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ABSTRACT

The gradient of standard full-waveform inversion (FWI)

attempts to map the residuals in the data to perturbations in

the model. Such perturbations may include smooth background

updates from the transmission components and high wavenum-

ber updates from the reflection components. However, if we fix

the reflection components using imaging, the gradient of what

is referred to as reflected-waveform inversion (RWI) admits

mainly transmission background-type updates. The drawback

of existing RWI methods is that they lack an optimal image

capable of producing reflections within the convex region of

the optimization. Because the influence of velocity on the data

was given mainly by its background (propagator) and perturbed

(reflectivity) components, we have optimized both components

simultaneously using a modified objective function. Specifi-

cally, we used an objective function that combined the data

generated from a source using the background velocity, and that

by the perturbed velocity through Born modeling, to fit the

observed data. When the initial velocity was smooth, the data

modeled from the source using the background velocity will

mainly be reflection free, and most of the reflections were ob-

tained from the image (perturbed velocity). As the background

velocity becomes more accurate and can produce reflections, the

role of the image will slowly diminish, and the update will be

dominated by the standard FWI gradient to obtain high resolu-

tion. Because the objective function was quadratic with respect

to the image, the inversion for the image was fast. To update

the background velocity smoothly, we have combined different

components of the gradient linearly through solving a small

optimization problem. Application to the Marmousi model

found that this method converged starting with a linearly in-

creasing velocity, and with data free of frequencies below

4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging

challenge data set demonstrated the potential of the proposed

method.

INTRODUCTION

Conventional full-waveform inversion (FWI) is based on mini-

mizing the misfit between the predicted wavefield and the observed

one (Virieux and Operto, 2009) at the sensor locations. After rec-

ognizing that the calculation of the gradient is of the same computa-

tional order as the forward modeling, and that the gradient is closely

related to the seismic migration (Lailly, 1983; Tarantola, 1984), it

became practical to finely invert for parameterized models, enabling

high-resolution inversion results when the initial velocity is close

enough to the exact one. However, the conventional objective func-

tion based on the least-squares misfit is not convex and has a lot of

local minima, especially with high-frequency data and reflections.

Thus, to converge to an acceptable result, we need a good starting

velocity model that is able to produce events within a half-cycle of

the observed ones (Virieux and Operto, 2009). We pursue such

models using migration-based traveltime tomography (Clément

et al., 2001) or migration velocity analysis (MVA) methods (Biondi

and Symes, 2004; Sava et al., 2005; Symes, 2008). This require-

ment comes from the separation of the velocity to those components

responsible for scattering and those responsible for wave propaga-

tion. To allow both components to update the velocity in FWI,

Symes (2008) introduces an extended velocity model to include

a nonphysical dimension such as subsurface offset. Biondi and Al-

momin (2014) use a similar idea to introduce an extended velocity

along the time axis. The extension, however, has deemed the ap-

proach impractical, which forces Almomin and Biondi (2013) to

do the extension only to the perturbed components of the velocity
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model. Thus, they invert the extended image in a nested fashion.

Albertin et al. (2013) propose a similar idea through a gradient or-

thogonalization to update the smooth parts of the velocity.

Xu et al. (2012a) and Zhou et al. (2012) develop a method based

mainly on the work of Plessix et al. (1995) to invert for smooth

velocity models using modeled reflected energy from an image.

They refer to the method as reflected-waveform inversion (RWI).

The idea is based on the migration followed by demigration to pre-

dict the reflections. Because the demigration is obtained from the

image, for an imperfect velocity, the modeled data from the image

will have residuals, hopefully at far offsets. As a result, RWI inverts

mainly the propagator (smooth) part of the model, like MVA, with-

out the need for extended images or angle gathers. Wang et al.

(2013) implement the same approach in the frequency domain to

use a sequential frequency implementation, which they think is

necessary to avoid the nonlinearity caused by an incorrect image.

