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Natural selection and demographic forces can have similar effects
on patterns of DNA polymorphism. Therefore, to infer selection
from samples of DNA sequences, one must simultaneously account
for demographic effects. Here we take a model-based approach to
this problem by developing predictions for patterns of polymor-
phism in the presence of both population size change and natural
selection. If data are available from different functional classes of
variation, and a priori information suggests that mutations in one
of those classes are selectively neutral, then the putatively neutral
class can be used to infer demographic parameters, and inferences
regarding selection on other classes can be performed given
demographic parameter estimates. This procedure is more robust
to assumptions regarding the true underlying demography than
previous approaches to detecting and analyzing selection. We
apply this method to a large polymorphism data set from 301
human genes and find (i) widespread negative selection acting on
standing nonsynonymous variation, (ii) that the fitness effects of
nonsynonymous mutations are well predicted by several measures
of amino acid exchangeability, especially site-specific methods,
and (iii) strong evidence for very recent population growth.

Natural selection alters observed patterns of genetic variation
within species. For instance, negative selection against

slightly deleterious mutations leads to a relative excess of rare
variants in a population (1), recurrent positive selection leads to
a relative excess of common variants (2), and balancing selection
can cause an increase of mutations at intermediate frequencies
(3, 4). Because different types of natural selection have different
effects on observed genetic variation, it should, in principle, be
possible to infer the strength and mode of natural selection from
patterns of variation in samples of DNA sequences.

However, a major complicating factor in the effort to infer
selection from sequence data is that demographic forces, such as
recent population growth, bottlenecks, and subdivision, also affect
observed patterns of genetic variation in a manner that can mimic
the effects of natural selection (Fig. 3, which is published as
supporting information on the PNAS web site). For example, recent
population growth, like weak negative selection, leads to a relative
excess of rare mutations (5, 6), and certain models of population
structure produce an effect identical to that of balancing selection
(7). In general, one can only be confident of inferences regarding
selection if the ‘‘signature’’ of selection is unique, compared with
the effects of other forces. Given that most populations fluctuate in
size and do not mate randomly, there is now a growing realization
that one must account for demography while inferring selection (8).

Because demographic forces have similar effects over the whole
genome, one useful way to account for demography while inferring
selection is to compare patterns of variation among different
functional classes of mutations. If one has some a priori information
that variants in a particular functional class are selectively neutral,
then that class can be treated as a neutral standard, to which other
classes are compared. The McDonald–Kreitman test (9), for ex-
ample, contrasts the ratio of polymorphism to divergence at non-
synonymous and synonymous sites. If synonymous mutations are

neutral, then this test is a robust test of natural selection at
nonsynonymous sites, i.e., it is not sensitive to demographic forces
(8). However, the McDonald–Kreitman test and related methods
(2, 10–12) do not use allele frequency information; therefore, some
power to detect selection is lost (13). An alternative to the Mc-
Donald–Kreitman approach is to use nonparametric tests to com-
pare the allele frequency spectrum of segregating sites (hereafter,
the site-frequency spectrum) among regions or functional classes
(14). This method is quite powerful because it uses the full allele
frequency information (13), but, because it is nonparametric, it can
be difficult to translate this method into biologically meaningful
measures of natural selection, such as estimates of selection pa-
rameters, and it is not clear how to compare competing selective
models.

