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For more than two decades, the issue of simultaneous localization and mapping (SLAM) has gained more attention from
researchers and remains an influential topic in robotics. Currently, various algorithms of the mobile robot SLAM have been
investigated. However, the probability-based mobile robot SLAM algorithm is often used in the unknown environment. In this
paper, the authors proposed two main algorithms of localization. First is the linear Kalman Filter (KF) SLAM, which consists of
five phases, such as (a) motionless robot with absolute measurement, (b) moving vehicle with absolute measurement, (c)
motionless robot with relative measurement, (d) moving vehicle with relative measurement, and (e) moving vehicle with relative
measurement while the robot location is not detected. The second localization algorithm is the SLAM with the Extended
Kalman Filter (EKF). Finally, the proposed SLAM algorithms are tested by simulations to be efficient and viable. The simulation
results show that the presented SLAM approaches can accurately locate the landmark and mobile robot.

1. Introduction

Wireless sensor networks (WSNs) grasp the potential of var-
ious new applications in the area of management and control.
Examples of such applications include detection, target track-
ing, habitation monitoring, catastrophe management, and
climate management such as temperature and humidity.
The key technology that drives the development of sensor
applications is the quick growth of digital circuit mixing. In
the recent future, these applications will provide a small,
cheap, and efficient sensor node. Localization is also crucial
for various applications in WSNs. In both universal comput-
ing and WSNs, there has been considerable consideration of
localization [1, 2]. Characteristically, the WSN system offers
the range and/or bearing angle measurements between each
landmark and vehicle.

Mobile robot localization is also one of the attractive
researches that support a truly self-governing mobile robot
performance. Various independently working robots can
accomplish tasks more rapidly in many situations. However,
there is a possibility of even better productivity gains if robots

can work cooperatively. The capability to collaborate is
dependent on the robot’s capability to connect and commu-
nicate with each other’s. In this work, the authors consider
the procedure of simultaneous localization and mapping
(SLAM). For this purpose, a linear Kalman Filter (KF) with
SLAM and Extended Kalman Filter (EKF) with SLAM are
applied [3, 4].

SLAM plays a key role in the field of robotics and espe-
cially in a mobile robot system. The key objective of SLAM
is to jointly measure the position of the robot as well as the
model of the surrounding map [5–7]. For the safe interaction
of robots within the operation area, this information is
important. A variety of the SLAM algorithm has been pre-
sented over the last decade. Most of the early algorithms for
SLAM used a laser rangefinder [8] which works as the core
sensor node, and visual sensor nodes are the most used
option currently, whichever is active or passive [9, 10]. In
contrast to a laser rangefinder, currently, small, light, and
affordable cameras can offer higher determination data and
virtually unrestricted estimation series. These cameras work
as passive sensor nodes and, therefore, do not affect one
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another while deploying in similar operation areas. Distinct
in the designed light range sensor nodes, cameras are also
able to apply for both interior and exterior situations. There-
fore, such features can make the camera the best choice for
mobile robotic platforms and SLAM.

In SLAM, the need for using the environment map is
twofold or double [11, 12]. The first one is the map often
essential to support or back up other responsibilities; for
example, a map can notify a track arrangement or offer an
initiative imagining for a worker. Secondly, the map or plot
follows in restraining the fault performed in measuring the
state of the robot. While without a map, the dead reckoning
would rapidly point energetically. On the other hand, by
using a map, for example, a set of distinct landmarks, the
robot can reorganize its localization error by reentering the
known areas. Therefore, SLAM applications are more useful
in such situations in which a preceding plan is not existing
and require to be constructed. In some aspects of the robots,
a set of landmark location is known prior. For example, a
robot is operational on the floor of a workshop that can be
supplied with a physically assembled chart of artificial
guidelines in the operation area. Alternatively, in another
case, in which the robot has admittance to the global posi-
tioning system (GPS), the GPS satellite can be chosen as a
moving beacon at a prior known position. In this case, the
SLAM may not be needed if the localization is done consis-
tently concerning the prior known landmark of the robot.
Through the development of indoor localization uses of
mobile robots, the popularity of SLAM is increased. Most
of the indoor procedures rule out the practice of GPS to
assure the error of localization. The SLAM algorithm also
provides an interesting substitute to the maps which is built
by the user, which represents that the process of the robot is
also conceivable in the nonappearance of ad hoc networks
for localization [13].