Zhou et al. (2015) propose a similar idea to invert the velocity and

impedance. Wu and Alkhalifah (2014c) implement RWI with the

spectral method as a wavefield extrapolator (Wu and Alkhalifah,

2014b). They find a new term that has the opposite direction of

the gradient of standard RWI, and they linearly combine the new

term with the original terms to update the velocity with the smooth-

est function possible while guaranteeing the ascending direction of

the approximate gradient. A similar idea is used by Wu and Alkha-

lifah (2014a) for combining the tomographic and reflected part

of the standard FWI gradient. However, a drawback of the RWI

method is the need of a true amplitude migration (image) in each

iteration. From another prospective, standard RWI tries to approxi-

mate the observed data with that generated by Born modeling. The

diving wave, a major source of background velocity information, is

considered as noise and neglected (Alkhalifah and Choi, 2012; Tang

et al., 2013).

Figure 1. (a) Part IIþ IV of the gradient, (b) part III of the gradient, (c) RWI part of the gradient (IIþ IIIþ IV), and (d) the optimized
summation gradient (IIþ IVþ 3.905III).
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In this article, we present a method that does not require computing

the true amplitude image as part of RWI because the image itself is a

part of the inversion. Thus, we formulate an optimization problem

that will invert for the background velocity v and perturbed velocity

w simultaneously. We use a new objective function introduced by

Alkhalifah and Wu (2014), which allows us to mix RWI and FWI

in a natural way. Finally, we test our approach on the Marmousi

velocity model using data without low frequencies, starting with a

linearly increasing velocity model. The application to the 2014 Chev-

ron Gulf of Mexico imaging challenge synthetic data set shows that

the method can provide a reasonably good inversion result.

OPTIMIZATION PROBLEM

Wave propagation in isotropic acoustic media with constant

density is governed by the following wave equation:

∂2p

∂t2
− v2ðxÞΔp ¼ 0; (1)

where pðx; tÞ is the pressure wavefield described in a given domain

with space coordinates given by x ¼ fx; y; zg, t is the time, v is the

velocity, and Δ is the Laplacian operator.

Here, we use the optimized expansion-based low-rank method

(Wu and Alkhalifah, 2014b) to solve equation 1 with the initial

and boundary conditions. We give a short description of the meth-

od in Appendix A. Let us denote the discretized wavefield as

p ¼ ðp0;p1; · · · ;pnÞ, where pn ¼ pðx; tnÞ, then the discrete for-

mulation can be written in matrix form as

Ap ¼ BðvÞpþ f; (2)

where

A ¼

0

B

B

B

B

B

@

1 0 1 0 · · · 0 0 0

0 1 0 1 · · · 0 0 0

· · ·

0 0 0 0 · · · 1 0 1

0 0 0 0 · · · 0 1 0

0 0 0 0 · · · 0 0 1

1

C

C

C

C

C

A

; (3)

BðvÞ ¼

0

B

B

B

B

@

0 bðvÞ 0 · · · 0 0

0 0 bðvÞ · · · 0 0

· · ·

0 0 0 · · · 0 bðvÞ
0 0 0 · · · 0 0

1

C

C

C

C

A

; (4)

and

bðvÞpm ¼
X

M

i¼1

�

X

N

j¼1

ai;j2 cosðvkjΔtÞ

�

×

Z

p̂mðk; tÞ2 cosðvikΔtÞe
ik·xdk: (5)

The standard FWI minimizes the misfit between the predicted

and observed wavefields. Such an optimization using the least-

squares norm is given by

min
vall

JðpallÞ ¼
1

2
kCpall − gk22 (6)

s:t: Apall ¼ BðvallÞpall þ f; (7)

where g is the recorded data at the receivers, C is the operator that

projects the data onto the receiver positions, and f is the source

wavelet. For simplicity, we use the two-norm, which is defined as

kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

n
i¼1 x

2
i

p

. Alternatively, we can use other objective func-

tions, such as the inner product (Choi and Alkhalifah, 2012; Wang

et al., 2012), the Huber norm (Guitton and Symes, 2003), and the

envelope function (Bozda et al., 2011; Wu et al., 2014).