Here, we develop a maximum likelihood framework for inferring
both selection and demography that contrasts the site-frequency
spectrum among functional classes of mutations. We use a popu-
lation size change model to derive predictions for the site-frequency
spectrum both with and without selection. These predictions lead
to a method for correcting for the effects of demography while
inferring selection. The population size change model is particularly
relevant because the species that are the most well studied in
population genetics, humans and Drosophila, have probably expe-
rienced recent growth. We apply our approach to a large data set
composed of DNA sequences from exons, introns, and flanking
sequence of 301 human genes sampled in 90 individuals as part of
the National Institute of Environmental Health Sciences (NIEHS)
Environmental Genome Project (15). Under the assumption that
noncoding SNPs are selectively neutral, we find strong evidence for
very recent population growth in humans. We correct for this
demographic effect to infer selection among nonsynonymous,
synonymous, and insertion�deletion (indel) polymorphisms. We
find no evidence that natural selection acts on standing synonymous
variation, and marginal evidence for selection on noncoding indel
polymorphisms. In contrast, we find that negative selection among
nonsynonymous polymorphisms is widespread, and that the
strength of negative selection on nonsynonymous sites is predicted
by several measures of amino acid exchangeability, i.e., ‘‘radical’’
amino acid mutations tend to be more deleterious than ‘‘conser-
vative’’ changes. Several methods have been proposed for quanti-
fying the impact of different types of amino acid changes on protein
structure and function (16–22); examples of different criteria that
are used include physicochemical properties of the change, phylo-
genetic patterns of substitution, and experimental measures of the
effect of different substitutions on protein structure and activity.
However, the relationship between these measures and evolution-
ary fitness has not been fully explored. We use our methods to
compare different measures of exchangeability, finding that the
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site-specific Polyphen algorithm (22) is the best predictor of the
fitness effects of nonsynonymous mutations. Among general (not
site-specific) measures of exchangeability, the Miyata (16), EX (20),
and PAM-120 (18) matrices all predict the fitness effects of
nonsynonymous changes very well. We discuss our results in the
context of human genetic disease.

Theory and Inference
Assume data are available from two functional classes of nucleotide
sites (class 1 and class 2), and that a priori knowledge suggests that
mutations in class 1 are selectively neutral (e.g., SNPs in noncoding
regions, pseudogenes, or at synonymous sites). To estimate demo-
graphic parameters and to correct for demography while inferring
selection, we follow a two-step procedure. First, assuming that
segregating mutations in class 1 are selectively neutral, we estimate
the parameters of the population growth model. Second, given
these demographic parameter estimates, we infer the strength and
mode of natural selection acting on class 2 polymorphisms.

Our inference methods are based on the site-frequency spectrum
(SFS), which describes the relative abundances of rare, intermedi-
ate, and common polymorphisms in a sample. Let xi represent the
number of SNPs at which the derived nucleotide is represented i
times in a sample of size n. The SFS is the vector, x, of all xi. To
predict the SFS with and without selection, we follow the Poisson
Random Field approach (2), i.e., we assume no linkage among sites
or interference among mutations. Assuming an infinitely-many sites
mutation model, diffusion theory is used to predict the distribution
of allele frequencies at a single site and, thereby, the SFS.

The distribution ( f) of allele frequency (q) at an arbitrary time
(t) is approximated by the general solution to the forward Kolmog-
orov equation (23–25)
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1
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dq
�M�q�f�q, t�� [1]

subject to absorbing boundaries at 0 and 1:
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d
dq

�V�1�f�1, t�� � M�1�f�1, t�, [2b]

where M(q) and V(q) are the mean and variance of the change in
allele frequency over 1 unit of time, respectively. Let NC be the
current diploid population size. Scaling time in 2NC generations,
and assuming Wright–Fisher population structure (random mating,
nonoverlapping generations), V(q) � q(1 � q). Also, let s and 2s be
the selective advantages of heterozygous and homozygous mutant
individuals over wild-type homozygous individuals, so that M(q) �
�q(1 � q), where � � 2NCs.

For inference, Sawyer and Hartl (2) use the stationary solution
(1) to the diffusion equation [i.e., the time-independent solution
with df(q, t)�dt � 0], subject to irreversible mutation. The stationary
solution assumes that the factors affecting changes in allele fre-
quency, such as population size and natural selection, have been
constant over recent evolutionary history. To investigate the effect
of changes in population size, we require the transient (time-
dependent) solution to the forward equation.

