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Chapter 8

Simultaneous Localization and Mapping

in Marine Environments

Maurice F. Fallon, Hordur Johannsson, Michael Kaess, John Folkesson,

Hunter McClelland, Brendan J. Englot, Franz S. Hover, and John J. Leonard

Abstract Accurate navigation is a fundamental requirement for robotic systems—

marine and terrestrial. For an intelligent autonomous system to interact effectively

and safely with its environment, it needs to accurately perceive its surroundings.

While traditional dead-reckoning filtering can achieve extremely low drift rates,

the localization accuracy decays monotonically with distance traveled. Other ap-

proaches (such as external beacons) can help; nonetheless, the typical prerogative

is to remain at a safe distance and to avoid engaging with the environment. In this

chapter we discuss alternative approaches which utilize onboard sensors so that the

robot can estimate the location of sensed objects and use these observations to im-

prove its own navigation as well as its perception of the environment. This approach

allows for meaningful interaction and autonomy. Three motivating autonomous

underwater vehicle (AUV) applications are outlined herein. The first fuses external

range sensing with relative sonar measurements. The second application localizes
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relative to a prior map so as to revisit a specific feature, while the third builds an

accurate model of an underwater structure which is consistent and complete. In

particular we demonstrate that each approach can be abstracted to a core problem

of incremental estimation within a sparse graph of the AUV’s trajectory and the

locations of features of interest which can be updated and optimized in real time on

board the AUV.

8.1 Introduction

In this chapter we consider the problem of simultaneous localization and mapping

(SLAM) from a marine perspective. Through three motivating applications, we

demonstrate that a large class of autonomous underwater vehicle (AUV) missions

can be generalized to an underlying set of measurement constraints which can

then be solved using a core pose graph SLAM optimization algorithm known as

incremental smoothing and mapping (iSAM) [39].

Good positioning information is essential for the safe execution of an AUV

mission and for effective interpretation of the data acquired by the AUV [25, 46].

Traditional methods for AUV navigation suffer several shortcomings. Dead reckon-

ing and inertial navigation systems (INS) are subject to external disturbances and

uncorrectable drift. Measurements from Doppler velocity loggers can be used to

achieve higher precision, but position error still grows without bound. To achieve

bounded errors, current AUV systems rely on networks of acoustic transponders or

surfacing for GPS resets, which can be impractical or undesirable for many missions

of interest.

The goal of SLAM is to enable an AUV to build a map of an unknown

environment and concurrently use that map for positioning. SLAM has the potential

to enable long-term missions with bounded navigation errors without reliance on

acoustic beacons, a priori maps, or surfacing for GPS resets. Autonomous mapping

and navigation is difficult in the marine environment because of the combination of

sensor noise, data association ambiguity, navigation error, and modeling uncertainty.

Considerable progress has been made in the past 10 years, with new insights into

the structure of the problem and new approaches that have provided compelling

experimental demonstrations.

To perform many AUV missions of interest, such as mine neutralization and

ship hull inspection, it is not sufficient to determine the vehicle’s trajectory in post-

processing after the mission has been completed. Instead, mission requirements

dictate that a solution is computed in real time to enable closed-loop position control

of the vehicle. This requires solving an ever-growing optimization problem incre-

mentally by only updating quantities that actually change instead of recomputing

the full solution—a task for which iSAM is well suited.

Each application presents a different aspect of smoothing-based SLAM:

• Smoothing as an alternative to filtering: the use of nontraditional acoustic range

measurements to improve AUV navigation [18]
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• Relocalizing in an existing map: localizing and controlling an AUV using natural

features using a forward looking sonar [23]

• Loop closure used to bound error and uncertainty: combining AUV motion

estimates with observations of features on a ship’s hull to produce accurate hull

reconstructions [34]

A common theme for all three applications is the use of pose graph representations

and associated estimation algorithms that exploit the graphical model structure of

the underlying problem.

First we will overview the evolution of the SLAM problem in the following

section.

8.2 Simultaneous Localization and Mapping

The earliest work which envisaged robotic mapping within a probabilistic frame-

work was the seminal paper by Smith et al. [68]. This work proposed using an

extended Kalman filter (EKF) to estimate the first and second moments of the

probability distribution of spatial relations derived from sensor measurements.

Moutarlier and Chatila provided the first implementation of this type of algorithm

with real data [54], using data from a scanning laser range finder mounted on a

wheeled mobile robot operating indoors. The authors noted that the size of the state

vector would need to grow linearly with the number of landmarks and that it was

necessary to maintain the full correlation between all the variables being estimated;

thus, the algorithm scales quadratically with the number of landmarks [11].

The scalability problem was addressed by a number of authors. The sparse

extended information filter (SEIF) by Thrun et al. [73] uses the information form

of the EKF in combination with a sparsification method. One of the downfalls of

that approach was that it resulted in overconfident estimates. These issues were

addressed in the exactly sparse delayed-state filters (ESDFs) by Eustice et al. [14,15]

and later with the exactly sparse extended information filter (ESEIF) by Walter

et al. [78].

Particle filters have also been used to address both the complexity and the data

association problem. The estimates of the landmark locations become independent

when conditioned on the vehicle trajectory. This fact was used by Montemerlo

et al. [53] to implement FastSLAM. The main drawback of particle filters applied

to the high-dimensional trajectory estimation is particle depletion. In particular,

when a robot completes a large exploration loop and decides upon a loop closure,

only a small number of particles with independent tracks will be retained after any

subsequent resampling step.

In purely localization tasks (with static prior maps) particle filters have been

successful. Monte Carlo localization allowed the Minerva robotic museum guide to

operate for 44 km over 2 weeks [71]. More recently it has been used by Nuske et al.
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to localize an AUV relative to a marine structure using a camera [59], exploiting

GPU-accelerated image formation to facilitate large particle sets.

Filtering approaches have some inherent disadvantages when applied to the

SLAM problem: measurements are linearized only once based on the current state

estimate—at the time the measurement is added. Further, it is difficult to apply

delayed measurements or to revert a measurement once it has been applied to the

filter. The Atlas framework by Bosse et al. [6] addresses these issues by combining

local submaps and a nonlinear optimization to globally align the submaps. Each

submap has its own local coordinate frame, so the linearization point cannot deviate

as far from the true value as in the case of global parameterization.

8.2.1 Pose Graph Optimization Using Smoothing and Mapping

As the field has evolved, full SLAM solutions [47, 72] have been explored to

overcome the linearization errors that are the major source of suboptimality of

filtering-based approaches. Full SLAM includes the complete trajectory into the

estimation problem rather than just the most recent state. This has led to the SLAM

problem being modeled as a graph where the nodes represent the vehicle poses

and optionally also landmarks. The edges in this graph are measurements that put

constraints between these variables. By associating probability distributions to the

constraints, the graph can be interpreted as a Bayes network.

Under the assumption that measurements are corrupted by zero-mean Gaussian

noise, the maximum likelihood solution of the joint probability distribution is found

by solving a nonlinear least squares problem. Many iterative solutions to the SLAM

problem have been presented, such as stochastic gradient descent [28,60], relaxation

[10], preconditioned conjugate gradient [43], and loopy belief propagation [63].

Faster convergence is provided by direct methods that are based on matrix

factorization. Dellaert and Kaess [9] introduced the square root smoothing and

mapping (SAM) algorithm using matrix factorization to solve the normal equations

of the sparse least squares problem. Efficiency is achieved by relating the graphical

model to a sparse matrix in combination with variable reordering for maintaining

sparsity. Similar methods are used by [44, 45], and more efficient approximate

solutions include [27].

The aforementioned incremental smoothing and mapping algorithm provides an

efficient incremental solution [39]. In iSAM the matrix factorization is incremen-

tally updated using Givens rotations, making the method better suited for online

operations. In addition they developed an efficient algorithm for recovering parts of

the covariance matrix [36], which is useful for online data association decisions.

Recently, further exploration of the connection between graphical models and

linear algebra allowed a fully incremental formulation of iSAM. The Bayes tree

data structure [37] can be considered as an intermediate representation between the

Cholesky factor and a junction tree. While not obvious in the matrix formulation,

the Bayes tree allows a fully incremental algorithm, with incremental variable
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Fig. 8.1 Factor graph for the pose graph formulation of the SLAM problem. The large circles

are variable nodes, here the AUV states xi. The small solid circles are factor nodes: relative pose

measurements ui, absolute pose measurements ψi, a prior on the first pose p0, and loop closure

constraints c j

reordering and fluid relinearization. The resulting sparse nonlinear least squares

solver is called iSAM2 [38].

Using a nonlinear solver for the full SLAM problem overcomes the problems

caused by linearization errors in filtering methods, and it is also the case that

estimation of the full trajectory results in a sparse estimation problem [9]. It is not

necessary to explicitly store the correlation between all the landmarks, making these

methods very efficient. One downside is that the problem grows with time (or at least

distance traveled) instead of the size of the environment, although the rate of growth

is not significant for the applications discussed in this chapter.

