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Abstract— We propose a vision-based SLAM algorithm
incorporating feature descriptors derived from multiple views
of a scene, incorporating illumination and viewpoint varia-
tions. These descriptors are extracted from video and then
applied to the challenging task of wide baseline matching
across significant viewpoint changes.

The system incorporates a single camera on a mobile robot
in an extended Kalman filter framework to develop a 3D map
of the environment and determine egomotion. At the same
time, the feature descriptors are generated from the video
sequence, which can be used to localize the robot when it
returns to a mapped location. The kidnapped robot problem
is addressed by matching descriptors without any estimate of
position, then determining the epipolar geometry with respect
to a known position in the map.

I. INTRODUCTION

A key component of a mobile robot system is the ability
to simultaneously build a map of its environment and
localize itself within that environment. In this paper, we
describe a vision-based mapping and localization algorithm
for mobile robots which uses multiple view feature descrip-
tors as generic landmarks.

In order to determine a 3D model of an environment
from images, the locations of sparse 2D points can be
integrated over time. A mobile platform with a video
camera needs to track such points (typically referred to
as features) across multiple images. Thus, it must be able
to find correspondences among sets of features, leading to
the idea of descriptors, which ideally provide signatures of
distinct locations in space.

Descriptors can be applied to the difficult task of finding
correspondences in images taken from significantly dif-
ferent, unknown viewpoints. In practice, this may happen
when a robot is placed in a new location (“kidnapped
robot problem”), when it is exploring a known environment
along a different path, or when estimation of a robot’s
position is degraded over time. By finding features and their
associated descriptors, the correspondence problem can be
made simpler by comparing descriptors instead of entire
images. Given the correspondences, estimating relative
orientation is a matter of computing epipolar geometry.

We address the wide-baseline correspondence problem
under the specific scenario of autonomous navigation,
where high frame-rate video is available during training
(“map building”), but not necessarily during testing (lo-

calization with wide baseline), and viewing conditions can
change significantly between the two. Such changes affect
both the domain of the image (geometric distortion due to
changes of the viewpoint) and its range (changes in irra-
diance). During map building, a video stream is available,
making it possible to exploit small baseline correspondence
by tracking feature locations between closely spaced im-
ages. This provides the opportunity to incorporate multiple
views of a feature into the descriptor. The primary novelty
of such a descriptor is that, rather than discard data after
processing each frame, it incorporates information from
across multiple adjacent views of a scene to yield a richer
representation.

In addition to convenience and availability of the data,
there are strong theoretical reasons for using multiple views
to derive descriptors. In particular, it is known that generic
viewpoint invariants do not exist for single views for either
geometry or illumination [2], [1]. However, it can easily
be shown that such invariants do exist when combining
information from multiple views [14], [3].

In this work, multi-view descriptors are developed using
kernel principal component analysis (KPCA) and used
to estimate landmark location and robot egomotion using
structure-from-motion (SFM) techniques. A map consists
of a database of these feature descriptors and their locations
in space. This map is incrementally updated over time
and is robust to changing environments. The multi-view
descriptors are used both to correct drift in the SFM map-
building process, and to determine wide-baseline corre-
spondences in a kidnapped-robot scenario.

II. RELATED WORK

Much work in mapping and localization has been per-
formed using range sensing, such as laser scanners or sonar.
There has been some recent work with visual sensing by
matching features like vertical and horizontal lines, corners
in the scene, and active stereo vision to find salient features
[29].

Davidson and Murray [5] used active vision for real-
time, sequential map-building within a SLAM framework.
Assuming that the robot trajectory was given, they con-
trolled the active head’s movement and sensing on a short-
term tactical basis, making a choice between a selection
of currently visible features. Persistent features re-detected
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after lengthy neglect could be re-matched, even if the area
was passed through along a different trajectory or in a
different direction.

The scale invariant feature transform (SIFT) developed
by Lowe [12] is invariant to image translation, scaling,
rotation, and partially invariant to illumination changes
and affine or 3D projection. Se at. al. [24] employed the
SIFT scale and orientation constraints for matching stereo
images. After matching they used a least-squares procedure
to compute the camera egomotion for better localization.
Their features had a viewpoint variation limit of 20 degrees.

Wolf et. al. [34] built a vision based localization system
by combining techniques from image retrieval with Monte-
Carlo localization. The system was able to retrieve similar
images even if only a small part of the corresponding scene
is seen in the current image. These results were filtered by
visibility constraints to globally estimate the position of the
robot and to reliably keep track of it and to recover from
localization failures.

A stereo vision algorithm for mobile robot mapping and
navigation was proposed by Murray et. al. in [17], where
a 2D occupancy grid map was built from the stereo data.
However, odometry error was not corrected, and hence the
map could drift over time.