Neutral Predictions. To represent population growth or decline,
consider a demographic model in which the population experiences
two epochs of population size over recent evolutionary history, i.e.,
it changes instantaneously from an ancestral size, NA, to a contem-
porary size, NC, at some time � in the past (Fig. 4a, which is
published as supporting information on the PNAS web site). Let the
ratio of the two population sizes be � � NA�NC. Assuming selective
neutrality (� � 0), Kimura (26) found the transient solution to

equation (1) for a Wright-Fisher population, conditional on some
initial allele frequency p

��q, t�p� � �
i�1

�
�2i � 1��1 � �1 � 2p�2�

i�i � 1�
Ci�1

3/2 �1 � 2p�

�Ci�1
3/2 �1 � 2q�e�1/2 i�i�1�t, [3]

where Ci
3/2(z) is the Gegenbauer polynomial with � � 3�2. To use

Kimura’s solution in the framework of the two-epoch model, we
divide modern variation into two categories: sites that were segre-
gating in the ancestral population (‘‘ancestral sites’’) and sites that
have mutated since the time of the size change (‘‘modern sites’’).
Assuming the population was in stationarity before the size change,
the distribution of allele frequency at the time of the size change is
4NA	1�p (2), where 	1 is the mutation rate of the putatively neutral
functional class (class 1). The distribution of allele frequency at
ancestral sites is then 
1�	0

1p�1�(q, �; p)dp, where 
1 � 4NC	1. For
modern sites, we assume that a fixed number of new mutations,

1�2, enter the population each generation, and each mutation
occurs at a previously unmutated site. Because the frequency of
each new mutation is initially 1�(2NC), the distribution of allele
frequency at modern sites is equal to the number of new mutations
entering the population in a generation, multiplied by the transient
distribution given the time difference between that generation and
the current population, summed across generations. This sum can
be approximated by an integral: 
1�2 	0

��(q, t;1�2NC)dt. The neutral
prediction for the distribution of allele frequency across sites is then


1f1�q; �, �� � 
1���
0

1

p�1��q, �; p�dp �
1
2�

0

�

��q, t; 1/2NC�dt�.

[4]

With this distribution, we can predict the SFS. Define the
function F1 to be:

F1�i, n; �, �� � �
0

1 �n
i�qi�1 � q�n�if1�q; �, ��dq. [5]

Then the expected number of polymorphic sites with i derived
alleles segregating in a sample of size n is E[xi] � 
1F1(i, n; �, �)
(Fig. 3), and the probability that a particular SNP is at frequency
i out of n is

P1�i, n; �, �� �
F1�i, n; �, ��

�
j�1

n�1

F1� j, n; �, ��

. [6]

Note that mutation parameters are absent from this probability,
i.e., conditioning on the number of segregating sites, the SFS is
independent of the mutation rate, so long as the infinite-sites
assumption holds. The above expressions are extensions of Poisson
Random Field predictions (2, 4, 27, 28), where the transient
distribution of allele frequency (Eq. 4) is substituted for the
stationary distribution.

Predictions with Selection. Kimura (29) also found the transient
distribution of allele frequency, given some initial frequency p, for
the case of directional selection. Unfortunately, his solution is very
difficult to calculate accurately, and it is not clear how to adapt his
solution to the population growth model we are considering.
Instead, we find the distribution of allele frequency by numerically
solving Eq. 1 subject to boundary conditions (2). For an initial
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condition, we again use the stationary distribution of allele fre-
quency for the ancestral population size (1, 2)

f�q, 0� �

2�

q�1 � q�

1 � e�2���1�q�

1 � e�2�� , [7]

where 
2 � 4NC	2, 	2 is the mutation rate in the selected functional
class (class 2), and � � 2NCs. To solve Eq. 1 numerically, we use the
Crank–Nicolson finite differencing scheme (ref. 30, pp. 847–851),
which is a standard algorithm for solving this sort of advection–
diffusion equation. Finite differencing schemes are based on a
discrete approximation of the differential equation; we use 
q �
1�2NC as the discrete step size in allele frequency, and 
t � 1�32NC

as the discrete step size in time. In addition to imposing the initial
condition and boundary conditions (Eq. 2), we model mutation by
adding new mutations to the lowest frequency class (1�2NC) at rate

2�2 per generation. Let f2(x; �, �, �) be the Crank–Nicolson ap-
proximation to the distribution of allele frequency at class 2 sites,
given selective and demographic parameters. Define the function F2

to be

F2�i, n; �, �, �� � �
0

1�n
i�qi�1 � q�n�i f2�q; �, �, ��dq. [8]