8.2.2 Mathematical Summary

In this section, we will briefly present the mathematical formulation of the full

SLAM problem as a nonlinear least squares optimization. The full SLAM problem

can be described as a constantly growing factor graph. A factor graph is a bipartite

graph consisting of variable nodes and factor nodes, connected by edges. The factor

graph represents a factorization of a function f (X) over some variables X = {xi}N
i=0:

f (X) =
K

∏
k=1

fk(Xk) (8.1)

where Xk denotes the subset of variables involved in the kth factor. The factor

nodes F = { fk}
K
k=1 represent constraints involving one or more variables. Each edge

connects one factor node with one variable node.

For our navigation setting, consider the simple factor graph example in Fig. 8.1,

where the variable nodes x1 . . . xN represent the vehicle states sampled at discrete

times, together forming the vehicle trajectory. Here, the factor nodes F are

partitioned into multiple types that represent relative pose constraints ui between
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consecutive poses, absolute pose constraints ψi on individual poses, and loop

closure constraints c j on arbitrary pairs of poses form these measurements.

When assuming Gaussian measurement noise, we arrive at a nonlinear least

squares problem. Under the Gaussian assumption, a measurement zk is predicted

based on the current estimate Xk through a deterministic function hk and with added

zero-mean Gaussian measurement noise vk with covariance Λk:

zk = hk(Xk)+ vk vk ∼N (0,Λk) (8.2)

Hence, the factor fk to encode the actual measurement zk is defined as

fk(Xk) ∝ exp

(

−
1

2
‖hk(Xk)− zk‖

2
Λk

)

(8.3)

where ‖x‖2
Σ := x⊤Σ−1x. To find the nonlinear least squares solution X̂ we make use

of the monotonicity of the logarithm function for converting the factorization into a

sum of terms:

X̂ =argmax
X

K

∏
k=1

fk(Xk) (8.4)

=argmin
X

− log
K

∏
k=1

fk(Xk) (8.5)

=argmin
X

K

∑
k=1

− log fk(Xk) (8.6)

=argmin
X

K

∑
i=k

‖hk(Xk)− zk‖
2
Λk

(8.7)

Standard Gauss-Newton [26]-based solutions, such as Levenberg-Marquardt or

Powell’s dog leg, repeatedly linearize and solve this sparse nonlinear least squares

problem. By stacking the linearized equations, a sparse matrix A is obtained whose

block structure mirrors the structure of the factor graph

δ X̂ = argmin
δX

‖AδX − b‖2
(8.8)

The vector b contains the measurements and residuals; details are given in [9].

This linear system can be solved by matrix factorization and forward and back

substitution. After each iteration the current estimate is updated by X̂ ← X̂ + δ X̂ .

The new estimate is then used as new linearization point, and the process is iterated

until convergence.

iSAM [38,39] provides an incremental solution to Gauss-Newton style methods,

in particular Powell’s dog leg [65]. When new measurements are received, this

approach updates the existing matrix factorization rather than recalculating the
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nonlinear least squares system anew each iteration. For a detailed account of this

process, the reader is referred to the original papers.

8.2.3 Data Association

A fundamental problem in feature-based SLAM is the correct association of point

measurements from different time steps to one another. Given a series of raw laser,

camera, or sonar measurements, the challenge is to identify the observed features

which originated from the same physical entity. Knowledge of this data association

provides a set of valid measurement constraints. As explained previously, these

constraints can be optimized efficiently; however, this data association problem

must first be solved.

Data association in its most generalized form is a well-studied problem, for

example [58]. Where the measurements are indistinct, noisy, or contradictory, there

remains the possibility of association errors. A core weakness of current SLAM

approaches is brittleness and suboptimality resulting from these errors becoming

“baked into” the optimization problem. Currently, the predominant approach is to

avoid adding such associations if not absolutely confident in their correctness—

instead assuming access to informative sensor data at a later time. That is the

approach we are taking for ship hull inspection in Sect. 8.6, where navigation

uncertainty of the onboard sensors is low, allowing for many minutes of open-loop

navigation without significant loss of accuracy.

Discarding uninformative sensor information unfortunately is not a luxury

available in many AUV applications in which interesting features are often rare.

While approaches which maintain multiple data association hypotheses for an

extended time have been proposed, the exponential growth in the size of a hypothesis

tree cannot be supported indefinitely. In Sect. 8.5 we present an application which

tackles this problem in a typical marine environment for a low-cost AUV with

significant navigation uncertainty. Data association decisions are taken just after

a feature has left the field of view so as to have access to all available observations

of a particular feature before making the critical association decision.

While a detailed discussion of the field of data association is outside the scope of

this work, it remains a problem specific to each problem or application.

8.3 Navigation in Marine Environments

In the following sections we will motivate the use of the smoothing and mapping

approach by way of three separate autonomous marine applications. In particular,

we will demonstrate that the estimation problem at the heart of each application can

be reduced to a set of navigation and perception constraints which can be optimally,

incrementally, and efficiently solved using the iSAM algorithm.
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First we will give a more general overview of SLAM in marine environments.

The modern AUV contains proprioceptive sensors such as compasses, fiber-optic

gyroscopes (FOG), and Doppler velocity loggers (DVL) [82]. The sensor output

of these sensors is fused together using navigation filters, such as the EKF, to

produce a high-quality estimate of the AUV position and uncertainty. This estimate

is then used by the AUV to inform onboard decision-making logic and to adaptively

complete complex survey and security missions. Kinsey et al. provides a survey of

state-of-the-art approaches to AUV navigation [42].

Acoustic ranging has been widely used to contribute to AUV navigation [84,85].

Long baseline (LBL) navigation was initially developed in the 1970s [30, 33]

and is commonly used by industrial practitioners [51]. It requires the installation

of stationary beacons at known locations surrounding the area of interest which

measure round-trip acoustic time of flight before triangulating for 3-D position

estimation. Operating areas are typically restricted to a few square kilometers.

Ultrashort baseline (USBL) navigation [48] is an alternative method which is

typically used for tracking an underwater vehicle’s position from a surface ship.

Range is measured via time of flight to a single beacon, while bearing is estimated

using an array of hydrophones on the surface vehicle transducer. Overall position

accuracy is dependent on many factors, including the range of the vehicle from the

surface ship, the motion of the surface ship, and acoustic propagation conditions.

In addition, many modern AUVs have multiple exteroceptive sensors. Side-scan

sonar, initially developed by the US Navy, has been widely used for ship, ROV,

and AUV survey since its invention in the 1950s. More recently, forward looking

sonars, with the ability to accurately position a field of features in two dimensions,

have also been deployed for a variety of applications such as 3-D reconstruction

[31] and harbor security [13, 40, 49, 64]. In scenarios in which water turbidity is not

excessively high, cameras have been used to produce accurate maps of shipwrecks

and underwater historical structures, for example, the mapping of RMS Titanic [16]

and of Iron Age shipwrecks [3].

These more recent applications have a common aspect; to maintain consistency

of sensor measurements over the duration of an experiment, smoothing online of an

AUV’s trajectory and the location of measured features is necessary. We will now

demonstrate how SLAM smoothing in a marine environment is applied in practice.

8.4 Smoothing: Cooperative Acoustic Navigation

The first application we will consider is that of cooperative acoustic navigation.

In this application non-traditional sources of acoustic range measurements can be

used to improve the navigation performance of a group of AUVs with the aim of

achieving bounded error or at the least reducing the frequency of GPS fix surfacings.

Within the context of the data association discussion in Sect. 8.2.3, this appli-

cation is much simpler in that the acoustic range measurements are paired with
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the location of the surface beacon originating them—by design. This avoids data

association entirely.

Following on from traditional LBL navigation, the moving long baseline

(MLBL) concept proposed two mobile autonomous surface vehicles (ASVs) aiding

an AUV using acoustic modem ranging. This was proposed by Vaganay et al. [75]

and extended by Bahr et al. [1, 2]. This concept envisaged the ASVs transmitting

acoustic modem messages containing their GPS positions paired with a modem-

estimated range to the AUV which could then uniquely fix its position while

maintaining full mobility—which is not afforded by typical LBL positioning.

More recent research has focused on utilizing only a single surface vehicle to

support an AUV using a recursive state estimator such as the extended Kalman filter

[19] or the distributed extended information filter (DEIF) [81].

For many robotic applications, however, estimating the vehicle’s entire trajectory

as well as the location of any observed features is important (e.g., in survey

missions). As mentioned previously, the EKF has been shown to provide an

inconsistent SLAM solution due to information lost during the linearization step

[35]. Furthermore, our previous work, [22], demonstrated (off-line) the superior

performance of NLS methods in the acoustic ranging problem domain versus

both an EKF and a particle filtering implementation—although requiring growing

computational resources. For these reasons we present here an application in which

iSAM is used for full pose trajectory estimation using acoustic range data.

Additionally we demonstrate that mapping of bottom targets (identified in side-

scan sonar imagery) can be integrated within the same optimization framework.