KF derivatives are concerned with the first branch of
those methods which apply a filter [14, 15]. The KFs assume
that Gaussian noises affect data, which is not inevitably accu-
rate in our case. KFs are planned to solve the problems of lin-
ear systems in their basic form and are rarely used for SLAM,
although they have great convergence properties. On the
other hand, in the nonlinear filtering systems such as in
SLAM, the EKF is a common tool. EKF introduces a step of
linearization for the nonlinear systems, and a first-order Tay-
lor expansion performs linearization around the current esti-
mate. The optimality of EKF’s is shown as long as
linearization is performed around the state vector’s exact
value. It is the value to estimate in practice and is therefore
not usable, and this can lead to problems of accuracy. None-
theless, estimates are close enough to the reality, for the most
part, to allow the EKF to be used.

KF is Bayes filters which signify posteriors by using the
Gaussians [16], for example, the distributions of unimodal
multivariate that can be denoted efficiently by a minor sum
of parameters. The KF SLAM is based on the hypothesis that
the transformation and estimation functions are linear with
the introduction of Gaussian noise. In state-of-the-art SLAM,
KF has two main variations. The first one is the EKF, and the
second one is the information filtering (IF) or EIF. The EKF

is usually applicable for the nonlinear functions by approxi-
mating the mobile robot motion model by means of linear
functions. A variety of the SLAM algorithms use the EKF
and IF applied by propagating the state error covariance
inverse [17–19]. IF is more advantageous as compared to
the KF. Initially, the information is filtered out by summing
the vector and matrices of information which resultantly give
a more precise estimate. Next, the IF is steadier than the KF.
Lastly, the EKF is comparatively slow while estimating the
maps of having dimensions, because the measurement of
every vehicle normally affects the Gaussian parameters. Con-
sequently, the updates need prohibitive times when faced
with a situation having several landmarks.

In recent years, the SLAM and autonomous mobile robot
combinations play an important role in the controlling disas-
ter field. Particularly, the autonomous robots are widely used
for the maintenance and rescue operations in the disaster
controlling such as radioactivity leaks. Since the area is
unreachable, simultaneous mapping of the environment
and the robot localization is crucial to determine the exact
source spot [20–23]. Therefore, SLAM has been an important
issue as the localization degree hangs on active mapping.
However, the SLAM implementation by using the EKF is
pretty exciting because of the approximation of the sensor
noises and real-time stochastic system as Gaussian. There-
fore, inappropriate alteration of the noise covariance may
result in filter divergence over time, resulting in the complete
system becoming unstable. The researchers presented some
alternate methods that are moderately straightforward but
severe computationally which have the benefit to accommo-
date the noise model other than the Gaussian such as UKF,
FastSLAM, and Monte Carlo localization [24–26].

1.1. Contributions. In the above paragraphs, the authors
investigated the SLAM with KF and EKF. The performance
of such models under localization is not yet well-thought-
out. Therefore, in this work, the authors analyzed SLAM by
suing linear KF and EKF. The basic contribution of this work
included one dimensional (1D) SLAM using a linear KF (a)
motionless robot with absolute measurement, (b) moving
vehicle with absolute measurement, (c) motionless robot
with relative measurement, (d) moving vehicle with relative
measurement, and (e) moving vehicle with relative measure-
ment while the robot location is not detected. Furthermore,
the authors analyzed the localization performance of SLAM
with EKF. The proposed SLAM-based algorithms are evalu-
ated and compared with each other and also with other algo-
rithms regarding SLAM. More precisely, the proposed SLAM
algorithms present good accuracy while maintaining a sensi-
ble computational complication.

1.2. Organization of the Paper. The structure of this paper is
as follows: Section 2 demonstrates the work related to SLAM
and Section 3 demonstrates the proposed SLAM algorithms.
The subsections of Section 3 are SLAM with KF and SLAM
with EKF, respectively. Section 4 demonstrates the compari-
son of the proposed and other algorithms. Finally, Section 5
demonstrates the conclusion and future direction of the pro-
posed algorithms.
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2. Related Work

Before presenting the proposed SLAM algorithms, it would
be better to present some background knowledge and related
work on SLAM algorithms. In this section, the authors pres-
ent a detailed description of the SLAM that forms the basis of
the proposed SLAM algorithms. Compared to the current
solutions, many people still do not have highly accurate
instruments; they still have challenging piloting capabilities
and can solve the SLAM problem. Their mapping, therefore,
depends on the toughness policy of acting as a replacement
for the accurate world definition. With linear KF, this
approach is a new research concept for SLAM.

Regarding the SLAM, readers may not be familiar with
the origin and its derivation may refer to the standard and
current work on SLAM [27, 28]. For the SLAM problem,
the first method was introduced between 1986 and 1991.
Smith and Chesseman [29] published a paper in 1986 for
the solution of SLAM problems. They present the EKF to
solve this problem. In that paper, they established a numeri-
cal basis for explaining the relation between landmarks and
operating the geometric uncertainty.