With selection, the expected number of polymorphic sites
segregating at frequency i in a sample of size n is E[xi] � 
2F2(i,
n, �, �, �), and the probability that a particular polymorphic site
is at frequency i out of n is

P2�i, n; �, �, �� �
F2�i, n; �, �, ��

�
j�1

n�1

F2�j, n; �, �, ��

. [9]

Likelihood-Based Inference. In the case of perfect information
about which nucleotides are ancestral or derived at each SNP, we
can evaluate the likelihood of the data under the model by simply
taking the product of the probabilities in Eqs. 6 or 9 across all
SNPs in the class. To designate ancestral states, one typically
‘‘polarizes’’ a SNP by typing the homologous site in a closely
related species. Applying the infinitely-many sites mutation
model, the outgroup allelic state at a SNP site should equal the
state of the most recent common ancestor (MRCA) of the
within-species sample. Unfortunately, minor deviations from the
infinitely-many sites model can have a major impact on statistical
inference using the SFS. If divergence times are long enough or
mutation rates high enough, then there is some nonnegligible
probability that a site is both polymorphic in a sample and has
experienced a substitution in the lineage connecting the MRCA
and the outgroup. If this has occurred, one is likely to misidentify
the ancestral state. When ancestral states are occasionally misi-
dentified, the SFS has an overrepresentation of very high-
frequency, apparently derived alleles, which, in turn, can cause
spurious evidence for positive selection. Visual inspection of
observed polarized frequency spectra (Fig. 1) reveals that an-
cestral misspecification is a nonnegligible problem; i.e., one
observes an excess of very high-frequency ‘‘derived’’ alleles (n �
1, n � 2 frequency classes). No realistic evolutionary models can
account for such an excess, and it is easily explained by ancestral
misspecification.

Let a and b be the allelic states for a SNP. Accounting for the
possibility of ancestral misspecification, the likelihoods of class
1 and class 2 data are

L1��,�� � �
k�1

K1

�Pr�m � a�P1� ik , nk ;� ,��

� �1 � Pr�m � a��P1�nk � ik , nk; � , ���

[10a]

L2��,�,�� � �
k�1

K2

�Pr�m � a�P2� ik, nk; � , � , ��

� �1 � Pr�m � a��P2�nk � ik, nk; � , � , ��� ,

[10b]

where K1 and K2 are the number of SNPs in classes 1 and 2, and ik
is the number of b alleles observed at SNP k, nk is the number of
chromosomes that were successfully typed at SNP k, and Pr(m � a)
is the probability that a is the ancestral state (derived in Supporting
Text, which is published as supporting information on the PNAS
web site). The above likelihoods assume that the probability that
SNP data are missing from a particular individual is independent of
the allelic state of that individual; hence, missing data can be treated
as a simple reduction in sample size. To estimate the demographic
parameters � and �, we maximize expression (Eq. 10a) using class
1 (putatively neutral) data. Then, for class 2 data, we fix these
demographic parameter estimates and maximize expression (Eq.
10b) to estimate the selection parameter �. Details of the algorithms
used to evaluate and optimize the likelihood functions are given in
Supporting Text.

Data
We obtained human polymorphism data (15) from the NIEHS
EnvironmentalGenomeProjectwebsite(http:��egp.gs.washington.
edu). Briefly, SNP data were collected by direct sequencing of 301
genes in a sample of 90 individuals representative of populations in
the United States (31). The sample was composed of 24 African
Americans, 24 Asian Americans, 24 European Americans, 12
Mexican Americans, and 6 Native Americans. Genes were chosen
for sequencing on the basis that variation in the genes may be
associated with variation in the response to environmental expo-
sures, and most genes contribute to basic cellular processes, such as
the cell cycle or DNA repair. We used all genes that were finished
as of July 31, 2004; a list of these genes is available from the
corresponding author. A full description of the data are found in ref.
15. SNPs are present in several function classes in the data set:

Fig. 1. The normalized site-frequency spectra of noncoding, synonymous,
and nonsynonymous SNPs discovered in a set of 301 human genes sequenced
in 90 individuals, represented as the expected site-frequency spectra of a
subsample of size 40. Nonsynonymous SNPs show a relative excess of SNPs with
rare alleles. Also note the slight excess of very high-frequency variants, which
we explain by ancestral misspecification.
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synonymous, nonsynonymous, intron, other UTRs of the reading
frame, and flanking regions. The site-frequency spectra for differ-
ent classes of SNPs are shown in Fig. 1. To represent the SFS of all
SNPs in a class, including SNPs with missing data, we have plotted
the expected SFS in a subsample of the data (32, 33). We assumed
that noncoding SNPs (flanking, UTR, intron) are selectively neu-
tral to fit the demographic model, i.e., these SNPs form class 1. We
allowed for the possibility of selection on other functional classes of
mutation.

Results
Demographic Inference. Maximum likelihood estimates for the time
back to the population size change, �, and the ratio of the ancestral
to current population sizes, �, are given in Table 1. Under the
assumption of selective neutrality, noncoding SNPs show evidence
for a very recent population growth event. We evaluate the
significance of this pattern with a likelihood ratio test (LRT) of
stationarity, which contrasts the two-epoch growth model with the
equilibrium neutral model. The LRT statistic is 2 log(L1(�̂, �̂)�
L1(�, 1)); under the null hypothesis, a 2 distribution with two
degrees of freedom provides a conservative critical value for this
statistic. This test very strongly rejects the null hypothesis of no
growth (P �� 10�10).

Our estimate for the time back to the population growth event is
in units of 2NC generations. We can use polymorphism and
divergence data to estimate the current effective population size,
which can be used to convert the time scale to years. Our estimates
of the current and ancestral population sizes are N̂C � 51,340 and
N̂A � 8,211 (see Supporting Text). Rescaling time, the size change
occurred 908 generations ago, or �18,200 years. This estimate is
more recent than previous estimates (33), probably because of the
larger sample size of the NIEHS SNPs data. To detect very recent
growth, one must observe mutations that have occurred very
recently, which will be rare and only detectable with large sample
sizes. The detection of recent mutations will also be complicated by
SNP ascertainment schemes with small discovery sample sizes,
which is not an issue for the NIEHS SNPs.

Quantifying Selection. Estimates of the selection parameter for
nonsynonymous and synonymous SNPs and noncoding indel poly-
morphisms are given in Table 1. These were obtained by fixing the
demographic parameters � and � to their maximum likelihood
estimates (MLEs) from the noncoding data, then optimizing the
likelihood in expression (Eq. 10b). Also shown are the results of
LRTs of selective neutrality which compares the demographic
model with selection to the demographic model without selection;
the LRT static is 2 log(L2(�̂, �̂, �̂)�L2(0, �̂, �̂)), which is asymptot-
ically 2 distributed with one degree of freedom under the null
hypothesis. We find strong evidence for negative selection on
nonsynonymous sites (P �� 10�10), whereas we find no evidence
for selection acting on synonymous SNPs (P � 0.89). Interestingly,

we find marginal evidence for weak positive selection on noncoding
indel polymorphisms (P � 0.024).