The effect of this fusion is demonstrated in Fig. 8.2. This figure demonstrates the

alignment of side-scan sonar mosaics from three separate observations of the same

feature. Without optimizing the entire global set of constraints, the resultant data

reprojection would be inconsistent.

As an extension, we demonstrate the ability to combine relative constraints across

successive missions, enabling multi-session AUV navigation and mapping, in which

data collected in previous missions is seamlessly integrated online with data from

the current mission on board the AUV.

8.4.1 Problem Formulation

The full vehicle state is defined in three Cartesian and three rotation dimensions,

[x,y,z,φ ,θ ,ψ ]. Absolute measurements of the depth z, roll φ , and pitch θ are

measured using a water pressure sensor and inertial sensors. This leaves three

dimensions of the vehicle to be estimated in the horizontal plane: x,y,ψ .

The heading is instrumented directly using a compass, and this information is

integrated with inertial velocity measurements to propagate estimates of the x and y
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Fig. 8.2 Optimizing the entire set of vehicle poses and target observations facilitates explicit

alignment of sonar mosaics and understanding of the motion of the AUV during the mission. This

allows for reactive decision making in the water—as opposed to post-processing which is common

currently. In this figure this optimization allows three different observations of a single target to be

explicitly aligned

position.1 This integration is carried out at a high frequency (∼ 10 Hz) compared to

the exteroceptive range and sonar measurements (∼ 1 Hz).

The motion of the vehicle at time step i is described by a Gaussian process model

as follows:

ui = hu(xi−1,xi)+wi wi ∼ N(0,Σi) (8.9)

where xi represents the 3-D vehicle state (as distinct from the dimension x above).

Note that while the heading is directly estimated using a compass, we use this

estimate only as a prior within the smoothing framework. In this way the smoothed

result will produce a more consistent combined solution.

1In our case this integration is carried out on a separate proprietary vehicle control computer, and

the result is passed to the payload computer.
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8.4.1.1 Acoustic Ranging

Instead of either LBL or USBL, our work aims to utilize acoustic modems, such

as the WHOI Micro-Modem [24], which are already installed on the majority of

AUVs for command and control. The most accurate inter-vehicle ranging is through

one-way travel-time ranging with precisely synchronized clocks, for example, using

the design by Eustice [17], which also allows for broadcast ranging to any number

of vehicles in the vicinity of the transmitting vehicle. An alternative is round-trip

ranging, which, while resulting in more complexity during operation and higher

variance, requires no modification of existing vehicles.

Regardless of the ranging method, the range measurement r j,3D, a 2-D estimate

of the position of the transmitting beacon, g j = [xg j,yg j], and associated covariances

will be made known to the AUV at intervals on the order of 10–120 seconds. Having

transformed the range to a 2-D range over ground r j (using the directly instrumented

depth), a measurement model can be defined as follows:

r j = hr(x j,b j)+ µ j µ j ∼ N(0,Ξ j) (8.10)

where x j represents the position of AUV state at that time. GPS measurements g j

of the beacon position b j are assumed to be distributed via a zero-mean normal

distribution with covariance Ξ j.

Comparing the onboard position estimates of the AUV and the ASV in the

experiments in Sect. 8.4.2, round-trip ranging is estimated to have a variance of

approximately 7 m, compared with a variance of 3 m for one-way ranging reported

in [22]. An additional issue is that with the ranging measurement occurring as much

as 10 s before the position and range are transmitted to the AUV, an acausal update

of the vehicle position estimate is required.

The operational framework used by Webster et al. [80, 81] is quite similar to

ours. Their approach is based on a decentralized estimation algorithm that jointly

estimates both the AUV position and that of a supporting research vessel using a

distributed extended information filter. Incremental updates of the surface vehicle’s

position are integrated into the AUV-based portion of the filter via a simple and

compact addition which, it is assumed, can be packaged within a single modem

data packet.

This precise approach hypothesizes the use of a surface vehicle equipped with

a high accuracy gyrocompass and a survey-grade GPS (order of 0.5 m accuracy).

Furthermore, as described in [80], the approach can be vulnerable to packet

loss, resulting in missing incremental updates which would cause the navigation

algorithm to fail. While rebroadcasting strategies to correct for such a failure could

be envisaged, it is likely that significant (scarce) bandwidth would be sacrificed,

making multi-vehicle operations difficult.

Our approach instead aims to provide independent surface measurements to the

AUV in a manner that is robust to inevitable acoustic modem packet loss. The

goal is a flexible and scalable approach that fully exploits the one-way travel-time
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am
dm,3D

dm,2D

ψm

Fig. 8.3 (a) As the AUV travels through the water, the side-scan sonar images laterally with

objects on the ocean floor giving strong returns. (b) A top-down projection of the side-scan sonar

for a 120 m of vehicle motion (left to right). The lateral scale is 30 m in each direction which yields

a 1:1 aspect ratio. Note that in this case targets 1 and 2 have been observed twice each after a turn

ranging data that the acoustic modems enable. The solution should be applicable to

situations in which only low-cost GPS sensors are available on the ASVs or gateway

buoys to provide maximum flexibility.

8.4.1.2 Side-Scan Sonar

To demonstrate the compatibility of this approach with typical side-scan sonar

surveys, the algorithm was extended to support relative observations from the sonar

in a SLAM framework.

Side-scan sonar is a common sonar sensor often used for ocean sea-floor

mapping. As the name suggests, the sonar transducer device scans laterally when

towed behind a ship or flown attached to an AUV through the water column. A

series of acoustic pings are transmitted, and the amplitude and timing of the returns

combined with speed of sound in water are used to determine the existence of

features located perpendicular to the direction of motion.

By the motion of the transducer through the water column, two-dimensional

images can be produced which survey the ocean floor and features on it. See

Fig. 8.3 for an example side-scan sonar image. These images, while seemingly

indicative of what exists on the ocean floor, contain no localization information

to register them with either a relative or global position. Also it is often difficult to

repeatedly detect and recognize features of interest; for example, Fig. 8.3 illustrates

two observations each of two different targets of interest. Target 1 (a metallic

icosahedron) appears differently in its two observations. Also targets are typically
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not identified using the returned echoes from the target itself but by the shadow cast

by the target [12].

For these reasons we must be careful in choosing side-scan sonar features

for loop closure. Appearance-based matching techniques, such as FABMAP [8],

would most likely encounter difficulties with acoustic imagery. Metric-based feature

matching requires access to accurate, fully optimized position and uncertainty

estimates of the new target relative to all previously observed candidate features.

For these reasons, we will use iSAM to optimize the position and uncertainty of the

entire vehicle trajectory, the sonar target positions, as well as all the beacon range

estimates mentioned in Sect. 8.4.1.1.

The geometry of the side-scan sonar target positioning is illustrated in Fig. 8.3.

Distance from the side-scan sonar to a feature corresponds to the slant range, dm,3D,

while the distance of the AUV off the ocean floor (altitude, am) can be instrumented.

We will assume the ocean floor to be locally flat which allows the slant range to

be converted into the horizontal range, resulting in the following relative position

measurement:

dm,2D =
√

d2
m,3D − a2

m (8.11)

ρm = ±π/2 (8.12)

where ρm is the relative bearing to the target defined from the front of the vehicle

anticlockwise. These two measurements paired together give a relative position

constraint, zm = [dm,2D,ρm] for an observation of target sm. This target can either

be a new, previously unseen target or a reobservation of an older target. In the

experiments in Sect. 8.4.2 this data association is done manually, while in future

work we will aim to do this automatically as in [69]. The resultant measurement

model will be as follows:

zm = hz(xm,sm)+ vm vm ∼ N(0,Λm) (8.13)

where xm is the pose of the AUV at that time. In effect, repeated observations of

the same sonar target correspond to loop closures. Such repeated observations of

the same location allow uncertainty to be bounded for the navigation between the

observations.

8.4.1.3 Integration into the SAM Framework

Using the set of J acoustic ranges, M side-scan sonar constraints as well as the N

incremental inertial navigation constraints, the optimization problem is formulated

as follows:
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Fig. 8.4 Factor graph formulation of the measurement system showing vehicle states xi, surface

beacons b j , and sonar targets sk. Also illustrated are the respective constraints: range r j in the case

of the surface beacons and range and relative bearing zm in the case of sonar targets. Ranges are

paired with surface beacon measurements, while multiple observations of a particular sonar target

is in effect a loop closure. The initial pose is constrained using an initial prior p0 using the GPS

position estimate when the AUV dived

X̂ =argmin
X

N

∑
i=1

‖hu(xi−1,xi)− ui‖
2
Σi

+
J

∑
j=1

∥

∥b j − g j

∥

∥

2

Φ j
+

J

∑
j=1

∥

∥hr(x j,b j)− r j

∥

∥

2

Ξ j

+
M

∑
m=1

‖hz(xm,sm)− zm‖
2
Λm

(8.14)

In summary, x j represents the vehicle pose when measuring the range r j to beacon

b j, xm is the pose when observing sonar target sm at relative position zm, and finally

ui is the control input between poses xi−1 and xi. Unlike the simple derivation

outlined in Sect. 8.2.2, the beacon and target positions require explicit insertion into

the problem factor graph. The corresponding factor graph is illustrated by Fig. 8.4.