Several other researchers have worked on various SLAM
issues. For example, in [30–32], the authors presented a new
architecture that applies one monocular SLAM system for
the tracking of unconstraint motion of the mobile robot.
The improved oriented FAST and rotated BRIEF (ORB)
characteristics show the landmarks to design a network fea-
ture procedure of detection. An enhanced matching feature
system has enhanced function matching strength. The
updated EKF measures the free-moving visual sensor’s mul-
tiple dimensional states rather than the standard EKF. Fur-
thermore, in [33, 34], the authors address the issue of the
applications of SLAM for navigation problems. For the solu-
tion of high-accuracy problems, an EKF or particle filter (PF)
algorithm [35] is frequently applied to the processing of data.
The PF algorithm, which is often applied for the G-mapping
SLAM technique, is well-matched for the nonlinear system’s
investigation. Though, PF computational dimensions are
larger than those of EKF. Therefore, EKF and PF also have
some disadvantages in the process of navigation. The Gauss-
ian smoothing filter and its modification are used which is
based on the distributed computing scheme. This algorithm
is meaningfully better to the EKF and PF algorithms regard-
ing the computational speed.

For the reduction of the linearization error of KF algo-
rithms, the authors presented three techniques and their via-
bility and efficiency are assessed by SLAM [36]. In the
derivative-based approaches of the KF system, the lineariza-
tion error is undetectable owing to the practice of the Taylor
expansion for the linearization of the nonlinear motion pro-
cess. The presented three techniques reduce the error of lin-
earization by substituting the Jacobian observation matrix
with new formulations. Similarly, in [37], a SLAM with lim-
ited sensing by applying EKF is proposed. The robot’s prob-
lem with creating a map of an unidentified atmosphere while
adjusting its particular location which is the basis on a similar
map and sensor information is called SLAM. Because sensor
accuracy plays a major part in this issue, most of the planned

schemes comprise the use of high-priced laser sensor nodes
and comparatively innovative and inexpensive RGB-D cam-
eras. These sensors are too costly for some applications, and
RGB-D cameras consume much power, CPU, or communi-
cation specifications for on-board or PC processing of data.
Thus, the authors tried to model an uncertain setting using
a low-cost device, EKF, and dimensional features such as
walls and furniture.

Usually, the typical filter uses the scheme model and for-
mer stochastic info to approximate the subsequent robot
state. Though in the real-time condition, the sound statistics
possessions are comparatively unidentified, and the system is
imprecisely demonstrated. Therefore, the filter deviation
might arise in the incorporation scheme. Furthermore, the
predictable precision might be stimulating to be grasped
due to the nonappearance of the receptive time-varying of
mutually the process and measurement noise statistic. So,
the outdated approach desires to be upgraded pointing to
deliver an aptitude to guesstimate those belongings. To solve
this problem, the new adaptive filter is proposed in [38]
named as an adaptive smooth variable structure filter
(ASVSF). The upgraded SVSF is consequential and executed;
the process and measurement noise statistics are appraised
by using the maximum a posteriori creation and the weighted
exponent concept. The authors applied ASVSF to overwhelm
the SLAM problem of a self-directed mobile robot; hereafter,
it is shortened as an ASVSF-SLAM algorithm.

In [39], the authors presented a 3D cooperative SLAM for
a joint air grounded robotic system which is intended to
succeed an indoor quadrotor flying done composed with a
Mecanum-wheeled omnidirectional robot (MWOR) in
indoor unidentified and no GPS environments. Moreover,
an Oriented Fast and Rotated BRIEF- (ORB-) SLAM 2.0
method is applied to yield a 3D chart and determine concur-
rently the location of the indoor quadrotor, and a particle-
filter SLAM (FastSLAM 2.0) method is applied to shape the
2D chart of the universal atmosphere for the MWOR. An
additional accurate 3D quadrotor location estimation tech-
nique for the quadrotor is planned with the help of the
MWOR. A cooperative SLAM applying fuzzy Kalman filter-
ing is presented to fuse the productions of the ORB-SLAM
2.0, FastSLAM 2.0, and quadrotor location estimation
methods, in order to localize the quadrotor further precisely.
Mutually, SLAM methods, quadrotor position estimation
method, and cooperative SLAM have been executed in the
robotic operation system atmosphere.