Similar to Plessix et al. (1995), Clément et al. (2001), Xu et al.

(2012a), and Biondi and Almomin (2014), we split the velocity into

a mainly background component and a perturbed component. Let us

assume that vall ¼ vþ w, where v is the background component

and w is the perturbed component. We also define the corresponding

wavefield as pall ¼ pþ q, where p is the wavefield modeled from

the source using the background velocity and q is the wavefield

modeled from the perturbation w, and pall is the total wavefield.

Thus, pall satisfies the wave equation for vþ w, given by

a)

b)

Figure 2. (a) The initial velocity and (b) the inverted w after 10
iterations with v fixed by the initial velocity.
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Apall ¼ Bðvþ wÞpall þ f: (8)

Applying the Born approximation, and specifically, substituting

pall ¼ pþ q yields

Aq − BðvÞq ≈ B 0ðvÞp ·� w; (9)

where B 0ðvÞ is defined as

B 0ðvÞ ¼

0

B

B

B

B

@

0 b 0ðvÞ 0 · · · 0 0

0 0 b 0ðvÞ · · · 0 0

· · ·

0 0 0 · · · 0 b 0ðvÞ
0 0 0 · · · 0 0

1

C

C

C

C

A

; (10)

and

b 0ðvÞp ¼ −
X

M

i¼1

�

X

N

j¼1

aij2 sinðjkjjvΔtÞjkjjΔt

�

×

Z

p̂ðk; tÞ2 cosðjkjviΔtÞe
ik·xdk: (11)

We define the inner product operator here as

ðh ·� mÞðx; tÞ ¼ hðx; tÞmðxÞ; ∀ x; t; (12)

for the space time function hðx; tÞ and space function mðxÞ. Instead

of solving the optimization problem 6 and 7, we use the objective

function introduced in Alkhalifah and Wu (2014), given by

min
v;w

Jðp; qÞ ¼
1

2
kCðpþ qÞ − gk22 (13)

s:t: Ap ¼ BðvÞpþ f;Aq − BðvÞq ¼ B 0ðvÞp ·� w: (14)

a)

b)

c)

d)

Figure 3. (a) The gradient of standard FWI and (b) its spectral distribution. (c) The gradient of the modified objective function with the
improved w and (d) its spectral distribution.
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In addition, instead of optimizing only v, which is done in standard

FWI and RWI, we optimize the v and w simultaneously. Although

we use the Born approximation in deriving the above formulation, it

is straightforward to prove that the above objective function Jðp; qÞ
has its minima at w ¼ 0; v ¼ vexact, which is the same as standard

FWI. If we solve the problem in the subspace v ¼ v0, it reduces to a

simple least-squares migration at the current velocity. However, if

we solve the above problem in the subspace w ¼ 0, it reduces to the

standard FWI method. However, we keep v and w in the optimiza-

tion to reduce the nonlinearity of the objective function. In addition,

the objective function is quadratic with respect to the fine-scale part

of the velocity w. Thus, the behavior of this objective function is

expected to be better than standard FWI. If we take w to equal the

reverse time migration image, it will reduce to the standard RWI

(Plessix et al., 1995; Xu et al., 2012a, 2012b; Zhou et al., 2012;

Wang et al., 2013). Our proposed approach has a least-squares in-

version of the image component that helps to provide the optimal

image we need for RWI. With the modified objective function, un-

like classic RWI, our proposed approach uses diving wave informa-

tion, which is important for inverting for the background velocity in

the shallow zone (Alkhalifah and Choi, 2012).

Although the derivation above is based on the spectral wavefield

extrapolation approach (Wu and Alkhalifah, 2014b), the proposed

method is valid for a conventional finite-difference implementation

Algorithm 1. Reflected-waveform inversion algorithm.