8.4.2 Experiments

A series of experiments were carried out in St. Andrews Bay in Panama City, Florida

to demonstrate this proposed approach. A Hydroid REMUS 100 AUV carried out

four different missions while collecting side-scan sonar data (using a Marine Sonic

transducer) as well as range and GPS position information transmitted from either
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Fig. 8.5 The vehicles used in our experiments: the Hydroid REMUS 100 AUV was supported by

the MIT Scout ASV or by the research vessel—the Steel Slinger

the Scout ASV (Fig. 8.5) or a deck box on the 10 m support vessel. In each case, a

low-cost Garmin 18x GPS sensor was used to provide GPS position estimates.

The Kearfott T16 INS, connected to the REMUS front-seat computer, fused its

FOG measurements with those of a Teledyne RDI DVL, an accelerometer and a GPS

sensor to produce excellent navigation performance. For example after a 40 min

mission the AUV surfaced with a 2 m GPS correction—drift of the order of 0.1% of

the distance traveled.

The AUV did not have the ability to carry out one-way ranging, and as a result,

two-way ranging was used instead. The navigation estimate was made available to a

backseat computer which ran an implementation of the algorithm in Sect. 8.2.2 (less

the sonar portion).

Given the variance of two-way ranging (∼7 m) and the accuracy of the vehicle

INS, it would be ambitious to expect to demonstrate significant improvement

using cooperative ranging-assisted navigation in this case. For this reason these

missions primarily present an opportunity to validate and demonstrate the system

with combined sensor input and multiple mission operation.
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Fig. 8.6 An overview of the optimized trajectory estimates of the AUV (blue) and the surface

vehicle (red), as well as the estimated position of three sonar targets (magenta) for two of the

missions. The mutually observed feature in the southeast allows for the joint optimization of the

two missions. This corresponds to target 3 in Fig. 8.7. The red lines indicate the relative vehicle

positions during ranging, while the ellipses indicate position uncertainty

For simplicity, we will primarily focus on the longest mission—Mission 3 in

Fig. 8.7—before discussing the extension to successive missions in Sect. 8.4.2.3.

The missions are numbered chronologically.

8.4.2.1 Single Mission

During Mission 3, the AUV navigation data was combined with the acoustic

range/position pairs and optimized online on board the AUV using iSAM to produce

a real-time estimate of its position and uncertainty. After the experiments, sonar

targets were manually extracted from the Marine Sonic data file and used in

combination with the other navigation data to produce the combined optimization

illustrated in Fig. 8.6. (The two remaining applications of this chapter describe

online algorithms for sonar processing.)

An overview of the mission is presented in Fig. 8.7 as well as quantitative results

from the optimization where 3σ uncertainty was determined using 3
√

σ2
x +σ2

y .

Starting at (400, 250), the vehicle carried out a set of four re-identification (RID)

patterns. These overlapping patterns are designed to provide multiple opportunities

to observe objects on the ocean floor using the side-scan sonar. Typically this

mission is carried out after having first coarsely surveyed the entire ocean floor. In

this case two artificial targets were placed at the center of patterns 2 and 3 and were

detected between 15–24 min (6 times) and 27–36 min (7 times), respectively. The

surface beacon, in this case the support vessel on anchor at (400, 250), transmitted

round-trip ranges to the AUV on a 20-second cycle.
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Fig. 8.7 (a) Navigation uncertainty for Mission 3 for four different algorithm configurations.

Acoustic ranging alone can bound error growth—subject to observability (red), while the full sonar

and acoustic fusion produces the solution with minimum uncertainty (magenta). (b) During the

four (consecutive) missions, range measurements (represented by the red lines) were frequently

received from the ASV (Mission 1 and 2) or the research vessel (Mission 3 and 4). Occasionally

targets were detected in the side-scan sonar data. Repeated observations of the same target

(illustrated in magenta) allow for a SLAM loop closure and for interloop uncertainty to be bounded

8.4.2.2 Analysis

A quantitative analysis of the approach is presented in Fig. 8.7. The typical case

(black) of using only dead reckoning for navigation results in ever-increasing

uncertainty. The second approach (blue) utilizes target re-identifications in the sonar

data but not acoustic range measurements. This temporarily halts the growth of

uncertainty, but monotonic growth continues in their absence.

Acoustic ranging by comparison (red) can achieve bounded error navigation—

in this case with a 3σ -bound of about 2 m. As the AUV’s mission encircled the

support vessel, sufficient observability was achieved to properly estimate the AUV’s

state—which results in the changing alignment of the uncertainty function. However

performance deteriorates when the relative positions of the vehicles do not vary

significantly (such as during patterns 3–4; 40–53 min).

Finally, the best performance is observed when the sonar and acoustic ranging

data are fully fused. Interestingly, the two modalities complement each other: during

re-identification patterns 2 and 3, sonar target observations bound the uncertainty

while the AUV does not move relative to the support vessel. Later the vehicle transits

between patterns—allowing for the range observability to improve.

In summary, the combination of the onboard, sonar, and ranging sensor mea-

surements allows for online navigation to be both globally bounded and locally

drift-free.
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8.4.2.3 Multiple Missions

In this section we will describe how the algorithm has been extended to combine the

maps produced by multiple successive AUV missions within a single optimization

framework. As mentioned in previous sections, it is advantageous to provide a robot

with as much prior information of its environment before it begins its mission, which

it can then improve on as it navigates.

Space considerations do not permit a full analysis of this feature, but briefly:

during Missions 1 and 2, surface information was transmitted from an autonomous

surface vehicle, MIT’s Scout kayak (shown in Fig. 8.5), which moved around the

AUV so as to improve the observability of the AUV, as previously demonstrated in

[22]. In Mission 4, as in Mission 3, the support vessel was instead used—although in

this case, the support vessel moved from a location due east of the AUV to another

location due west of the AUV, as illustrated in Fig. 8.6. This demonstrates that a

basic maneuver by the support vessel is sufficient to ensure mission observability.

The mission started at (350, 200).

Figure 8.7 illustrates the intermission connectivity. This demonstrates that the

two targets were observed numerous times during the missions, which allows us

to combine the navigation across all of the missions into a single fully optimized

estimate of the entire operation area.

While such an approach could possibly be carried out for several vehicles

operating simultaneously, sharing minimal versions of their respective maps [21],

it is unclear if the acoustic bandwidth available would be sufficient to share sonar

target observation thumbnails to verify loop closure.

8.4.3 Discussion

In this section we presented a method for the fusion of onboard proprioceptive

navigation and relative sonar observations with acoustic ranges transmitted from

an autonomous surface vehicle. It allows for operation for many hours in real

time for missions of the type described above. Factors resulting in a reduction in

performance of this approach are as follows: (1) infrequent ranging, (2) ranging

from the same relative direction, and (3) sonar targets not being present or being

infrequently observed. We estimate that the bounded error for a non-FOG enabled

AUV with several percent drift would be of the order of 3–5 m (depending on the

relative geometry and frequency of the one-way travel-time range measurements).

The specific acoustic ranging problem defined above is one problem in a wider

class of problems each of which is defined by the connectivity of the fleet of vehicles

and the direction of information flow (which result in inter-vehicle correlations

being created). A recent overview of the various subproblems is presented in [77].
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Fig. 8.8 iRobot Ranger—a low-cost single-man portable AUV

8.5 Localization Using a Prior Map

In this second application we consider the challenge of using a prior map (generated

using techniques described above) as part of a greater mission to neutralize mines in

very shallow water—a task that has traditionally been carried out by human divers.

The potential for casualties associated with this method of mine countermeasures

(MCM) motivates the use of unmanned systems to replace human divers. While

tethered robotic vehicle could be remotely controlled to perform MCM, a solution

using untethered AUVs offers numerous advantages.

When mission requirements dictate that vehicle cost must be extremely low, the

navigation problem for target reacquisition is quite challenging. The crux of the

problem is to achieve good navigation performance despite the use of sensors with

very low cost.

Resultantly the application unfolds within the context of a multiple-step effort,

involving a variety of vehicles and technologies. The mission assumes a target

field of moored and bottom mines along a shoreline. In this scenario, a remote

environmental measuring unit (REMUS) AUV [76] (Fig. 8.5) performs a survey of

the operating area, scouting the operating area, and collecting data using its side-

scan sonar. The REMUS data are used to create an a priori map of the underwater

environment via processing software developed by SeeByte, Ltd. This a priori map

consists of the locations of any strong sonar features in the target field.

This map and the location of the feature of interest (FOI) acts as input to a

second low-cost relocalization vehicle. In the mission scenario we aim to release

this vehicle at a distance of 100 to 1,500 m from the center of the prior map and

have it swim at the surface close to the feature field before diving to the seabed.

Upon reentering this feature field, the vehicle will extract features from its sonar

and use these features to build a map of the features.