Recent work on SLAM [40] attempted to address the
issue of SLAM landmarks [41]. The authors presented an
AUV vision-based SLAM, in which the submerged nonnat-
ural landmarks are utilized for visual sensing of onward and
down cameras. The camera can also estimate the AUV loca-
tion data, along with several navigation sensor nodes such as
depth sensor node, Doppler velocity log (DVL), and an iner-
tial measurement unit (IMU). The landmark detection algo-
rithm is organized in a framework of conventional EKF
SLAM to measure the landmark and robot status. Further-
more, partial observability of mobile robot based on EKF
is explored in [42, 43] to find the answer that can avoid
erroneous measurements. When considering only certain

3Wireless Communications and Mobile Computing



environmental landmarks, the computational costs of
mobile robots can be minimized, but with an increase in
device uncertainties. The fuzzy logic methodology is pre-
sented to guarantee that the calculation has attained the
desired output even though some of the landmarks have
been omitted for reference purposes. For the measurement
invention of KF, fuzzy logic is used to exact the location of
the mobile robots and any sensed landmarks all throughout
the process of observations.

Researchers have proposed several algorithms for SLAM;
some of which are already discussed in the above pages. Most
of them focused on the landmark’s estimation, performance,
accuracy, and effectiveness of the SLAM algorithm. However,
there are still some important and fundamental issues that
need to be addressed, such as an optimal solution for SLAM,
active SLAM for SLAM development, SLAM failure detec-
tion, SLAM front end robust algorithm, and SLAM algorithm
that considers various aspects at once. Therefore, in this
paper, the authors attempted to propose a modified SLAM
algorithm by applying KF and EKF. The authors presented
SLAM algorithms that consider several aspects of the SLAM
such as velocity, distance, coverage area, maximum range,
and localization time. The notations used in this work are
listed in Table 1.

3. Proposed Simultaneous Localization and
Mapping Algorithms

This section presents the proposed SLAM algorithms based
on KF and EKF. The proposed algorithms are analyzed and
evaluated in the next subsections.

3.1. Simultaneous Localization and Mapping with Kalman
Filter. In the following section, the authors presented the
theory of SLAM which results in efficient localization and
mapping in WSNs. Specifically, the author presents the
analysis of the operating environment and finally discussed
the proposed algorithm and compared it with other SLAM
algorithms. In the existence of Gaussian white noise, the KF
provides a well-designed and statically optimum explana-
tion for the linear systems. It is a technique that uses linear
estimation associated with the states and error covariance
matrixes for the purpose to produce gain stated to as the
Kalman gain. Such benefit is added to the estimation of a
preceding condition, thereby generating an estimate of a
posteriori [44]. The below equations define the dynamic
model of the system and the measuring model used for
the linear state approximation in general which consists of
two f and h functions.

Xk + 1 = f Xk,Uk,Wkð Þ, ð1Þ

Zk + 1 = h Xk, Vkð Þ, ð2Þ

which administrate state proliferation and state measure-
ments, where U is the input of the process, W and V are
the vectors of state and measurement noise, while k repre-
sents the discrete-time. In the above equations, f and h
are typically based on a set of discretized difference equa-

tions that govern the dynamics and observation from the
method.

Xk+1/k = Fk × Xk/k, ð3Þ

Pk+1/k = Fk × Pk/k × FT
k + Ak ×Qk × AT

k , ð4Þ

Kk+1 = Pk+1/k ×HT
k Hk+1 × Pk+1/k ×HT

k+1 + Rk

� �−1
, ð5Þ

Xk+1/k+1 = Xk+1/k + Kk+1 Zk+1 −Hk+1 × Xk+1/k½ �, ð6Þ

Pk+1/k+1 = I − Kk+1 ×Hk+1½ � × Pk+1/k: ð7Þ

Such equations from the KF-based method are used iter-
atively in conjunction with Equations (1) and (2). Equation
(3) generalizes the prior state estimate, and Equation (4)
represents the equivalent state covariance error. The gain
of Kalman can be estimated by Equation (5) which is
applied to update the state approximation and covariance

Table 1: Index of notation.

Notation Description

Xk Current state

Xk−1 Previous state

Qk Covariance matrix of prediction

Rk Covariance matrix of observation

Xk+1 Estimated state vector

Pk+1/k Covariance matrix for prediction

Q Process noise matrix

R Measurement noise matrix

wk ∼N 0,Qkð Þ Process noise

vk ∼N 0, Rkð Þ Observation noise

K + 1 Time instant

Zk+1 Estimated measurement vector

∇Fx , ∇Fu Jacobian matrices of the function f

B, F State transition matrix

U Input of the process noise

W, V Vectors of state measurement noise

v Mobile robot velocity

p Landmark position

JF Jacobian of state equation

Kk+1 Kalman gain

Xk+1/k+1 Updated estimate

Pk+1/k+1 Updated covariance

H Measurement Jacobian or linearization matrix

dt Global time

T Time

t Initial time

LM Landmark

Pk New state covariance matrix
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error, defined by Equations (6) and (7), correspondingly.
EKF is practically comparable to the iterative KF method,
and sometimes, it is used for the nonlinear systems. By
applying the Jacobian, which is a first-order partial deriva-
tive, the measurement Hk+1 and nonlinear system Fk matri-
ces are linearized.