Given the widespread nature of negative selection on nonsyn-
onymous variation, it is of great interest to determine what types of
nonsynonymous mutations tend to be most deleterious. To do this,
we use various measures of amino acid exchangeability to classify
nonsynonymous changes as either conservative, moderate, or rad-
ical, defining categories such that approximately equal numbers of
SNPs appear in each category. We then estimate the selection
parameter for each category. Measures for which the selection
parameter estimate decreases as nonsynonymous changes become
more radical, and which show the greatest difference between
conservative and radical changes are the best predictors of the
fitness effects of nonsynonymous mutations. Estimates of the
selection parameter for conservative, moderate, and radical
changes defined by different measures of exchangeability are given
in Table 2. Also shown are estimates of the selection parameters for
amino acid changes categorized by the program POLYPHEN (22),
which uses protein structure and�or sequence conservation infor-
mation from each gene to predict whether a nonsynonymous
mutation is ‘‘benign,’’ ‘‘possibly damaging,’’ or ‘‘probably damag-
ing.’’ Polyphen analyses were conducted as part of the NIEHS
environmental genome project, and gene-by-gene results are avail-
able on the NIEHS SNPs web site. In general, Polyphen is the best
predictor of the fitness effects of nonsynonymous mutations, in that
the inferred fitness effect of ‘‘probably damaging’’ mutations is
much more negative than the fitness effect of ‘‘benign’’ mutations.
Presumably, Polyphen predicts fitness the best because it uses
protein- and site-specific information. The strength of selection on
‘‘probably damaging’’ mutations is striking, implying that a large
majority of new mutations classified as ‘‘probably damaging’’ are
strongly deleterious, relative to other polymorphic amino acid
changes. Also note that our method will underestimate the strength
of selection: �̂ tends to be biased toward 0 if selective effects are
variable among new mutations or if deleterious mutations tend to
be recessive (34). Among measures of exchangeability that are not
site- or protein-specific, the Miyata (16), EX (20), and PAM-120
(18) matrices all predict the fitness consequences of amino acid
changes very well.

Here we have corrected for demography by fitting the two-epoch
model to putatively neutral data, then inferring selection at other
sites in the context of the fitted model. Even so, the approach makes
some assumptions (random mating, only one change in population
size) about the underlying demographic history of the population.
We have tested the robustness of our approach to violations of the
demographic assumptions by simulating neutral data under a
variety of demographic models. Data were simulated for different
models by using the MS coalescent simulation program (35), then
summarized into site-frequency spectra by using the msfreq module
of LIBSEQUENCE (36). For each simulated data set, we fit the neutral
two-epoch model to a subset of the data (class 1 SNPs), then we fit
the two-epoch model with selection to another subset of the data
(class 2), given the demographic parameters estimated from the
first step. We considered four disparate demographic scenarios
(Fig. 4): two-epoch population growth, a single population with a
recent bottleneck, a subdivided population of 10 demes with
migration (where samples are drawn from only 4 demes), and
complex model that is meant to represent a ‘‘best guess’’ of the
history of African, Asian, Native American, and European popu-
lations. Details of the parameters for all models are given in Table
3, which is published as supporting information on the PNAS web
site. Fig. 2a indicates that our estimates of the selection parameter,
obtained in the context of the two-epoch model, show very little or
no bias under alternative models when new mutations are selec-
tively neutral. Also, in our test of natural selection, the null
distribution of the LRT statistic (Fig. 2b) is largely insensitive to the
underlying demography. Taken together, these simulations dem-
onstrate that our inference regarding natural selection is robust to

Table 1. MLEs of demographic and selective parameters in the
two-epoch population growth model, obtained by using
different functional classes of human SNPs

Functional class No. of SNPs MLEs
LRT statistic

(df) P value

Demography
Noncoding 36,337 �̂ � 0.00885,

�̂ � 0.160
9512.2 (2) ��10�10

Selection
Nonsynonymous 880 �̂ � �8.910 66.14 (1) ��10�10

Synonymous 892 �̂ � 0.121 0.238 (1) 0.890
Noncoding indel 2,710 �̂ � 1.794 5.128 (1) 0.024

�  time back to population size change; �  ratio of ancestral to current
population size (NA�Nc); �  selection size parameter (2Ncs).
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the demographic assumptions of the two-epoch population growth
model.

Coalescent simulations also provide a means of cross-validating
the diffusion-based approach. When we simulate data sets with � �
0.02 and � � 0.1, then use the diffusion approach to estimate the
demographic parameters, the average MLEs are �̂ � 0.0202 and �̂ �

0.102, and the 95% confidence limits for the sampling distribution
of � and � are (0.0185, 0.0219) and (0.096, 0.108), respectively. Also,
asymptotic likelihood theory predicts that the null (selectively
neutral) distribution of the LRT of selection should be 2 distrib-
uted with one degree of freedom, and Fig. 2b shows that the
simulated null distribution (dotted line) corresponds very closely to
the asymptotic prediction (in black). To summarize, the diffusion-
based approach very accurately represents the dynamics of allele
frequency in the two-epoch population growth model.