Having reobserved a sufficient number of features, the AUV will localize relative

to the a priori map and attach itself to the FOI. If successful, the AUV will self-

detonate or place an explosive charge. Because of this the vehicle is not intended

to be recoverable. For these reasons a low-cost vehicle design requirement has had

significant impact on the SLAM algorithms mentioned here.
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Overview of Vehicles Used

The vehicle used in development has been the iRobot Ranger AUV [66]. This

vehicle was equipped with a depth sensor, altimeter, GPS receiver, a 3-D compass,

an acoustic pinger, and a Blueview Proviewer 900 kHz forward looking sonar. The

vehicle’s design was intended to be low cost and light weight. As indicated by

Fig. 8.8, it is single-man portable and deployable.

The design of the vehicle incorporates a propeller which is entirely servoed. This

allows the vehicle to be highly maneuverable with a very tight turning radius of

0.5 m (compared with 10 m for the REMUS 100). This is of particular importance

for the target homing at the end of the mission. The cruising speed of the AUV

is quite low at about 0.6 m/s—comparable with typical surface currents. Thus, the

dead-reckoning error due to the current can be quite significant. Given the small

diameter of the vehicle, a processor smaller than the typical PC104 generation with

limited capability was used. This resulted in severe processing restrictions which

are mentioned in subsequent sections.

The vehicle specifically did not have a DVL, used for precise velocity estimation

due to cost regions. It would be remiss for us not to mention that the current range

of FLS devices are comparable in price to a typical DVL; however, a significant

proportion of this price represents the overhead cost of research and development.

The manufacturer expects that mass production can reduce cost by an order of

magnitude. Nonetheless the utility of the capabilities outlined herein go far beyond

this particular application.

While the Hydroid REMUS 100 was primarily used as a survey vehicle (as

discussed in Sect. 8.5.2), it was also used in several experiments demonstrated in

Sect. 8.5.5.

Marine Vehicle Proprioception

At high-frequency depth estimates, altimeter altitudes, GPS fixes and compass

estimates of roll, pitch and heading are fused with actuation values (orientation

of the servoed propeller and the estimated propeller RPM) using a typical EKF

prediction filter to produce an estimate of the vehicle position and uncertainty

at each time. In benign current-free conditions, with careful tuning and excellent

compass calibration, this procedure produced a dead-reckoning estimate with about

1% error per distance traveled.

However as we transitioned to more challenging current-prone conditions in later

stages of the project (as discussed in Sec. 8.4.2), a current estimation model was

developed so as to reject the vehicle’s drift in this situation. (Because of the nature

of this project, it is not possible to use the aforementioned DVL-enabled vehicle’s

estimate of the current profile.) This module is designed to be run immediately prior

to the mission as the vehicle approaches the target field.

This simplistic model performed reasonably well in smaller currents (below

0.3 m/s) and allowed the AUV to enter the field. After this, success was primarily

due to the sonar-based SLAM algorithm (outlined in Sect. 8.5.2). In this current
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Fig. 8.9 The sonar image generation process for a single sonar beam. Each beam return is an

vector of intensities of the returned sonar signal with objects of high density resulting in high

returns and shadows resulting in lower intensities

regime, we were able to enter the field approximately 85% of the time using this

model, and we estimate the error as about 5% per distance traveled.

8.5.1 Forward Looking Sonar Processing

The sonar is our most important sensor allowing the AUV to perceive its environ-

ment. During the project a series of Blueview Proviewer FLS sonars were used. In

this section we will give an overview of the sensor technology before presenting our

sonar processing algorithms in Sect. 8.5.1.1.

The Proviewer FLS operates using Blazed Array technology [70]. Typically the

sonar consisted to two transducer heads (horizontal and vertical) each with a field

of view of 45◦, although 90◦ and 135◦ units were later used.

An outgoing ensonifying signal (colloquially known as a “ping”) reflects off of

objects of incidence (in particular metal and rock), and the phase, amplitude, and

delay of the returned signals are processed to produce a pattern as indicated in

Fig. 8.9 (by the manufacturer BlueView). This return is evaluated for each array

element with one-degree resolution in the plane of the head, and the output is then

fused together via digital signal processing to produce the image in Fig. 8.10.

The outgoing sonar signal also has a significant lobe width, φ ∼ 20◦, which

means that there is significant ambiguity as to the location of the returning object
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Fig. 8.10 Typical underwater camera and sonar images. The clear water and well-lit scenario

represents some of the best possible optical conditions; nonetheless, visibility is only a few meters.

This 90◦ Blazed Array sonar horizontal image indicates 3 features (one at 5 m in front; one at 20 m

and 5◦ to the left and one at 35 m and 40◦ to the left)—which is more than typical

in the axis off of the return. This distribution was used to estimate the elevation of

detections using only the horizontal image.

8.5.1.1 Sonar Feature Detection

In this section we will outline our algorithms which extract point features from

regions of high contrast. Forward looking sonar has previously been used for

obstacle detection and path planning as in [62]; in this application the feature

extraction is focused on conservative estimation of all detected objects given the

very noisy output of the FLS systems. Finally, [7] carried out multi-target tracking

of multiple features from a FLS using a PHD filter.

Most normal objects are visible at 20 m, while very brightly reflective objects

are detectable to 40 m. Adaptability to bottom reflective brightness was achieved

by the online estimation of an average background image immediately after the

vehicle leveled out at its cruising depth. Estimating this background noise image was

essential for us to achieve excellent performance in both sandy and muddy bottom

types. Having done this, the features are detected based on gradients of the sonar

image in each of four different sonar regions. The specific details of our feature

detector and a quantitative analysis of its performance are available in [20, 23].

In terms of processing, the feature detector uses negligible processing power. The

formation of the input image (using the Blueview SDK)—the input to this process—

requires a substantial 180 ms, per image. The feature detector requires about 18 ms

while the remaining CPU power is used to fuse the measurements, to make high

level mission decisions and to control the AUV.
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Composite Measurements

Dense TrajectoryFig. 8.11 As the robot

explores, a pose (black) is

added to the graph at each

iteration, while feature

detections (red) are also

added to produce a dense

trajectory. This dense

trajectory is very large, so we

periodically marginalize

portions of the trajectory and

the feature observations into

composite measurements

(green) at a much lower rate

8.5.2 Marine Mapping and Localization

As in the case of cooperative acoustic navigation, this application results in a series

of constraints which can be optimized to best inform the AUV of its location relative

to the map.

The complexity of the system of equations is tied to the sparseness of the A matrix

which is itself dependent on the fill-in caused by loops in the graph structure. We

explicitly avoid carrying out loop closures in this filter so as to maintain sparsity.

All of this ensures that the matrices remain sparse and computation complexity

predictable. Decomposition will not grow in complexity at each iteration, while the

computational cost of back substitution will grow, but it is linear.

So as to avoid computational growth due to an ever-increasing graph size and

also to produce an input to the next estimation stage, we periodically rationalize

the oldest measurements from this graph to form a composite measurement. To

do this we marginalize out all the poses that have occurred during the previous

(approximately) 10 s period to produce a single node for the relative motion for that

period as well as nodes for fully detected features and the associated covariances.

This approach is very similar in concept to key frames in vision SLAM and is

illustrated in Fig. 8.11.

We time this marginalization step to occur after a feature has left the sonar

field of view as this allows us to optimally estimate its relative location given

all available information. This composite measurement is then added to a lower-

frequency higher-level graph. This low-frequency graph is used as input to the prior

map matching algorithm in Sect. 8.5.3. Meanwhile the high-frequency graph begins

to grow again by the insertion of newer constraints into Ai.

An alternative approach would be to maintain the dense trajectory of the robot

pose at all times. This is the approach taken by iSAM [39]; however, given the

size of the resultant graph, we are not certain that such an approach would have

been able to yield a computationally constant solution required for our low-powered

embedded CPU.



352 M.F. Fallon et al.

Additionally and unlike most land-based systems, the underwater domain is

characterized by extended periods where the seabed is featureless for long distances

and the resultant composite measurement is simply the relative trajectory of the

distance traveled.

8.5.2.1 Feature Tracking

While the section above explains how the graph of the trajectory and sonar

observations is optimized and efficiently solved, we have not discussed the way

in which sonar targets are proposed.

The sonar detector passes point extractions to a target nursery which maintains a

vector of all recent detections. The nursery feature projects the detections into a local

coordinate frame using the recent vehicle dead reckoning and uses a probabilistic

distance threshold to associate them with one another. Should a sufficiently large

number of detections be clustered together (approximately 7–8 but dependent on the

spread and intensity of detections), it is inferred that a consistent physical feature is

present.

At this stage this nursery feature is added to the square root smoother. All of the

relative AUV-to-point constraints for that feature are then optimized which results

in improved estimation of the feature and the AUV trajectory. Subsequent point

detections, inserted directly into the pose graph, result in an improved estimate via

further square root smoothing. This approach also estimates the height/altitude of

the sonar target using the sonar intensities measured at each iteration.