A one-dimensional SLAM with KF is applied for a
motionless robot, and the measurement is considered an
absolute measurement. A 1-DoF mobile robot is used which
is motionless in a fixed position of a straight line. The mobile
robot is used for detecting the motionless/stationary land-
marks. The mobile robot velocity v and position p of the
landmarks are calculated by applying SLAM with linear KF.
Ten numbers of landmark positions are considered. For the
real trajectory, the robot is motionless at a given position
which is v = 0m/s. The landmark distance is relative to the
mobile robot’s location/position which had a moderate mea-
surement noise as shown in Figure 1. The state vector is the
diagonal of those that correspond to the robot’s present state
by projecting the next one. The vector used for the control is
null; it shows that there are no exterior inputs to vary the
mobile robot’s state; i.e, the velocity and position of the robot
are constant. The initial matrix of covariance is not prevalent;
it is characterized by a broad diagonal ambiguity in both the
robot’s landmark location and state and equal ambiguity/un-
certainty. The result of mobile robot localization with abso-
lute measurement is shown in Figure 2.

Next, a one-dimensional SLAM with KF is applied for a
moving vehicle and the measurement is considered an abso-
lute measurement. A 1-DoF mobile robot is traveling on a
straight path. The mobile robot is sensing the motionless/sta-
tionary landmarks. The robot velocity v and the landmark
position/velocity p are calculated by applying SLAM using a
linear KF, and in this case, all the measurements are absolute,
see Figure 3. The landmark positions are the same as the pre-
vious one.

Furthermore, a one-dimensional SLAM with KF is
applied for a motionless robot, and the measurement is con-
sidered a relative measurement. Here, a 1-DoF mobile robot
is used in a motionless and fixed position of a straight lane
that detects the motionless/stationary landmarks. The robot
velocity and the position/location landmarks are calculated
by using the SLAM with a KF, see Figure 4. The fourth one
is a one-dimensional SLAM with linear KF. In this case, a
moving vehicle is considered with a relative measurement
and a 1-DoF robot is traveling on a straight line that detects
the motionless/stationary landmarks. The robot position/lo-
cation, velocity, and landmark position are calculated
through SLAM with linear KF. Here, all the measures are
comparative to the position/location of the mobile robot,
see Figure 5.

The last one is almost different from the previous four
SLAM algorithms. In this case, a one-dimensional SLAM
with linear KF is considered and the vehicle is moving with
a relative/comparative motion. The position/location of the
mobile robot is not observed in this case. A mobile robot is
traveling on a straight line that detects the landmarks which
are motionless as shown in Figure 6. The velocity of the robot
and its landmark are calculated by applying SLAM with
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Figure 1: SLAM with motionless robot and absolute measurement
while having a moderate measurement noise.
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Figure 2: SLAM with motionless robot and absolute measurement.
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Figure 3: SLAM with moving vehicle and absolute measurement.

5Wireless Communications and Mobile Computing



linear KF. As mentioned before, the position is not observed
and all the measurements are relative/comparative to the
mobile robot position/location.

4. Simulation Results and Discussion

The proposed SLAM algorithm is evaluated by simulation. In
this simulation, the author evaluates the SLAM algorithm by
conducting a different experiment with different landmarks.
The simulation is divided into five steps, such as a motionless
robot with absolute measurement, a moving vehicle with
absolute measurement, a motionless robot with relative mea-
surement, a moving vehicle with relative measurement, and a
moving vehicle with relative measurement while the robot
location is not detected. The number of time-stamps is
1200 with the map of dimension [180]. The landmark posi-
tions are set to be LM = 10 which are denoted by p. For the
real trajectory, the velocity and position are v = 1:0m/s and
p = 40, respectively, at state xðkÞ = xðk − 1Þ and vðkÞ = vðk −
1Þ, i.e., motionless at a given position having a moderate
measurement noise as shown in Figure 1. The process pn
and measurement noise r is added, and the landmark dis-
tance is relative to the robot position, see Figure 2. The state
equation is a diagonal of those, which ensures that the next
state’s estimate or prediction is equal to the present state.
The control vector is null; it shows that there are no exterior
inputs that vary the state of the robot because, as we stated
earlier, the velocity v and position p are constant. Also, the
primary covariance matrix is well-defined by a higher diago-
nal uncertainty mutually in the position of the landmark and
the robot state and by a comparable uncertainty, which
means that none prevails over the other.