Coalescent simulations can only be used to investigate the
properties of our statistical approach under selective neutrality
among all classes of polymorphisms. To explore the properties of
the method with selection on class 2 polymorphisms, we have used
our predictions from the two-epoch model both with and without
selection to simulate data sets. For a given parameter combination,
we simulated the site-frequency spectra of class 1 and class 2 data
through multinomial sampling using the probabilities defined in
Eqs. 6 and 9, respectively. We then estimated the demographic
parameters by using the class 1 data, and, fixing those MLEs, we
estimated the selection parameter by using class 2 data. The results
of these simulations are shown in Table 4, which is published as
supporting information on the PNAS web site. The two-step
procedure we propose (estimating demographic parameters, then
inferring selection in the demographic context) carries essentially
no bias in our estimate of the selection or demographic parameters.
Likewise, it appears that the asymptotic prediction for the LRT of
selection (LRT � (1)

2 ) holds quite well because only �5% of
neutral data sets (� � 0) reject neutrality for all demographic
parameters considered. The test also has excellent power for ��� �
5 for all demographic parameter combinations, rejecting the false
null hypothesis of neutrality for selected data �85–90% of the time.

Discussion
Here we have developed a method for inferring both selection and
demographic parameters from DNA sequence data. We apply this
method to a large set of human polymorphism data, and our main
results are as follows: (i) negative selection is widespread among
nonsynonymous mutations, but that selection is often weak enough
that deleterious alleles can reach observable frequencies through
genetic drift, an observation that is fully consistent with the nearly
neutral theory of molecular evolution (37); (ii) the deleterious

Table 2. Estimates of the scaled selection parameter �(�2NCs) for conservative, moderate, and radical nonsynonymous changes, as
defined by different measures of amino acid exchangeability, and for nonsynonymous mutations categorized as ‘‘benign,’’ ‘‘possibly
damaging,’’ or ‘‘probably damaging’’ by the POLYPHEN program, which uses site-specific structural and phylogenetic information

Exchangeability measure Ref.

Conservative Moderate Radical

Range �̂ Range �̂ Range �̂

Physicochemical measures
Miyata metric 16 x � 0.89 �5.71* 0.89 � x � 1.85 �8.45* x � 1.85 �14.06*
Grantham’s distance 17 x � 44 �7.48* 44 � x � 82 �7.77* x � 82 �12.04*

Experimental measures
Experimental exchangeability 20 x � 0.354 �6.35* 0.256 � x � 0.354 �8.79* x � 0.256 �12.15*

General measures based on
structural models

Protein stability matrix 21 x � 0.210 �8.19* 0.030 � x � 0.210 �8.55* x � 0.030 �10.15*
Phylogenetic measures

PAM-120 18 x � 1 �5.32 �1 � x � 1 �8.35* x � �1 �12.76*
BLOSUM-45 19 x � 0 �8.41* �1 � x � 0 �3.96 x � �1 �13.39*
BLOSUM-62 19 x � 0 �8.41* �1 � x � 0 �4.09 x � �1 �12.75*
BLOSUM-80 19 x � 0 �8.46* �2 � x � 0 �4.49 x � �2 �13.52*

Site-specific structural�phylogenetic
measures
Polyphen 22 ‘‘Benign’’

(310 SNPs)
�6.072* ‘‘Possibly damaging’’

(97 SNPs)
�11.732* ‘‘Probably damaging’’

(56 SNPs)
�23.602*

Ranges define the values of the exchangeability measure, x, over which the category extends.
*Categories for which a likelihood ratio test rejects neutrality (P � 0.01).

Fig. 2. The sampling distribution of the scaled selection parameter (2NAs) (a)
and the likelihood ratio test statistic (b), under selective neutrality (2NAs � 0)
for a variety of demographic models. Note that, for ease of comparison among
models, the selection parameter is scaled relative to the ancestral, rather than
the current, population size. The heavy black line in b represents the 2

distribution with one degree of freedom.
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effects of nonsynonymous mutations are well predicted by site-
specific predictions of the functional consequences of nonsynony-
mous changes, and by some general measures of amino acid
exchangeability; and (iii) the human population has grown very
recently. The widespread nature of negative selection on nonsyn-
onymous mutations reflects systematic differences between the
site-frequency spectra of nonsynonymous and putatively neutral
SNPs. Previous studies have also noted such a systematic difference
in site-frequency spectra (38, 39) of different functional classes of
human SNPs, but our study quantifies this difference in terms of
evolutionary fitness and uses this information to relate amino acid
exchangeability with fitness.