Input: Initial velocity v0, α, ϵ.

Output: Inverted vn, wn, and Error.

function GRADIENT CALCULATIONv, w

Calculate the different components I, II, III, IV, and obtain the
Error.

Solve the optimization problem 16 to obtain the best β.

Calculate the approximate gradient with respect to v (∇vJ) as
αðβIIIþ Iþ IIþ IVÞ.

Calculate the gradient with respect to w (∇wJ) as I.

Return Error, ∇vJ, and ∇wJ.

end function

function OPTIMIZATIONv0

Initialize w ¼ 0, n ¼ 0.

while the exit condition is not satisfied do

[Error, ∇vJ;∇wJ] = Gradient Calculation (vn, wn);

update vn, wn as vnþ1 and wnþ1.

end while

end function

a) c)

b) d)

Figure 4. (a) Inverted v with α ¼ 1∕20, (b) the history of convergence, (c) inverted v with α ¼ 1∕10, and (d) the history of convergence.
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as well. In this situation, the operator BðvÞp ¼ v2Δp is the discrete

stiffness matrix and A is the discrete mass matrix.

GRADIENT ANALYSIS AND OPTIMIZATION

After obtaining the objective function, we can use the adjoint state

method (Plessix, 2006) to derive the gradient with respect to v and

w as

∂Jðp; qÞ

∂v
¼ Iþ IIþ IIIþ IV;

∂Jðp; qÞ

∂w
¼ I; (15)

in which

I ¼ hλ;B 0ðvÞpit; II ¼ hλ;B 0ðvÞqit; (16)

III ¼ hλ;B 0ðvÞp ·� wit; IV ¼ hμ;B 0ðvÞpit; (17)

and λ ¼ ðA − BðvÞÞ−TðCðpþ qÞ − gÞ is the wavefield propagating

backward using the residual at the receiver, μ ¼ ðA − BðvÞÞ−T

ðBTðλ: � wÞÞ is the wavefield propagating backward using BTðλ: �
wÞ as the source. The detailed derivation is shown in Appendix B. In
the calculation of the above gradient, we need four forward-modeling

operations for each gradient calculation. The cost is about double that

of standard FWI.

In the above gradient, I is just the gradient of the standard FWI

with the residual given byCðpþ qÞ − g and IIþ IV is similar to the

gradient of the standard RWI (Xu et al., 2012a, 2012b; Zhou et al.,

2012; Wang et al., 2013). The III is an additional term. Let us have a

look at what this additional term looks like for a simple two-layer

problem. We consider a model with a velocity of 2000 m∕s in the

top layer and 3000 m∕s in the bottom layer. The grid interval is

40 m. The interface between the two layers is at 5000-m depth. The

source is located at 2500 m, and the receiver is located at 12,500 m

on the surface. The term IIþ IV, shown in Figure 1a, is the smooth

update along the reflection raypaths. However, this additional term

in the gradient (Figure 1a) has a singular (nonsmooth) component

corresponding to the reflection at the image point. Thus, the com-

a)

b)

c)

d)

Figure 5. (a) Inverted v, (b) w, (c) velocity vþ w with α ¼ 1∕5, and (d) the history of convergence.
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bined RWI gradient updates along the wavepath, but also at the

reflector, which may cause nonlinearity. Figure 1b shows the third

term in our derivation, which looks similar to the singular compo-

nent in Figure 1a except with an opposite sign. However, the am-

plitude of term III is smaller than IIþ IV. If we directly sum the two

together, the result is shown in Figure 1c, which still has singularity

at the image points. Alternatively, we combine them with a weight,

β, applied to the singular component to obtain a smoother gradient.