The process noise matrix represented by Q and the mea-
surement noise matrix represented by R are computed in
which the landmarks are motionless. For the next state pre-
diction, the measurement is done at the prediction position,
and for observation, it is measured at the right position/loca-
tion xðk + 1Þ, vðk + 1Þ, and p. The landmark positions are
similar for all five methods. However, for this case, a vehicle
is considered with constant velocity v = 0:02m/s and the
position are p = 30. Also, in this case, the landmark distance
is absolute. In the third case, the robot is motionless and
the measurement is relative at a given velocity and position
v = 1:0m/s and p = 40, respectively. The fourth one is the
SLAM with linear KF in which the vehicle is moving and
the measurement is relative. The landmark distance is rela-
tive to robot position and a vehicle with a constant velocity
of v = 0:02m/s and at the position, see Figure 5, the red line
denotes the position. The last one is the SLAM with linear
KF and a vehicle is moving, and the measurement is relative.
Note, in this case, the position is not observed as the previous.
The constant velocity of the vehicle is set to be v = −0:2m/s
and the position is 20, as can be seen in Figure 6. The above-
mentioned algorithms for SLAM with KF are evaluated in
deep detail. The authors considered a variety of aspects
regarding the SLAM localization. The offered SLAM algo-
rithms present a high level of accuracy in various conditions
and perform well in terms of velocity, distance, coverage
area, etc.
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Figure 4: SLAM with motionless robot and relative measurement.
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Figure 5: SLAM with moving vehicle and relative measurement.
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Figure 6: SLAM with moving vehicle and relative measurement
while the position of the robot is not observed.
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4.1. Simultaneous Localization and Mapping with Extended
Kalman Filter. EKF is well-known as a widespread resolution
to the SLAM problem for mobile robot localization. In this
section, the authors realized the EKF SLAM-based algorithm
for a mobile robot that follows a specific trajectory. EKF
SLAM relies on present elements of the navigation system
known as landmarks to change the location of the robot.
EKF SLAM for a mobile robot is executed in a defined field
with a specific feature. The authors considered two basic
mathematical models such as the EKF state and observation
model that are represented below.

Xk+1 = f Xk,Uk,wkð Þ, ð8Þ

Zk+1 = h Xk+1, υk+1ð Þ, ð9Þ

where wk ∼Nð0,OkÞ and vk ∼Nð0, RkÞ which characterize
the process and observation noise. Here, Xk+1 denotes the
estimated state vector at time k + 1. The time is the discrete
time for a known input Uk assuming all noise to be wk. In
Equation (9), Zk+1 represents the estimated measuring vector
at the time instant k + 1, where vk is the observation noise.Qk

and Rk denote the covariance matrix of prediction and obser-
vation, respectively. EKF offers an approximation of the opti-
mal state estimate. The EKF-SLAM objectives are to estimate
recursively the landmark state Xk as stated by the Zk+1 mea-
surement. EKF is basically divided into several steps which
are represented as at the initial state, the state vector Xk+1 will
become

Xk+1 = f Xk,Uk+1ð Þ+∇Fx × Xk − Xk
k

� �

: ð10Þ

In the prediction stage, the covariance matrix for predic-
tion Pk+1/k can be represented as

Pk+1/k = ∇Fx × Pk/k × ∇FT
x +∇Fu ×Qk × ∇FT

u : ð11Þ

In the above equation, the ∇Fx and ∇Fu denote the
Jacobian matrices of the function f concerning the state
vector which is Xk+1. The state transition matrix is denoted
by B, and F is the state equation which can be represented
as follows:

B =

dt × cos x 3ð Þð Þ 0

dt × cos x 3ð Þð Þ 0

0 dt

2

6

6

4

3

7

7

5

ð12Þ

F =

1 0 0

0 1 0

0 0 1

2

6

6

4

3

7

7

5

ð13Þ

Therefore, the Jacobian of the state equation will
become

JF =

0 0 −dt × u 1ð Þ × sin x 3ð Þð Þ

0 0 dt × u 1ð Þ × cos x 3ð Þð Þ

0 0 0

2

6

6

4

3

7

7

5

, ð14Þ

and the global initialization Jacobian G can be written as
follows:

G =
−

ffiffiffiffiffiffiffiffiffi

δ 1ð Þ
p

−

ffiffiffiffiffiffiffiffiffi

δ 2ð Þ
p

0
ffiffiffiffiffiffiffiffiffi

δ 1ð Þ
p ffiffiffiffiffiffiffiffiffi

δ 2ð Þ
p

δ 2ð Þ −δ 1ð Þ −1 −δ 2ð Þ δ 1ð Þ

" #

ð15Þ

In the observation and update phase, the observation
model Zk+1 at Xk+1/k can be represented as

Zk+1 = h Xk+1/kð Þ +Hk+1 × Xk+1/k − Xk+1ð Þ: ð16Þ

To apply the KF update cycle, i.e., Xk+1/k and Pk+1/k , the
KF gain can be computed.