Little et. al. [11] proposed combining this 2D occupancy
map with sparse 3D landmarks for robot localization. They
used corners on planar objects as stable landmarks. A
trinocular vision system was used to compute neighbor-
hood region planarity. Landmarks were used for matching
only in pairs of frames but not kept for matching subse-
quent images.

Sim and Dudek [26] proposed learning natural vi-
sual features for pose estimation. Landmark matching
was achieved using principal components analysis, and a
tracked landmark is a set of image thumbnails detected in
the learning phase, for each grid position in pose space.

Among approaches combining vision and laser sensors,
Dellaert et. al. [6] compared brightness values between the
images obtained by the robot to those given by a visual map
of the ceiling obtained by mosaicing. They used particle
filters to represent the multimodal belief of robot location.
The Minerva museum tour-guide robot [30] learned its map
using this technique in addition to the laser scan occupancy
map.

Among approaches using laser range data, Gutmann
and Konlolige [7] used global registration and correlation
techniques to reconstruct consistent global maps. Recently,
Thrun et al. [31] proposed a real-time algorithm combining
the EM and incremental algorithms.

III. SCENE FEATURE REPRESENTATION

A. Overview of the System

Our system consists of the following interacting compo-
nents: a feature selection and tracking mechanism, which
finds and tracks areas of interest across frames of a video
input; a feature descriptor database, which builds and stores
the multi-view descriptors; a structure from motion system
using the extended Kalman filter to determine egomotion

Fig. 1. Components of the system.

and a 3D map of the environment. Figure 1 shows a
diagram of how these elements interact.

B. Structure from Motion

Our SFM technique is based on Chiuso et al [4], which
uses a single camera to integrate 3D information causally
over time using a robust version of the extended Kalman
filter (EKF). Images are captured from a video camera in
real-time, and on each frame a number of points of interest
are tracked in 2D. The EKF uses these tracks to determine
the depth of each point in space, providing a 3D model up
to a scale factor.

Localization requires that reliable, persistent features in
the environment can be matched even after being lost for
long periods of time. This differs from the more common
use of visual features in structure from motion, where they
are treated as transient entities to be matched over a few
frames and then discarded.

Since we use monocular vision with no assumptions on
scene geometry, we can only estimate distances up to a
scale factor. In the experiments, we do not estimate this
scale factor, but the system ensures that it is consistent
among structure and motion estimation. If necessary, the
scale could be estimated using the odometry data from the
mobile robot, by providing the depth of a certain point as
prior information to the vision system, or by inserting an
object of known size into the scene.

C. Feature Selection and Tracking

During a map building phase, images are collected
closely in time, thus the inter-frame motion is small, and
appearance changes in features are minimal. Under these
circumstances, correspondence becomes easier, making the
problem of tracking across frames relatively simple. Many
existing feature trackers, such as [10], [25], [33], can pro-
duce chains of correspondences by incrementally following
small baseline changes between images in the sequence.

We are only concerned with feature selection or tracking
in-so-far as they influence the experimental quality. For our
purposes, any consistent feature selector and tracker can be
used to estimate the candidate points, or even no feature
tracker at all (searching based on odometry, for example).
For computational reasons, we used an implementation
of the Shi-Tomasi affine multiscale tracker, which proved
robust enough for our purposes [25].



D. Multiple View feature Descriptor

The multi-view feature descriptor is generated by ker-
nel principal component analysis (KPCA). A complete
discussion of our descriptor can be found in [15], but
an overview follows. In contrast to conventional principal
component analysis (PCA) which operates in the input
image space, KPCA performs the same procedure as PCA
in a high dimensional space, F , related to the input by the
(nonlinear) map

Φ : R
N −→ F, y �→ Y 1

If one considers y ∈ R
N to be a (vectorized) image patch,

Y ∈ F is this image patch mapped onto F . The sample
covariance for M vectors in F is

C ′ =
1
M

M∑

i,j=1

Φ(yi)Φ(yj)T

assuming
∑M

k=1 Φ(yk) = 0 (see [23] for a method to
center Φ(y)). By diagonalizing C′, a basis of kernel
principal components (KPCs) is found. As demonstrated
in [20], by using an appropriate kernel function k(x,y) =
〈Φ(x),Φ(y)〉, x,y ∈ R

N , one can avoid computing the
inner product in the high-dimensional space F . The KPCs
are implicitly represented in terms of the inputs (image
patches) y, the kernel k, and a set of linear coefficients β,
as

Ψ =
M∑

i=1

βiΦ(yi),Ψ ∈ F.

Our method for extracting feature descriptors from im-
age sequences proceeds as follows:

1) Bootstrap with a small-baseline tracker: Read a
number of frames of the input sequence, track the
features using a standard tracking method, and store
the image patches of each feature. For an affine-
invariant tracker, we use the Shi and Tomasi (ST)
[25] algorithm.