Finally it should be noted that the input to this feature tracker are point features

characterized only by their location and covariance (due to the poor resolution of the

sensor). This makes it difficult to robustly infer SLAM loop closures on the graph

structure.

8.5.3 Global Estimation and Map Matching

Given this high-level graph of the robot trajectory and observed feature locations,

it still remains for the autonomous system to make a critical judgment of where it

is relative to the a priori map and to decide if this relative match is certain enough

to be declared convincingly. To do this we maintain a set of match hypotheses in

parallel. We compare them probabilistically so as to quantify the quality of the map

match.

This comparison is implemented using a bank of estimators—each tracking

a different match hypothesis in parallel. The relative likelihood of one match

hypothesis over another is computed using positive information (of prior features

detected by the sonar) as well as negative information (of prior features that were

expected but undetected by the sonar), and in this way matching can be done in

a probabilistically rigorous manner. Simply put, if one expects to detect features
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predicted to lie along the trajectory of a robot and these features were not seen,

then the trajectory must be less likely.

The inclusion of this extra information is motivated by the regular rows of

feature in the field and the inability of positive information metrics to estimate

the relative position of the AUV along these lines. The incorporation of negative

information in this way is to, our knowledge, a novel contribution and was by

motivated information not captured by algorithms such as joint compatibility branch

and bound (JCBB) algorithm [58].

8.5.3.1 Negative and Positive Scoring

In SLAM, multi-hypothesis comparison can typically be reduced to a scoring

algorithm of the relative probabilities of candidate solutions. Here we propose an

algorithm for multi-hypothesis scoring which uses both positive as well as negative

information which we name the negative and positive scale (NAPS). An early

version of this concept was introduced in [23]. More details are provided in [20].

At time t, we define NAPS for hypothesis i as the ratio of the probability of its

map matching hypothesis, hi,t , compared to a null hypothesis, hnull , when both are

conditioned on the measurements z1:t

NAPS(hi,t) = ln

(

p(hi,t |z1:t)

p(hnull,t |z1:t)

)

(8.15)

We define a hypothesis as the combination of an estimate of the graph structure of

the SLAM problem xh (the vehicle trajectory and all detected features) as well as all

data association matches of these features to map features in the prior map. The null

hypothesis is a special version of this hypothesis in which no data associations exist

and in which it is proposed that each detected features is a new feature independent

of the map. We use it as normalization for maps of growing size.

Dropping reference to i for simplicity and using Bayes’ rule gives

NAPS(ht) = ln

(

p(zt |ht)p(ht)

p(zt |hnull)p(hnull)

)

(8.16)

We split p(zt |h) into two terms representing both negative and positive

information

p(zt |h) = η p(zpos|h)p(zneg|h) (8.17)

Positive information is then defined, in the same way as for JCBB, as the

likelihood of the measurements given the hypothesis

p(zt,pos|h) = ηz,pose
− 1

2 (xh−zt)
TΣ−1(xh−zt)

= ηz,pose
−Dh
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where Σ represents the covariance, ηz,pos is a normalization constant, and Dh is the

Mahalanobis distance.

The term p(h) represents a prior probability of a particular map hypothesis being

created by the robot which we propose is directly related to the number of features

N f matched to the prior map is given by

p(h) = ηxeλ N f (8.18)

where ηx is a normalization constant, λ is a free parameter, and N f is an integer

between zero and the total number of features in the prior map. While this

formulation does not take into account aspects such as a target’s measured visibility

or other such specific terms, it does give us a measure of the confidence of a map

match.

Combining these terms and canceling where possible give the following expres-

sions for NAPS and as well as more common positive-only scoring (POS) metrics:

NAPSt(h) =−Dh +λ N f +Ch,neg (8.19)

POSt(h) =−Dh +λ N f (8.20)

This specifically indicates the contribution of negative information, Ch,neg, that we

believe is neglected in typical multi-hypothesis scoring algorithms. POS algorithms

implicitly assume Ch,neg = 0 and do not account for it in scoring the hypotheses.

Most approaches assume very high λ : essentially selecting the hypotheses that

match the most total features and then ordering those by Mahalanobis distance—

as in the case of JCBB. A overview of such algorithms is presented in [57, 61].

8.5.4 Evaluating Negative Information

We define negative information as

Ch,neg = ln

(

p(zt,neg|h)

p(zt,neg|hnull)

)

= ln(p(zt,neg|h))− ln(p(zt,neg|hnull)) (8.21)

As each hypothesis NAPS score will eventually be compared to one another, the

second term need not be calculated.

For a particular hypothesis, consider an entire vehicle trajectory and the sonar

footprint that it traced out (such as in Fig. 8.12). Also consider a prior map feature

which is located within this footprint but was not detected. We wish to measure the

number of times that this feature ought to have been detected, given that trajectory.

NI is formed as the product of the probability of each undetected feature given the
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With Negative Information: Match corrected

Without Negative Information: Mismatch
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sonar ground swath

Fig. 8.12 Illustration of the effect of negative and positive scoring (NAPS). Consider the AUV

trajectory from A to B with the sonar sensor footprint enclosed in green. If the AUV observes

the red feature, how do we match its trajectory to the prior map (purple squares)? Using JCBB,

the observed feature will be matched equally well to either prior feature. However, using negative

information, NAPS indicates that the match in the lower figure is more likely. The upper figure is

less likely because we would have expected to have observed both features—but only observed one

hypothesized vehicle trajectory

p(zt,neg|h) = p(zt,neg, f1 ∩ . . .∩ zt,neg, fnu
|h)

= ∏
f∈Nu

p(zt,neg, f |h) (8.22)

= ∏
f∈Nu

(

1− p(zt,pos, f |h)
)

where st is whole area sensed during measurement zt ; thus,

p(zt,pos, f |h) =
∫

p( f )∩p(st)
v f p( f )p(st )dA (8.23)

where v f is the visibility of feature f and p( f ) is the prior probability of that feature.

In words, the probability of not detecting each conditionally independent feature

is the product of one minus the probability of detecting each feature, integrated

across the intersection of the PDF of each feature and the PDF of the scanned

sensor area. This formulation is subject to the following assumptions: (1) the

sensor occlusion model is well-defined and accurate, (2) all features are static,

(3) feature detections are independent, and (4) feature visibility can be accurately

modeled. This calculation, often intractable due to complicated integration limits,

theoretically defines the probability of a set of negative measurements zt,neg given

sensed area st .
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More information about its precise evaluation is presented in [20]. The result of

the metric is a positive value which scores a particular hypothesis more likely when

its observations do not contradict the prior map.

In particular, combining negative information with the other (positive-only)

metrics in Eq. 8.19 allowed us to disambiguate similar locations along a row of

otherwise indistinguishable features, as indicated in Fig. 8.12.

While the AUV operated in the field this metric is evaluated for each hypothesis.

The vehicle controls itself off of the most likely hypothesis: giving heading, speed,

and depth commands to the low level vehicle controller so as to travel to a set of

preprogrammed waypoints in the field. When the metric for a particular hypothesis

exceeds a threshold, it is decided that the AUV is matched to the prior map and

switches to a final target capture mode.

When it approaches this location, the FOI should be observed in the sonar

imagery. The mission controller then transitions to directly controlling using the

sonar detections using a PID—which we call sonar servoing. It opens a pair of

tines with a tip separation of approximately 1m and drives onto the mooring line of

the FOI.

8.5.5 Field Experiments

The system has undergone extensive testing and evolution over a number of years.

Starting in November, 2006, we have conducted approximately 14 sea trials, each

lasting 2 to 3 weeks. Our experiments began in fairly benign environments, using

highly reflective moored objected as features, and progressed to more challenging

conditions such as natural sea bottom targets and strong currents. After each trial we

have refined and improved the system. In the following we summarize the progress

of the development of the algorithms and the vehicle platform.

Typically the ingress point/direction to the field was varied for each mission,

while the choice of feature of interest was taken at random just before placing the

AUV in the water. After reaching the field, the vehicle typically traveled along the

rows of features indicated in Fig. 8.14. This was so as to keep the number of map

match hypotheses low (to about 4–5). The typical mission duration was 15–25 min,

although the mission planner could be programmed to repeat the mission if the AUV

failed to find the feature field. A typical water depth was 15 m.

Detailed comparison of mission parameters is difficult as the effect of the

vehicle’s control decisions is that different paths and observations follow. For this

reason, this section focuses on the progression of our core map matching algorithm.

St. Andrews Bay, Florida, June 2007: The NAPS and joint compatibility branch

and bound (JCBB) criteria were alternately used over 18 trials on a field of

strongly reflective moored targets. The JCBB implementation uses a threshold

on the Mahalanobis distance for multiple pair matching and chooses the most

compatible pairs. The results of this live test and selected other tests are summarized

in Table 8.1. The difference in the frequencies is 1.41 standard deviations which
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Fig. 8.13 A top-down overview of a successful mission using the accurate REMUS 100 vehicle.