Kk+1 = Pk+1/k ×HT
k+1 × Hk+1 × Pk+1/k ×HT

k+1 + Rk

� �−1
, ð17Þ

where Kk+1 is the Kalman gain. With measurement of Zk+1,
the updated estimate can be

Kk+1/k+1 = Xk+1/k + Kk+1 × Zk+1 −Hk+1 × Xk+1/k½ �: ð18Þ

If the Zk of measurement is available, EKF calculates the
matrix of Kalman gain and integrates the invention of mea-
surement to obtain the approximate state Xk, accompanied
by the update of the state error matrix. Therefore, the mea-
surement updated step from the above equation will become

Xk = Xk + Kk × Zk − h Xkð Þ½ �, ð19Þ

Pk = I − Kk ×Hk½ � × Pk: ð20Þ

Therefore, the update covariance Pk+1/k+1 can be repre-
sented as

Pk+1/k+1 = I − Kk+1 ×Hk+1½ � × Pk+1/k, ð21Þ

where Kk is the Kalman gain and Pk is the new state covari-
ance matrix. H is the measurement Jacobian or linearization
matrix and Xk denotes the state vector Xk estimate.

After evaluating EKF in deep detail, the authors conclude
that the EKF also has some disadvantages that is if the pro-
cess and measurement noise are not accurately displayed,
the robot will diverge from its route which resultantly give
a contradiction. Particularly, in the case of the robot velocity,
the robot is sensitive to the velocity as by varying the velocity
the robot is diverging from its route as shown in Figure 7 .
However, in the first case, the velocity is v = 1:0m/s as shown
in Figure 8.
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5. Simulation Results and Discussion

The proposed SLAM EKF algorithm is evaluated through
simulation. In this simulation, the author evaluates the
SLAM EKF algorithm by performing simulation with various
factors. Firstly, the time is t = 0, end time is t = 60 sec, while
the global time is dt = 0:1 sec: In this simulation, the state

vector is considered xEst = ½0 0 0�T in which the xTrue = x
Est, while at the dead reckoning state xd = xTrue. The land-

mark coordinates are [xy], i.e., LM = ½0 15 ; 10 0 ; 15 20�:
The maximum range is set to be 20 at the initial stage and
parameter α = 1. For the input parameters, the time is set
to be T = 10 sec, the velocity is v = 1:0m/s, and yaw rate =
5 deg/sec. At the initial stage, the velocity is limited to v =
1:0m/s as can be seen in Figure 8; however, in the next
stage, the velocity is varying.

In the case of varying the velocities as can be seen in
Figure 7, the velocities are set to be v = 0:9m/s, v = 0:8m/s,
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Figure 7: The SLAM EKF performance for various v values: (a) v = 0:9m/s, (b) ‘, (c) v = 0:7m/s, and (d) v = 0:6m/s, where the green line
represents the dead reckoning calculation of the existing location, which is the outcome of the displacement function applied for the
previous location. The black mark is the ground truth information that is necessary for real-time localization. The red mark is the EKF-
SLAM. The blue asterisks represent the true landmarks, and the black circle is the estimated landmarks.
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v = 0:7m/s, and v = 0:6m/s. By varying the velocity of the
robot, the robot is diverging from its route and, therefore,
reduces the coverage area as can be seen in Figure 7(a)-
7(d). Also, the error between the true landmark and pre-
dicted landmark is increasing. On the other hand, for higher
velocities (more than v = 1:0m/s), the proposed algorithm is
not applicable, because in the SLAM, the robot is following
the prior defined map and the robot keeps communication
with the surrounding. However, in our previous study, we
mentioned the higher velocities for the robot, in the case of
EKF, UKF, and PF, the coverage area, and localization were
increasing by increasing the velocity. Furthermore, the max-
imum range was set to be 20 as shown in Figure 6, but by
modifying the maximum range to 30 or above, in this case
also, the robot diverges from its route of localization as
shown in Figure 9. Resultantly, the authors conclude that
the proposed algorithm is more suitable for constant velocity
which presents a high level of accuracy.

6. Comparison of the Proposed and
Other Algorithms

In the above sections, the authors investigated and evaluated
well about the proposed SLAM algorithms. However, to
demonstrate the effectiveness and better performance of the
planned algorithms, the authors present a brief comparison
of the proposed algorithms with other algorithms in this
section.