2) Construct kernel basis: Perform Kernel Principal
Component Analysis (KPCA) using the Gaussian
kernel separately on each feature’s training sequence
or reduced training set found in step 3.

3) Approximate kernel basis: Form an approximate
basis for each feature by finding approximate patches
which lead to the least residual estimate of the
original basis in high-dimensional space. Create L
such patches for each feature. In our algorithm, L is a
tuning parameter. Further discussion of “pre-image”
approximation in KPCA can be found in [21], [22].

The above algorithm yields a set of descriptors, each
corresponding to a particular feature. In order to match
a newly observed image to existing descriptors, our algo-
rithm searches the image for patches which have a small
residual when projected onto the stored KPCA descriptors.
For more details, please see [15].

1F is typically referred to as “feature space,” but to avoid confusion
we will refrain from using that name.

Unlike [24], [5], and any other system that uses single-
view descriptors, our feature representation is viewpoint
invariant, so we do not keep track of the viewing angle of
the features. Se at. al. [24] store the original view direction
of the feature and make a new feature in the database if the
view direction varies more than the threshold of 20 degrees.
Davidson et. al. [5] expect the feature to be visible only if
the angular difference is less than 45 degrees in magnitude.

IV. ROBUST EXTENDED KALMAN FILTER

Smith et. al. [27] proposed what is now a widely
used approach to Simultaneous Localization And Mapping
(SLAM). Their paper describes the use of an extended
Kalman filter (EKF) for estimating the posterior distribu-
tion over robot pose along with the positions of landmarks.
Our use of a robust EKF rather than a particle filter (e.g.
[6]) is motivated by the analysis of stability in [4].

We integrate KPCA features with a robust EKF structure
from motion system for map building. Our filter is based
on a robust version of the work of Chiuso et. al. [4].
Robustness to points that do not move according to a
rigid model (such as T-junctions or moving obstacles in
the environment) is accomplished by replacing the usual
Kalman filter update step with one using an M-estimator
for outliers. Outliers are defined by the magnitude of
their innovations compared to a threshold defined by the
measurement noise (the noise in tracking points through
the image sequence).

The scale factor is associated to a reference feature
chosen automatically among those visible. When that fea-
ture disappears, the reference switches to the best current
estimate of another feature. Any error in the localization of
that feature results in a global error, which increases every
time the reference feature switches, effectively causing a
slow drift in the estimates.

A. State Vector and its Covariance

Our state vector consists of the 3D position and orienta-
tion of the robot (camera) and 3D positions of the feature
locations, both up to a common scale factor. We calculate
the uncertainty expected in the measurement in the form
of innovation. The innovation of a point is calculated
by taking the difference between its measurement and its
predicted measurement (reprojection) based on the model.
When the innovation exceeds a pre-defined threshold it is
classified as an outlier. Because the variance of outliers is
increase more rapidly than inliers, their influence on the
estimation of motion is mitigated. Outliers are completely
removed from the state if their innovations exceed a higher
threshold (which is ten times the outlier threshold in our
experiments), or if they remain outliers for more than
twenty consecutive frames. A test for rejecting outliers
based upon such a principle has been proposed previously
in [28].

B. Updating and Maintaining the Map

Initial features are selected on the first frame according
to the method of Shi and Tomasi [25]; the best features



survive for many frames and lead to rich multiple view
feature descriptors. When the innovation for a feature is
above a particular threshold, the feature is treated as an
outlier. The covariances of outliers in the filter are increased
in proportion to their innovations, hence their influence on
the estimate of structure and egomotion are decreased.

As the field-of-view of the camera shifts in the scene,
new features need to be added to the filter and occluded
features removed. When a feature is lost, its corresponding
rows and columns of the covariance matrix are removed
(but the feature remains stored in the descriptor database).
Features are added in batches of 30 or more. Because
no estimate of the depth of these points can be obtained
initially, they must be handled separately to ensure the filter
is not corrupted by unstable states. To accomplish this, new
features are added in groups to the filter, and each group
has its own reference frame. To minimize the effect of
adding these points to the filter, they are initialized with
large variances. If a group retains fewer than 5 members, it
is dropped from the filter. If the primary group being used
to compute location estimates disappears, the reference
switches to another group leading to some drift.

Even with a known initial position, drift in odometry and
SFM causes the estimated localization to deviate from the
actual position. When localization is one of the objectives,
motion drift must be accounted for by matching features
seen earlier during mapping to their current observations.
Matching is accomplished with the multi-view descriptors.
Drift can be compensated by bundle adjustment techniques
[32] to recompute the trajectory when features previously
stored during mapping are re-observed.