The vehicle approached from the northwest and extracted feature points (purple dots). Using these

points and the prior map (blue squares), the SLAM map (black squares) and the vehicle trajectory

estimate (magenta line) were formed. Having matched against the map, the vehicle homed to the

feature of interest. The abrupt position changes are the result of the square root smoother. The scale

of the grid is 10 m. It is important to note that using only the DVL-INS-based position estimate

the AUV would have failed to reacquire the FOI without using sonar as the map itself was only

accurate to 5 m (blue line)

gives a 91% significance. We believe this demonstrates that the NAPS outperforms

the simpler JCBB matching criteria in our application.

Narragansett Bay, Rhode Island, June 2008: Using the data from June 2007,

significant improvements to our sonar processing algorithms allowed for improved

detection of man-made and natural bottom features. This includes the addition of

an adaptive noise floor model discussed in Sect. 8.5.1.1 and a reimplementation in

integer logic for increased efficiency. The field for these tests consisted of various

man-made and naturally occurring objects on the sea bottom as well as moored

targets. The bay had a significant tidal current comparable to the 0.5 m/s velocity of

the vehicle, which gave us substantial dead-reckoning errors.

Of the nine runs, we attached to the target once and had two mechanical failures.

In both cases the tine mechanism broke upon hitting the mine mooring line. Thus

the overall success rate of the sonar navigation system was 33%. After these tests

the current model mentioned in Sect. 8.5 was developed.

Gulf of Mexico, near Panama City, Florida, June 2009: The entire system was

tested on a field of 12 bottom objects and 3 moored objects over a two-week

period. These experiments tested an improved model for current estimation along
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Fig. 8.14 Typical prior map generated using a REMUS 100 equipped with a Marine Sonic side-

scan sonar. A series of features were extracted by trained human operates from the side-scan sonar

imagery to produce an a priori map for the target reacquisition mission. The distance between the

features is approximately 20 m (Fig. courtesy of SeeByte, Ltd.)

Table 8.1 Selected results in different conditions, with and without use of NAPS

Match criteria

No. of

runs Successes Frequency (%)
√

s2
n/n (%)

Bright targets - June 2007

NAPS 9 6 67 17

JCBB 9 3 33 17

NAPS and JCBB 33 24

NAPS and multi-hypothesis 18 14 78 10

Normal targets - June 2008

NAPS multi-hypothesis 9 3 33 17

Normal targets, low currents - June 2009

NAPS multi-hypothesis 26 17 65 10

Normal targets, high currents - June 2010

NAPS multi-hypothesis 42 13 31 7

As above, having reached the field - June 2010

NAPS multi-hypothesis 18 13 72 11

with minor adjustments to the feature modeling. The current during this period was

estimated as typically being 0.2 m/s using GPS surfaces. We had 17 successful target

attachments in 26 runs.

Gulf of Mexico, July 2010: An additional set of experiments were carried out. In

this circumstance we observed much higher currents which changed significantly.

These currents varied from day to day but were estimated to be greater than the

vehicle velocity (greater than 0.5 m/s) on certain days meaning that the vehicle

could not make any headway against the current when it found itself down field

from the features.
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Presented in Table 8.1 are two different results for this experiment. One result

gives the overall percent success when including all of the 42 runs carried out:

31%. Filtering the runs to the 18 runs in which the AUV was able to enter the field

(as defined by at least a single feature detection in the sonar) produced a success

percentage of 72% which we believe is more in fitting with the performance of the

SLAM algorithm and comparable to the previous year’s results. Nonetheless, this

demonstrates the limitation of this particular vehicle platform as well as current

estimation without a direct sensor.

8.5.6 Discussion

This section described target reacquisition system for small low-cost AUVs, based

on forward looking sonar-based SLAM aided by a prior map. Our results indicate

that when the AUV correctly matches to the prior feature map, it is regularly able to

revisit a designated feature of interest.

The main failure mode of the algorithm is failing to enter the feature field, due

to disturbances that exceed the vehicle’s control authority. For small to moderate

ocean currents, we developed an online current estimation procedure which allows

the vehicle to avoid being driven off course during the initial vehicle dive. Room

exists to improve this estimation procedure by estimation of the known current

features mentioned in Sect. 8.5. Unsurprisingly in currents of more than 50–70%

of the vehicle’s velocity, successful performance was limited. This presented an

obvious engineering limitation for this technology.

While more research is necessary to understand the many variables that can

effect the system performance, such as the density and complexity of environmental

features, the project has shown the viability of the viability of the FBN concept for

feature reacquisition with low-cost vehicles.

8.6 Loop Closure: Ship Hull Inspection

The third application we consider is autonomous ship hull inspection. Hull in-

spections of large ships are frequently performed for safety and security purposes.

It is not feasible to put the ships into dry dock every time an inspection is

required. Currently, this inspection is primarily carried out by divers. This is a

time-consuming and dangerous task for the divers. To address these risks, Bluefin

Robotics and MIT built a ship hull inspection vehicle (see Fig. 8.15) called the

hovering autonomous underwater vehicle (HAUV) [74]. The HAUV is equipped

with a DVL to measure velocity relative to a surface, an IMU with ring laser gyro

for attitude measurements and a dual-frequency identification sonar (DIDSON) [4]

for imaging the structures being inspected.
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Fig. 8.15 Top view of the Bluefin-MIT hovering autonomous underwater vehicle (HAUV). The

vehicle is equipped with a Doppler velocity log (DVL), an imaging sonar, an optical camera, and

a light strobe. The sonar and DVL can be actuated independently

For autonomous ship hull inspection, it is crucially important, but difficult, to

accurately track the vehicle position during mission execution. Accurate position

information is essential for ensuring full coverage of the area being inspected. The

ship hull inspection task further requires reporting the location of potential targets,

so they can later be identified and removed. It is difficult, however, to obtain the

global position estimate underwater from an external source. GPS is only available

at the surface, so acoustic beacons would need to be deployed. Employing only rate

gyros and odometry, over time sensor errors accumulate, and the position estimate

will drift.

Using time-of-flight measurements with acoustic beacons has been commonly

used in underwater navigation [83,84,86] to obtain a global position estimate; it has

also proved successful in various applications like underwater archaeology[52] and

ship hull inspection [29]. Here, we want to avoid the need for external infrastructure

and instead are interested in achieving drift-free navigation by using the onboard

imaging sonar. In particular, registering current data with previously observed sonar

frames provides the necessary constraints to eliminate long-term drift.

Augmenting vehicle localization using sonars has been undertaken in a num-

ber of prior works. Walter et al. [79] used manually extracted landmarks and

later automatic feature detection [78] with the ESEIF to produce a map of the

environment. An automatic feature detector and a landmark formulation using an

EKF filter were used in [13]. Sekkati et al. used extracted corner features from

DIDSON frames to estimate vehicle motion over several frames [67]. In related

work Negahdaripour et al. combined the DIDSON with an optical camera for
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3-D target reconstruction using opti-acoustic stereo [56]. Eustice et al. [16] used

constraints from overlapping camera frames within a SLAM information filter to

estimate vehicle pose. A full 360-degree sonar scanner has been used in partially

structured underwater environments [64] for localization by tracking line features

in the environment using an EKF for the estimation process. Mallios et al. recently

showed promising results in [50] using an mechanical scanning sonar and scan

matching in an EKF framework.

Here, we use the pose graph formulation from Sect. 8.2.2 to combine onboard

navigation information with sonar registration based on automated dense feature

extraction [34]. We focus on imaged areas that are locally flat, such as the open areas

of ship hulls and the seafloor. Our system allows for drift-free navigation without

depending on any external infrastructure.

8.6.1 Drift-Free Navigation Using Imaging Sonar

The goal of this application is to correct drift in the vehicle state estimate over

time using the imaging sonar—we begin by defining the quantities to be estimated.

The vehicle pose consists of position and attitude. The vehicle position in 3-D is

specified by Cartesian coordinates x,y,z with respect to some arbitrary reference

frame, such as the starting point of the mission or a GPS frame acquired before

diving. The attitude of the vehicle is specified by the standard Euler angles φ ,θ ,ψ
or roll, pitch, and heading, respectively.

Without the imaging sonar information, only three out of the six degrees of

freedom can be estimated without long-term drift. The ring laser gyro is used

for heading estimation by integrating the measured angular rotations. A magnetic

compass is not a viable option in close vicinity to a ship hull. The DVL provides

velocities that are used for dead reckoning. In addition to the relative measurements,

absolute measurements of depth from pressure and roll and pitch from the IMU are

available. These absolute measurements are integrated into the estimation of the

pose graph shown in Fig. 8.1. Nonetheless, no global information is available to

limit long-term drift in the heading and x,y position.

Adding loop closure constraints from imaging sonar into the optimization

problem eliminates long-term drift in the remaining three dimensions. The loop

closure constraints are obtained by registering current sonar images to previously

observed ones. Next, we describe the imaging sonar geometry, followed by our

approaches to feature extraction and sonar registration.