We do that by solving the following optimization problem:

min
β
kβIIIþ Iþ IIþ IVks (18)

s:t: kð1 − βÞIIIkl2 ≤ ϵkIþ IIþ IIIþ IVkl2 ; (19)

where k · ks is the norm, which describes the smoothness of the

function. We use the following expression:

kuks ¼ kΔukl2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
∂2u

∂x2
k
2

l2
þ k

∂2u

∂z2
k
2

l2

s

(20)

as the description of smoothness. After optimizing the coefficients,

we obtain the new approximate gradient as shown in Figure 1d. We

see that this gradient has less singularity than Figure 1a and 1c. In

our implementation, we always choose ϵ ¼ 1000 to make sure the

approximate gradient is smooth enough.

Let us investigate the gradient behavior for different perturbations

w for the Marmousi model, the detail of which will be described in

the next section. The initial velocity shown in Figure 2a is linearly

increasing with depth from 1500 to 4000 m∕s. We first fix v and

optimize w. After 10 iterations, the resulting w is shown in Fig-

ure 2b. Using this improved w, we can get the gradient with respect

to v, which is shown in Figure 3c. Figure 3a shows the gradient for

the standard FWI. We can see that Figure 3c has more low-wave-

number information than the standard FWI gradient (Figure 3a). To

emphasize this aspect, we Fourier transform both gradients to the

wavenumber domain as shown in Figure 3b and 3d. It can be seen

that the energy in Figure 3d focuses more on the low-wavenumber

components than that in Figure 3b.

About solving the optimization problem, we can use the nested

optimization method (Biondi and Almomin, 2014), which opti-

mizes (an extended version of) w in an inner loop at each iteration,

but it is relatively expensive because we need to solve a least-

squares migration at every FWI iteration. Note that if w ¼ 0, the

gradient is just the standard FWI gradient, and the method becomes

standard FWI. However, to fully use the features of this method and

update the background velocity smoothly, we can update w with

larger weights and background vwith smaller weights, through add-

ing a weight function between the gradient with respect to v and w.

We suggest that after calculating the gradient ∇J ¼ ðð∂J∕∂vÞ;
ð∂J∕∂wÞÞ, we add a scale factor α and use

∇aJ ¼

�

α
∂J

∂v
;
∂J

∂w

�

; (21)

as our gradient. We first choose α as a small value and focus on

updating the background along the wavepath of the diving and

reflected wave, and then increase it to gradually add the reflector

to the background. If we choose α ¼ 0, it is just the least-squares

migration at the current velocity. Thus, convergence is obtained

when v approaches its true value and w approaches zero. This trans-

lates to the fact that the velocity model managed to provide the re-

flections that fit the data accurately, and thus, w is not needed to

a)

b)

c)

Figure 6. (a) The Marmousi velocity model, (b) the inverted veloc-
ity using standard FWI starting with the velocity in Figure 5a, and
(c) the inverted velocity using standard FWI with the linear initial
velocity model.
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produce these reflections. Based on the above, we summarize in

Algorithm 1.

NUMERICAL EXAMPLES

Let us apply this method to the Marmousi model. We add a thin

water layer near the surface. The wavefields are extrapolated on a

mesh size of 32 × 32 m using a Ricker wavelet with the main fre-

quency of 5 Hz after filtering out frequencies below 4 Hz. The shot

interval is 256 m. During the inversion procedure, we do not update

v, w in the water layer and we set v to the exact water velocity and

w ¼ 0. We first invert using α ¼ 1∕20. The inverted v is shown in

Figure 4a, and the misfit progression is shown in Figure 4b. After

this inversion using α ¼ 1∕20, we use the result in Figure 4a as the

initial model and reset w ¼ 0 for the next stage in which we set α ¼
1∕10. The result of this stage is shown in Figure 4c with the