Our two-epoch population growth model is a very rough
approximation to the demographic history of human popula-
tions, and other demographic forces, such as population bottle-
necks or subdivision, might also have a considerable effect on the
SFS. For instance, with some sampling schemes, unacknowl-
edged population subdivision may cause spurious evidence for
population growth, when the basis of inference is the SFS (40).
Therefore, although we find it striking that the time of popula-
tion growth (18,200 years B.P.) roughly corresponds with events
in human history that may have induced population growth, such
as the end of the last ice age and the origin of agriculture, we feel
that our demographic inferences should be interpreted cau-
tiously until the full range of plausible demographic models has
been explored in one coherent framework. However, we argue
that our inferences regarding selection are robust to violations of
demographic assumptions. By inferring demographic parame-
ters with putatively neutral data, then inferring selection on
other types of SNPs given those demographic parameter esti-
mates, we are essentially comparing the site frequency spectra of
functional classes in the context of the two-epoch model. That
such a comparison is made may be more important than the
specifics of the demographic model, especially if the model
provides a reasonably good fit to the data. Coalescent simula-
tions support the notion that our inference of selection is robust
to violations of demographic assumptions. For instance, esti-
mates of the selection parameter are not strongly biased under
a wide range of demographic models. Even if some bias is
introduced by more complicated demographic scenarios, we feel
that the two-epoch growth model, fit to data, is a much better
alternative to the standard (constant population size, random
mating) neutral model, which forms the basis of much data
analysis in molecular population genetics and cannot be fit to
data in the form of the SFS.

We find evidence that negative selection on nonsynonymous
mutations is widespread, which implies that deleterious mutations

make up a significant proportion of standing nonsynonymous
variation. Exactly how this genetic variation contributes to pheno-
typic variation is a matter of considerable debate, especially for
medically interesting phenotypes such as multifactorial genetic
disease (41–44). Because deleterious mutations, by definition, have
phenotypic effects, and because of the widespread nature of
negative selection on nonsynonymous mutations, it seems likely
that negatively selected, generally rare nonsynonymous SNPs have
some negative impact on human health. If there is a general
relationship between nonsynonymous polymorphism and human
genetic disease, then our genomic estimates of the fitness effects of
different types of mutations contain prior information about the
likelihood that a mutation contributes to disease. It may be possible
to use this information to aid in identifying SNPs that cause disease.
Other studies have suggested this approach (e.g., ref. 15), but it was
unclear which of the many measures of exchangeability to use. We
feel that the relative fitness of different amino acid changes is the
best way to evaluate exchangeability, and we have done that here by
using a model that includes demography and selection.

Finally, a common criticism of the Poisson Random Field
approach that we have used here is that it assumes SNPs are
independent, whereas correlations among SNPs due to limited
recombination might alter patterns in the data. However, the
presence of limited recombination within genes does not affect
the conclusions of this study. First, our method for inferring
selection is based on a contrast of functional classes of SNPs;
because linkage affects all functional classes within a gene, a
contrast among functional classes should be less sensitive to
limited recombination. Second, we only observe approximately
three nonsynonymous SNPs per gene in the data, and almost all
genes are unlinked. Consequently, the vast majority of nonsyn-
onymous SNPs really are unlinked, and our inferences about
selection on nonsynonymous sites should not be strongly affected
by interaction effects such as Hill-Robertson interference (45).
If interference does have an effect, it would bias our estimates
of the selection parameter toward 0. And third, our inferences
regarding demography should not be affected by linkage. If sites
are evolving neutrally, then linkage does not affect the expected
SFS, so linkage also should not have a strong effect on the
expected values of statistics based on the SFS, such as our
demographic parameter estimates.
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