8.6.1.1 Imaging Sonar Geometry

Following the formulation in [55, 56, 67], we define the geometry of the imaging

sonar and derive a model that describes how the image is formed. To generate an
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Fig. 8.16 (a) DIDSON imaging sonar geometry. (b) Sample images showing a clean hull (left)

and several views of intakes and other structures

image, the sonar emits a narrow-beam sound wave and then listens to the returns,

sampling the acoustic energy returned from different directions. The sonar provides

time of flight and intensity for each azimuth angle. Combining the returns from all

the elements provides an image of the reflective surfaces in front of the sonar. We

use an imaging sonar with vertical beam width of 28◦, covering 96 beams over a

29-degree horizontal field of view. Note that for a given point in the image, it can

lie anywhere on an arc at a fixed range, spanning the vertical beam width.

Mathematically, the imaging process can be described as follows. We define the

coordinate system for the sonar as shown in Fig. 8.16a. Let us consider a point p =
[x y z]⊤ in the sensor coordinate frame, and let s = [r θ φ ]⊤ be the same point in

spherical coordinates, where r is the range, θ is the azimuth, and φ is the elevation of

the point. We can relate the spherical and Cartesian coordinates with the following

equations:
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The sonar does not provide azimuth φ , so we measure point p as I(p) = [r θ ]⊤, and

the Cartesian projection of this point is

Î(p) =

[

u

v

]

=

[

r cosθ
r sin θ

]

(8.26)

For a small vertical beam width, this can be viewed as an approximation to an

orthographic projection.

8.6.1.2 Feature Extraction

The imaging sonar returns intensity measurements at a number of ranges along

each azimuth beam. The example sonar image in Fig. 8.17a shows some features

on a flat surface. A strong return followed by a shadow likely indicates an object

standing above the imaged surface, while a shadow on its own indicates a hole

or a depression in the surface. Variations in the returned signal are also caused

by changes in material properties, the strength of the transmitted signal, receiver

sensitivity, distance to target, and the grazing angle, among other factors.

Stable features are extracted from sharp transitions in image intensity that mark

the boundary between a strong return and a shadow. The main steps of the algorithm

are as follows:

1. Smooth the image.

2. Calculate gradient.

3. Threshold a top fraction as features.

4. Cluster points and discard small clusters.

First, the image is smoothed using a median filter, significantly reducing noise, while

still preserving edges, as shown in Fig. 8.17b. Next, the gradient is calculated by

computing the difference between the local value and the mean of the np previous

values along the beam (Fig. 8.17c). The number of previous values np used to

calculate the mean around the current values affect the type of objects that are

detected. Then points with gradient exceeding a given threshold are marked as

candidate features (Fig. 8.17d). The threshold is adaptively chosen, such that a fixed

fraction of the features is retained. Note that strong positive gradients are ignored

because these correspond to the ends of shadows and are not as stable as negative



364 M.F. Fallon et al.

Fig. 8.17 Intermediate steps of the feature extraction process. The extracted features are shown

in red (a) Initial sonar image (b) Smoothed (c) Gradient (d) Threshold (e) Clustering (f) Extracted

features

gradients, which are closer to the sensor. Next, spurious features are eliminated

by clustering the points and eliminating small clusters (Fig. 8.17e). The remaining

extracted features are shown in Fig. 8.17f, typically containing on the order of one

thousand points.

Assuming a locally flat surface, the Cartesian error associated with a successful

registration arises mostly from the vertical beam width. The inclination angle

between sensor plan and imaged surface is typically around twelve degrees, with

a perpendicular distance between one and two meters. For a vertical beam width of

28◦, the error can therefore reach 15 cm but is typically much smaller.

8.6.1.3 Registration

We align two overlapping sonar images by registration of the extracted features

using the normal distribution transform (NDT) algorithm [5]. The NDT algorithm

assigns the feature points of a scan to cells of a regular grid spanning the covered

area. For each cell we calculate the mean and variance of its assigned points. This

is done for four overlapping grids, where each grid is shifted by half a cell width

along each axis. Using multiple shifted grids alleviates the effect of discontinuities

resulting from the discretization of space. Two of the benefits using the NDT are

that it provides a compact representation of the scan and no exact correspondences
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Fig. 8.18 HAUV trajectory along a ship hull with sonar footprint visualized against a 3-D ship

model. The current sonar image with detected features is shown on the right

between points are needed for alignment. This is useful here, because the movement

of the HAUV causes variations in the returns from surfaces, causing some points to

drop in and out of the extracted feature set.

The NDT of a scan serves as our model for registration. Given a new scan, a score

is calculated for each point by evaluating the Gaussian of the NDT cell that receives

the point. This provides a measure of the likelihood that a given point is observed

based on the model. We define a cost function as the sum of the negative scores of all

the points in the current view. Minimizing the cost with respect to the change in x,y
position and heading ψ of the sonar provides the transformation between the scans.

Because the main goal of the registration method is to close loops after drift has

accumulated, we do not use the current estimate of the vehicle location to initialize

the search. Instead, we repeat optimization from several initial values in an attempt

to find the global minimum. To avoid incorrect matches, acceptance is based on a

conservative threshold of a normalized score and also requires a minimum number

of points to be matched. A successful registration is added to the pose graph as a

loop-closing constraint.

8.6.2 Experiments and Results

Initial experiments were performed in a testing tank to verify that the system runs

online and can stay localized over an extended period of time. Further tests were

performed inspecting a patch of the bottom of the Charles river near the MIT Sailing

Pavilion and on a small vessel with flat bottom in Boston harbor. While initial

experiments focused on flat surfaces, the open areas of larger ship hulls are only

locally flat, requiring a full six degrees of freedom state estimation. A model view

of a ship from an actual experiment is shown in Fig. 8.18, with the trajectory in
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Fig. 8.19 SS Curtiss in San

Diego, with the submerged

HAUV visible in the

foreground as the yellow

object in the water

cyan and the sonar viewing cone in blue. Note the large-scale difference between

the vehicle and the ships this system is targeted for.

The HAUV is tethered during experiments but uses onboard power. The onboard

battery allows operation for several hours, while the vehicle moves at 0.25 meters

per second. An onboard computer controls the vehicle. Our software runs on a

laptop on shore, connected by a fiber tether to the vehicle. The laptop serves for

development purposes as well as for visualization during missions. Without the

tether, the trajectory as well as selected data can be sent by acoustic communication

to the shore. The DVL is locked to the hull to allow operation at a constant distance

from the hull.

Recently we demonstrated online ship hull inspection on various large ships. One

experiment was performed in early 2011 at the US Naval Station in San Diego on the

183 m-long SS Curtiss, a roll-on/roll-off container ship shown in Fig. 8.19. Another

experiment was performed in mid-2011 in Boston, on a 82 m medium endurance

US Coast Guard cutter, the USCGC Seneca. One trajectory segment is shown in

Fig. 8.20, with loop-closing constraints obtained from sonar registration. The track

lines are spaced approximately four meters apart, providing redundant coverage of

the hull with sonar for the inspection mission.

We demonstrated the accuracy of our SLAM-derived state estimate by revisiting

waypoints under closed-loop control. During inspection, the operator selected in-

teresting waypoints along the hull using our real-time visualization. The waypoints

were selected based on human-recognizable features, which were saved for later

comparison. Later in the mission, the vehicle was commanded back to various

waypoints, and the current and recorded images were shown for comparison. This

served as verification of the consistency and accuracy of our SLAM system. The

uncorrected coordinates estimated by the vehicle significantly differed after longer

operation, showing the effectiveness of our navigation system in eliminating long-

term drift.
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Fig. 8.20 Estimated vehicle trajectory along the ship hull of the USCGC Seneca in Boston—

detected loop closures are shown in pink. The vehicle is shown partially under the ship hull, with

the sonar viewing cone in blue indicating the part of the hull visible at this instance

A fuller and more complete overview of this particular project can be found in

[32], which also presents more detailed experimental results and demonstrations.

In addition to the sonar-based measurements discussed in this section, the wider

project also incorporated information extracted from the optical camera illustrated in

Fig. 8.15. Combining sonar and visual constants within the same SLAM estimation

problem allows for sensor redundancy as well, taking advantage of complementary

information. The specific application of visual SLAM to this problem is described

in [41].

8.7 Conclusions

We have outlined three very different applications of simultaneous localization and

mapping in the marine environment. SLAM is increasingly mature and is contribut-

ing to ever more complex marine problems which move to closer interaction with

the underwater environment. In particular we have demonstrated that pose graph

optimization methods for SLAM can operate onboard modern AUVs in real time,

enabling closed-loop autonomous operation for many missions of interest.

Despite the substantial progress in SLAM for AUVs over the past decade,

there are numerous important topics for future research. Future challenges for the

applications outlined here include (1) robust long-term operation incorporating

recovery from failures and detection of environmental changes, (2) cooperative
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mapping by multiple AUVs using undersea acoustic modems, and (3) integration

of SLAM with motion planning and task control to enable close-range subsea

inspection and intervention tasks.
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