convergence measure shown in Figure 4d. Finally, we implement

the optimization using α ¼ 1∕5 with the result of α ¼ 1∕10 as

the initial model. The inverted v, w, vþ w with α ¼ 1∕5 are shown

in Figure 5a–5c, respectively. The convergence history is shown in

Figure 5d. Because the result of α ¼ 1 is similar to α ¼ 1∕5, we do

not show it here. For a comparison, we use the inverted v shown in

Figure 5a as our initial velocity to do a standard FWI to get the

inverted velocity as shown in Figure 6b. Because the background

velocity is accurate enough, the difference between Figure 6b and

5c is small. For comparison, the exact velocity model is shown in

Figure 6a and the inverted result of standard FWI with the same

linear increasing initial velocity is shown in Figure 6c. Because

of the nonlinearity (or cycle-skipping problem), the standard

FWI fell into a local minimum. In addition, we show the observed

data (Figure 7a), the predicted data (Figure 7b) with initial velocity,

residual with initial (Figure 7c) and inverted velocity (Figure 7d) for

a shot at 4608 m at the same scale. We can see that the residual of

the inverted velocity is much smaller than that of the ini-

tial one. From Figures 4a, 4c, and 5a, we can see that as we increase

α, the procedure is adding more and more details to the background

velocity model. We still have residuals (w ≠ 0), especially in the

deeper part, and those correspond to our inability to attain the

a) b)

c) d)

Figure 7. (a) The exact recorded data for the shot at 4608 m, (b) the predicted data with the initial velocity, (c) the residual with the initial
velocity, and (d) the residual with the inverted velocity.
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necessary model wavenumbers from the data to fully recover the

velocity at that depth. Still,w is the perturbations, which can be added

directly to the model. The perturbations, like images, will have a low-

resolution representation of the model. However, because we are

using the RWI and FWI in the implementation, this limitation is

physically caused by the acquisition configuration of our data.

Our next example is the 2014 Chevron Gulf of Mexico imaging

challenge synthetic data set. It was distributed as a blind test to ap-

ply FWI. The data set includes 1600 shots records with 25-m shot

sampling at the depth of 15 m. Each shot has 321 receivers with 25-

m sampling at a depth of 15 m. The data represent a marine acquis-

ition, and they are generated with an isotropic elastic wave equation.

The maximum recording time is 8 s. The data have a low signal-to-

noise ratio (S/N) below 3 Hz and strong noise even in the 3–5 Hz

range. To increase the S/N and reduce the boundary effect near the

source, we convert the data into 641 receivers located on both sides

of each shot, relying on the reciprocity principle. To reduce the

computational cost associated with the inversion, we use an ap-

proach suggested by Díaz and Guitton (2011) and Reker et al.

(2014), and we divide the data set into eight groups. We then invert

one group after another. We continue until we have covered all the

groups, and then we move to a new α. An initial velocity was pro-

vided and is shown in Figure 8a. We apply the proposed inversion

method with 30 × 30-m space sampling and 4-ms time sampling.

We use the method proposed by Hicks (2002) to address the fact

that shots and receivers are not on the grid points. To avoid the large

noise at low frequencies, we apply the proposed approach on the

frequency bands of 3–3.2, 3–3.6, 3–4.2, and 3–5.2 Hz, sequentially,

with the same α strategy mentioned in the Marmousi data inversion.

The frequency strategy is based on the approach suggested by

Sirgue and Pratt (2004). For each frequency band, standard FWI

is applied following the proposed method. In addition, we apply

a Gaussian smoothing to the gradient with respect to v to reduce

the artifact caused by noise and multiple and elastic effects. The

inverted v is shown in Figure 8b. To speed up the inversion at the

later stage, we apply standard FWI (without preconditioning and

with preconditioning) on the frequency bands of 3–6.7, 3–8.7,

3–11.3, 3–14.6, 3–18.9, and 3–21 Hz, sequentially, starting from

the inverted v from our proposed method. The preconditioned gra-

dient of the standard FWI is taken to be the multiplication of the

original gradient by v2. The preconditioned FWI tries to enhance

the deeper part of the velocity model. The final inverted velocity

a)

b)

c)

Figure 8. (a) Initial velocity, (b) the inverted v with the low-fre-
quency data using our proposed method, and (c) the inverted v after
sequential standard FWI with the initial velocity as the inverted v
from the inverted velocity shown in panel (b).

