=
∑
j∈Z

min.|j|, 2m+1/|Γj|=O.1/: .40/

Since E{Λ̂
�
.t/}=Σn

i=1ω.t, i/ E.Δ�
i / and Λ.t/∈C2[0, 1], by equation (40), lemma 5 holds.

A.3. Proof of theorem 4

(a) The first part of theorem 4 follows from lemmas 3–5 in view of
√

.m=n/=O.1=m/.
(b) Following the chaining argument in lemma 6 of Zhou and Wu (2009) as well as the proof of lemma 3,

we have

‖ sup
t∈I

|Λ̂.t/−E{Λ̂.t/}|‖=O.m1=2n−1=2τ−1
n /:

It is easily seen that lemmas 4 and 5 hold uniformly on I. Hence the second part of theorem 4 follows.

A.4. Proof of theorem 5
Let I1 be a closed interval in .0, 1/ such that I ⊂I1 and the two intervals do not share common end points.
Since supt∈[0,1]{‖G.t, Fi/‖κ}<∞, we have supi |xix

T
i |=OP.n2=κ/. Let ρ′

n be as in the proof of theorem 3.
Then

sup
i=n∈I1

|L̄i −Li|= sup
i=n∈I1

|xixT
i {β.ti/− β̂.ti/}|=OP.n2=κρ′

n/: .41/

Note that Qi=.2m+1/ is the Nadaraya–Watson smoother of the series .Li/ at i with the rectangle kernel
and bandwidth m=n. Hence, by the proof of theorem 3, it follows that

sup
i=n∈I1

|Qi|=OP[
√{m log.n/}+m3=n2]=OP[

√{m log.n/}]: .42/

Define Q̄i =Σm
j=−mL̄i+j and Δ̄i = Q̄iQ̄

T
i =.2m+1/. Write

.2m+1/.Δi − Δ̄i/= .Qi − Q̄i/Q
T
i +Qi.Qi − Q̄i/

T − .Qi − Q̄i/.Qi − Q̄i/
T:

Plugging equations (41) and (42) into this equation, since ϑn →0, we have supi=n∈I1
|Δi − Δ̄i|=OP.ϑn/. By

the definitions of Λ̃.t/ and Λ̂.t/, we obtain supt∈I |Λ̂.t/− Λ̃.t/|=OP.ϑn/: Together with results in theorem 4,
theorem 5 follows.
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Lemma 6. Let χn = .nbn/−1=2 +bn, χ′
n =n−1=2b−1

n +bn and h�0. Under conditions 2 and 4, we have

(a) for any fixed t ∈ .0, 1/, Sn,h.t/−μh M.t/=OP.χn/, and
(b) supbn�t�1−bn

|Sn,h.t/−μh M.t/|=OP.χ′
n/.

A.5. Proof of lemma 6
As in expression (36), for l � 0, we have supj ‖Pj−lxjxT

j ‖ � 2 δ4.G, l/κ, where κ = Σ∞
l=0 δ4.G, l/. Let sk =

Σk
j=1 {xjxT

j − E.xjxT
j /} and mk, l = Σk

j=1 Pj−lxjxT
j . Then .mk, l/

n
k=1 is a martingale. By Doob’s inequality,

‖maxk�n |mk, l|‖�2‖mn, l‖. So

‖max
k�n

|sk|‖�
∞∑
l=0

‖max
k�n

|mk, l|‖�
∞∑
l=0

4 δ4.G, l/κ
√

n=O.
√

n/: .43/

Let wj.t/= .nbn/−1 Kbn .tj − t/. By the summation-by-parts formula,

sup
t

|Sn,0.t/−E{Sn,0.t/}|= sup
t

∣∣∣ n∑
k=1

.sk − sk−1/wk.t/
∣∣∣�max

j�n
|sj| K0

nbn

, .44/

where

K0 =2 sup
u

|K.u/|+
∫ 1

−1
|K′.u/|du:

Condition 2 implies that M.·/ is Lipschitz continuous. Hence E{Sn,h.t/}−μh M.t/=O{bn + .nbn/−1} holds
uniformly over bn � t �1−bn. By expressions (43) and (44), (b) holds with h=0. Since Sn,0.t/−E{Sn,0.t/}=
Σ∞

l=0 hl, where hl =Σn
j=1 Pj−l xjxT

j wj.t/ satisfies ‖hl‖=O{.nbn/−1=2}δ4.G, l/, (a) follows. The general case
with h�1 can be similarly dealt with.

References

Bickel, P. J. and Rosenblatt, M. (1973) On some global measures of the deviations of density function estimates.
Ann. Statist., 1, 1071–1095.

Cai, Z. (2007) Trending time-varying coefficient time series models with serially correlated errors. J. Econometr.,
136, 163–188.

Cai, Z., Fan, J. and Li, R. Z. (2000) Efficient estimation and inferences for varying-coefficient models. J. Am.
Statist. Ass., 95, 888–902.