In [45], the authors presented a neurofuzzy-based adap-
tive EKF method. The purpose of this method is to estimate
the right value of matrix R at every stage. They plan an adap-
tive neurofuzzy EKF to lessen the variance among the theo-
retical and actual covariance matrices. The parameters for
this technique are then skilled offline by using a particle
swarm optimization method. A mobile robot steering with
a number of landmarks under two situations is assessed.

The technique is applied that the adaptive neurofuzzy EKF
provides development in performance effectiveness.

An EKF-based SLAM system for a mobile robot with sen-
sor bias estimation is presented in [46]. The authors pro-
posed an improved method for EKF which is practical to
the issue of mobile robot SLAM which has taken into consid-
eration the sensor bias issue. Mobile robot Pioneer 3-AT is
taken as the model for studying the theoretical derivation
and the authentication of the investigation in this work. At
first, the kinematic model of Pioneer 3-AT mobile robot is
introduced; then, the improved EKF method, taking into
account the issue of bias estimation and compensation, is
anticipated to increase the precision of the location estima-
tion. In addition, a study explores the autonomous location
and atmosphere mapping of stirring substances under the
dust and low lighting situations in underground underpasses.
The typical EKF algorithm has a problem that machine noise
and the prior statistical characteristics of the observed noise
cannot be predicted accurately. Thus, the authors presented
an enhanced EKF algorithm to accomplish a fuzzy adaptive
SLAM [45, 47, 48]. Therefore, to predict the position, a laser
matching is applied to the EKF prediction process, and the
weighted average location is used as the final location of the
predicted component. The machine noise and the weighted
value of experiential noise become fuzzily recognizable by
observing the variation of mean value and covariance. The
improved filtering algorithm is applied to a SLAM simulation
study and measure the impact on position estimation of four
dissimilar landmark measurements.

A recent approach strong tracking second-order (STSO)
central difference SLAM is presented in [49] which it is based
on the tracking second-order central difference KF. The pro-
posed procedure gathers the second-order central differential
filter (SOCDF), strong tracking filter (STF), and PF. Using
Cholesky decomposition, the algorithm uses the Sterling
Interpolation second-order method to solve a nonlinear sys-
tem problem. This methodology transmits directly in the
probabilistic estimation of SLAM by adding the covariance
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square root factor. Furthermore, in [50], a visual-inertial
SLAM feedback mechanism is presented for the real-time
motion assessment of the SLAM map. The main aspect of
this mechanism is that the front-end and the back-end can
support each other in the VISLAM. The output from the
back-end is fed to the KF-based front-end to decrease the
motion estimation error produced by the linearization of
the KF estimator. On the other hand, this more accurate
front-end motion estimation will improve back-end optimi-
zation as it provides the back-end with an exact primary
state. Similarly, the EKF-based SLAM approaches are pre-
sented in [33, 51, 52] which focus on the performance and
effectiveness of the SLAM. Each algorithm presents well in
its domain, but the proposed SLAM algorithms perform well
compared to the other SLAM algorithms.

7. Conclusion and Future Directions

In this work, the SLAM algorithm is proposed in two differ-
ent methods such as SLAM with linear KF and SLAM with
EKF. Firstly, SLAMwith linear KF is implemented in five dif-
ferent methods such as the motionless robot with absolute
measurement, moving vehicle with absolute measurement,
a motionless robot with relative measurement, moving vehi-
cle with relative measurement, and moving vehicle with rela-
tive measurement while the robot location is not detected.
The landmark position was set to be 10 for all five cases.
The mobile robot position or velocity and landmark position
are calculated by applying SLAM using a linear KF. Secondly,
the SLAM with EKF is implemented and an analytical
expression for the EKF-based SLAM algorithm is derived
and their presentation is evaluated. The SLAM algorithm
with EKF is evaluated in various scenarios, and several itera-
tions are applied to explain the performance of EKF-based
SLAM well. The proposed algorithm is simulated for varying
velocities, and their performance is presented in Figure 8.
Each process of localization is effective in its domain. In this
analysis, many localization factors such as velocity, coverage
area, localization time, and cross section area are taken into
consideration. The proposed SLAM-based algorithm perfor-
mance is intensively assessed by executing numerous itera-
tions as can be seen in the figures above. The planned
SLAM-based algorithms present a high precision while pre-
serving realistic computational complexity. The simulation
outcomes indicate that the planned SLAM algorithms can
accurately locate the landmark and mobile robot.

Future research will use more simulation and tests to
show the robustness of the SLAM in different scenarios and
landmarks. We will try to make a robot pilot more originally
and also apply SLAM with UKF and PF algorithms. In addi-
tion, improving the development of some standards for esti-
mating SLAM approaches, particularly for large-scale SLAM
in dynamic situations, is also important to make the results of
SLAM algorithms more valuable.
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