Figure 9. Well-log comparison; pink curve: initial velocity, red
curve: exact velocity, green curve: inverted v with our proposed
method, blue curve: inverted v after sequential standard FWI started
from the inverted v as shown in Figure 8b.
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is shown in Figure 8c. Figure 9 shows the well logs at 39,375 m

from a 1000- to a 2500-m depth for comparison. We can see from

Figure 9 that the initial velocity (pink line) is far away from the

exact velocity (red line). Figure 10a and 10b shows data comparison

between the modeled (Figure 10a) using the inverted velocity and

observed data (Figure 10b). We can see that the predicted data are

similar to the observed one. To show the accuracy of the inverted

model, we define the quality factor as

Correlations¼
X

r

P

tpsðxr;tÞgsðxr;tÞ

nr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

t

psðxr;tÞpsðxr;tÞ
P

t

gsðxr;tÞgsðxr;tÞ
r ;

(22)

in which gsðxr; tÞ; psðxr; tÞ are the observed and modeled wave-

fields from the shot s and receiver r, and xs; xr are the relative lo-

cations. If the inverted model can produce exactly the same data as

the observed one, correlations ¼¼ 1. We show the correlation for

different shots between the data generated by our inverted model

and the observed data. Thus, Figure 11 indicates that the inverted

model can predict reasonably accurate the observed data. Figure 12a

a)

b)

Figure 10. Data comparison: (a) the modeled data and (b) the ob-
served data.
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Figure 11. The average correlation for each shot.
Figure 12. The reverse time migration result with (a) the inverted
velocity and (b) initial velocity.
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and 12b shows the reverse time migration result with the inverted

and initial velocities. The image in Figure 12a is more continuous

and better focused. Significant improvements are shown in the three

oval areas due to the inverted low-velocity anomalies marked with

the oval in Figure 8c. To compare more, we compute angle gathers

using the space shift imaging condition (Sava et al., 2005). The re-

sulting angle gathers for every 5 km from angles 0° to 45° using the

initial velocity and the inverted one are shown in Figure 13a and

13b. The angle gathers produced by the inverted velocity are flatter.

CONCLUSIONS

We use a new objective function that combines the data generated

by the background velocity (conventional forward modeling) and

those generated from the perturbed velocity (Born modeling), to

fit the observed data. We invert for the background velocity and the

perturbation simultaneously. It is equivalent to mixing FWI and RWI

without extended images, and thus it is not prohibitively expensive.

To fully use the method to update the smooth component of the

velocity at early stage, we add a small weight to the gradient with

respect to the background velocity. Application to data generated

using the Marmousi model with frequencies larger than 4 Hz yields

accurate results, even when starting with a linearly increasing veloc-

ity model. The application to the 2014 Chevron Gulf of Mexico im-

aging challenge synthetic data set shows the potential of the proposed

method.
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APPENDIX A

OPTIMIZED-EXPANSION-BASED LOW-RANK

APPROXIMATION

For constant velocity, after applying the spatial Fourier transform

p̂ðk; tÞ ¼ Ffpðx; tÞg, the acoustic wave equation 1 is given by

∂2p̂

∂t2
þ v2jkj2p̂ ¼ 0; (A-1)

where k is the wavenumber vector.

A second-order time-marching scheme with a multidimensional

inverse Fourier transform leads to the following familiar expression

(Etgen and Brandsberg-Dahl, 2009; Zhang and Zhang, 2009):

pðx; tþ ΔtÞ þ pðx; t − ΔtÞ

¼

Z

p̂ðk; tÞð2 cos ðjkjvΔtÞÞeik·xdk:
(A-2)