Craven, P. and Wahba, G. (1979) Smoothing noisy data with spline functions. Numer. Math., 31, 377–403.
Dahlhaus, R. (1997) Fitting time series models to non-stationary processes. Ann. Statist., 25, 1–37.
Doukhan, P. and Louhichi, S. (1999) A new weak dependence condition and applications to moment inequalities.

Stoch. Processes Appl., 84, 313–342.
Draghicescu, D., Guillas, S. and Wu, W. B. (2009) Quantile curve estimation and visualization for nonstationary

time series. J. Comput. Graph. Statist., 18, 1–20.
Eubank, R. L. and Speckman, P. L. (1993) Confidence bands in nonparametric regression. J. Am. Statist. Ass.,

88, 1287–1301.
Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and Its Applications. New York: Chapman and Hall.
Fan, J. and Huang, T. (2005) Profile likelihood inferences on semiparametric varying-coefficient partially linear

models. Bernoulli, 11, 1031–1057.
Fan, J. and Zhang, W. Y. (1999) Statistical estimation in varying coefficient models. Ann. Statist., 27, 1491–1518.
Fan, J. and Zhang, W. Y. (2000) Simultaneous confidence bands and hypothesis testing in varying-coefficient

models. Scand. J. Statist., 27, 715–731.
Hall, P. (1991) On the distribution of suprema. Probab. Theor. Reltd Flds, 89, 447–455.
Härdle, W. and Marron, J. S. (1991) Bootstrap simultaneous error bars for nonparametric regression. Ann. Statist.,

19, 778–796.
Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998) Nonparametric smoothing estimates of time-varying

coefficient models with longitudinal data. Biometrika, 85, 809–822.
Huang, J. Z., Wu, C. O. and Zhou, L. (2004) Polynomial spline estimation and inference for varying coefficient

models with longitudinal data. Statist. Sin., 14, 763–788.
Johnston, G. J. (1982) Probabilities of maximal deviations for nonparametric regression function estimates.

J. Multiv. Anal., 12, 402–414.
Lin, D. Y. and Ying, Z. (2001) Semiparametric and nonparametric regression analysis of longitudinal data (with

discussion). J. Am. Statist. Ass., 96, 103–126.
Lindgren, G. (1980) Extreme values and crossings for the χ2-process and other functions of multidimensional

gaussian processes, with reliability applications. Adv. Appl. Probab., 12, 746–774.



Simultaneous Inference of Linear Models 531

Liu, W. and Lin, Z. (2009) Strong approximation for a class of stationary processes. Stoch. Processes Appl., 119,
249–280.

Neumann, M. H. and Kreiss, J. P. (1998) Regression-type inference in nonparametric autoregression. Ann. Statist.,
26, 1570–1613.

Neumann, M. H. and Polzehl, J. (1998) Simultaneous bootstrap confidence bands in nonparametric regression.
J. Nonparam. Statist., 9, 307–333.

Orbe, S., Ferreira, E. and Rodriguez-Poo, J. (2005) Nonparametric estimation of time varying parameters under
shape restrictions. J. Econometr., 126, 53–77.

Orbe, S., Ferreira, E. and Rodriguez-Poo, J. (2006) On the estimation and testing of time varying constraints in
econometric models. Statist. Sin., 16, 1313–1333.

Politis, D. N., Romano, J. P. and Wolf, M. (1999) Subsampling. New York: Springer.
Ramsay, J. and Silverman, B. W. (2005) Functional Data Analysis. New York: Springer.
Robinson, P. M. (1989) Nonparametric estimation of time-varying parameters. In Statistical Analysis and Fore-

casting of Economic Structural Change (ed. P. Hackl), pp. 164–253. Berlin: Springer.
Robinson, P. M. (1991) Time-varying nonlinear regression. In Economic Structure Change Analysis and Forecasting

(eds P. Hackl and A. H. Westland), pp. 179–190. Berlin: Springer.
Wu, W. B. (2005) Nonlinear system theory: another look at dependence. Proc. Natn. Acad. Sci. USA, 102, 14150–

14154.
Wu, W. B. (2007) Strong invariance principles for dependent random variables. Ann. Probab., 35, 2294–2320.
Wu, C. O., Chiang, C. T. and Hoover, D. R. (1998) Asymptotic confidence regions for kernel smoothing of a

varying-coefficient model with longitudinal data. J. Am. Statist. Ass., 93, 1388–1402.
Wu, W. B. and Zhao, Z. (2007) Inference of trends in time series. J. R. Statist. Soc. B, 69, 391–410.
Wu, W. B. and Zhou, Z. (2009) Gaussian approximations for non-stationary multiple time series. Statist. Sin., to

be published.
Zhou, Z. and Wu, W. B. (2009) Local linear quantile estimation of nonstationary time series. Ann. Statist., 37,

2696–2729.