V. EXPERIMENTS

We performed two types of tests with the proposed
system. The first was to test the efficacy of small and
wide baseline correspondence. Wide baseline viewpoint
changes test suitability of the system for solving the
kidnapped robot problem for initializing localization. In
the experiments, two phases were established: training and
matching, which correspond to short and wide baseline
correspondence. In the training phase, a video sequence
was recorded of a mobile robot moving in a loop around
a room. The Shi-Tomasi (ST) [25] tracker was used to
obtain an initial set of points, then the procedure of the
previous section was used to develop feature descriptors
via approximate KPCA and track them via Robust EKF.

In the matching phase, a test image from outside the
training sequence was used to find wide-baseline corre-
spondences. First, initial features were selected using the
ST or Lukas-Kanade’s (LK) [33] selection mechanism. The
quality of a candidate match was calculated by finding
the projection distance of this patch onto the basis of
the descriptor. Finally, candidate matches that fell below
a threshold distance were selected, and the best among
those was chosen as the matching location on the test
image. Results of wide-baseline matching experiments can
be found in [15]. One such experiment is included here for
completeness, figure 2.

The second test was for performing localization when
the robot returned to a previously mapped area by mov-
ing around a loop. We corrected for drift using bundle
adjustment across several viewpoints keeping the known
structure constant. In the first of these experiments (figure
4), the camera was moved around a circle while pointing
toward the center of rotation. In the second, a similar
path was followed, but significant outliers were introduced
into the scene when a person walked across the room
about halfway through the loop, causing 40-50 percent
of the filtered features to become outliers for 50 frames.
This degraded the initial estimation of the path more than
in the first experiment, producing a 15 percent error in
translational estimation by the time the camera returned to
its initial position in the circle. Figure 5 shows the bird’s
eye view of the uncorrected path produced by the EKF in
the second experiment, with translation at every time step
and orientation every twenty steps. Corrected locations and
orientations are overlayed on this plot. These are computed
for a number of frames where the camera has returned to
the same location in the circle. Drift in translation estimates
present in the raw EKF estimates of egomotion are reduced
by this correspondence step to under one percent in each
experiment.

While we did not optimize our experiments for speed
or programming efficiency, we found the average time for
tracking between adjacent frames to be approximately 1/3
seconds for 200 track points and 120 filtered points. The
code was executed on a 1.7GHz Pentium IV processor.
The video frames and test images were 640x480 8-bit
greyscale pixels. To perform wide baseline matching, the
algorithm searches over all pairs of features between the set
of training features and those on the test image. During the
search, matches are declared if the ratio between the second
best match score and the best match score is greater than
1.2 (scores range between 0 and 1, with 0 being the best,
or smallest projection distance between the test patch and
the KPCA descriptor). The process takes about 45 seconds
to find matches among pairs of about 100 features each.

VI. CONCLUDING REMARKS

We have presented an application of a novel method
for extracting feature descriptors from image sequences
and matching these to new views of a scene. Rather than
derive invariance completely from a model, our system
learns the variability in the images directly from data. This
technique is applicable in situations where such data is
already available, such as robot navigation.

The variations in the appearance of each feature are
learned using kernel principal component analysis (KPCA)
over the course of image sequences. Our experiments
demonstrate robustness to wide appearance variations on
non-planar surfaces, including changes in illumination,
viewpoint, scale, and geometry of the scene. These tech-
niques have been applied for solving the kidnapped robot
problem, where an initial guess of pose is unknown. We
have found good results in estimating the robot’s position
when the robot is within a few feet of the mapped locations.



Fig. 2. Affine tracking + KPCA: A non-planar surface undergoing warping, viewpoint, and illumination changes. (Top-left) The first image of the
training sequence. (Top-right) The test image, outside of the training sequence. 27 feature locations were correctly matched, with 2 false positives.
(Bottom-left) Image from the training sequence. (Bottom-right) The warped object. 40 locations correctly matched, 6 false positives. Note that in all
cases there are illumination changes across the pad as it changes orientation.

Fig. 3. A sample frame from experimental video with tracked interest
points.

We have experimented with closing the loop to recognize
a stored feature by combination of prediction using robust
extended Kalman filter and KPCA. Once a prior point is
recognized we estimate distances using epipolar geometry.
Our system is robust to features that violate the model,
such as those that are improperly tracked or occluded. In
future work, we want to further perform optimization to
make system closer to real time performance.
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Fig. 4. Experiment 1: Uncorrected reconstruction from the EKF with
corrected point overlays. The nearly circular path represents the estimated
location of the camera in space based on the uncorrected robust EKF,
where each time step is indicated by a marker starting at (0,0,0). The thin
blue lines show the orientation of the camera at every 20th step. Small
red circles and lines indicate the corrected estimates of five locations on
the second pass of the camera around the circle. The correspondence and
correction step reduced the error from about seven percent to under one
percent. The actual path was a circle where the camera was pointing
towards its center.
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