The low-rank method (Fomel et al., 2010) tries to approximate the

two variable functions 2 cosðvkΔtÞ with

2 cosðvkΔtÞ≈
X

i¼M;j¼N

i¼1;j¼1

ai;j2 cosðvikΔtÞ2 cosðvkjΔtÞ; (A-3)

through a matrix decomposition. The optimized-expansion-based

low-rank method (Wu and Alkhalifah, 2014b) attempts to predict

the best aij; vi; kj by solving the following minimization problem:

min
vi;kj

min
aij

max
ðv;kÞ∈Ω

�

�

�

�

Wðv; kÞ −
X

i¼M;j¼N

i¼1;j¼1

ai;jWðvi; kÞWðv; kjÞ

�

�

�

�

;

(A-4)

where Wðv; kÞ ¼ 2 cosðvkΔtÞ and Ω ¼ ½vmin; vmax� × ½0; kmax�. In

FWI, the minimum and maximum velocities in the model are usu-

ally assumed to be known, and kmax is decided by the mesh param-

eters. This feature will let us evaluate the coefficients needed for the

extrapolation only once at the start, and wewill use it throughout the

whole full-waveform procedure.

a)

b)

Figure 13. Angle gathers from 0° to 45° using (a) the inverted veloc-
ity and (b) initial velocity.
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APPENDIX B

GRADIENT CALCULATION

The most important ingredient in the optimization problem is the

gradient calculation. Similar to Ma and Hale (2013), we can calcu-

late the gradient of the objective function 13 with respect to v and w

as follows:

δJðp; qÞ ¼
∂Jðp; qÞ

∂v
δvþ

∂Jðp; qÞ

∂w
δw; (B-1)

¼ hCðpþ qÞ − g;Cðδpþ δqÞi; (B-2)

and

¼ hCTðCðpþ qÞ − gÞ; δpþ δqi; (B-3)

where h·; ·i is the summation over the time and space variables for

the multiplication of two functions. Similar to the derivation in

equation 8 and assuming that f is a known variable, we can get the

perturbed wavefields δp, δq satisfy

Aδp − BðvÞδp ¼ B 0ðvÞp ·� δv (B-4)

and

Aδq − BðvÞδq ¼ B 0ðvÞq ·� δvþ B 0ðvÞδp ·� w

þ B 0ðvÞp ·� δwþ B 0ðvÞp ·� w ·� δv: (B-5)

By solving the above equation, substituting δp and δq in equa-

tion B-1 and applying the transpose operator, we then have

δJðp; qÞ ¼ hhλ;B 0ðvÞpit; δvis; (B-6)

þhhλ;B 0ðvÞqþ B 0ðvÞp ·� wit; δvis; (B-7)

þhλ;B 0ðvÞδp ·� wi þ hhλ;B 0ðvÞpit; δwis; (B-8)

and

¼ hIþ IIþ IIIþ IV; δvis þ hI; δwis; (B-9)

where λ ¼ ðA − BðvÞÞ−TðCðpþ qÞ − gÞ is the wavefield propagat-

ing backward using the residual at the receiver h·; ·it (or h·; ·is) is the
summation over time (or space) variable and the four terms are de-

fined as

I ¼ hλ;B 0ðvÞpit; (B-10)

II ¼ hλ;B 0ðvÞqit; (B-11)

and

III ¼ hλ;B 0 0ðvÞp ·� wit. (B-12)

And the fourth term IV can be calculated as

hIV; δvis ¼ hλ;B 0ðvÞδp ·� wi; (B-13)

¼ hB 0ðvÞTðλ ·� wÞ; δpi; (B-14)

and

¼ hhμ;B 0ðvÞpit; δvis; (B-15)

where μ ¼ ðA − BðvÞÞ−TðBTðλ: � wÞÞ is the wavefield propagating
backward using BTðλ: � wÞ as source. Thus, the term IV satisfies

that

IV ¼ hμ;B 0ðvÞpit: (B-16)

Hence, the gradients with respect to v and w are

∂Jðp; qÞ

∂v
¼ Iþ IIþ IIIþ IV;

∂Jðp; qÞ

∂w
¼ I: (B-17)
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