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Abstract In this paper we investigate the problem of Simultaneous Localization
and Mapping (SLAM) for a multi robot system. Relaxing some assumptions that
characterize related work we propose an application of Rao-Blackwellized Particle
Filters (RBPF) for the purpose of cooperatively estimating SLAM posterior. We
consider a realistic setup in which the robots start from unknown initial poses
(relative locations are unknown too), and travel in the environment in order to
build a shared representation of the latter. The robots are required to exchange a
small amount of information only when a rendezvous event occurs and to measure
relative poses during the meeting. As a consequence the approach also applies when
using an unreliable wireless channel or short range communication technologies
(bluetooth, RFId, etc.). Moreover it allows to take into account the uncertainty in
relative pose measurements. The proposed technique, which constitutes a distributed
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solution to the multi robot SLAM problem, is further validated through simulations
and experimental tests.

Keywords Mobile robots · Multi robot SLAM · Rao-Blackwellized particle filters

1 Introduction

Recent advances in mobile robotics have allowed autonomous systems to be in-
volved in many successful applications including planetary exploration, search and
rescue, surveillance, and other service scenarios [1]. For the purpose of successfully
accomplishing a generic task, a main prerequisite for a mobile robot, deployed in an
unknown area, is the capability of autonomously navigate, exploiting the information
acquired through the joint estimation of its positions and a model of the surrounding
environment. The problem of estimating both the robot pose and the environment
representation is usually defined Simultaneous Localization and Mapping (SLAM),
and its development and application have attracted large attention from the robotic
community over the last decades. While the maturity of SLAM in single robot scenar-
ios is recognized in many recent works [2–4], a challenging issue is to extend these
approaches to multi robot scenarios in order to enhance autonomous exploration
and large scale SLAM. Although improving efficiency and robustness of operation,
multi robot scenarios introduce several sources of complexity requiring a bigger
effort in designing probabilistic filters for the estimation of the SLAM posterior of
different robots by fusing the prioceptive and the eteroceptive information acquired
by each teammate. Compared to a single robot scenario, several challenges arise,
including: 1) distributed posterior estimation from the available data gathered by
different robots; 2) the influence of limited bandwidth and sensing range, connected
to the use of unreliable wireless communication channels; 3) team coordination and
need of shared world representation; 4) complexity and memory requirements in
dependence of the number of robots and map size; 5) estimation in intrinsically
dynamic environment.

In the following we will discuss some relevant aspects connected to the points
mentioned above, introducing a simple taxonomy of the multi robot SLAM problem,
consistent with the recent literature on this topic. This taxonomy will be further
enriched in Section 2, in which related work on the estimation of SLAM posterior
of a team of robots will be reported. A crucial role in the estimation process is played
by the prior knowledge available for solving SLAM. When relative initial poses
of the robots are exactly known the problem easily extends from the single robot
SLAM techniques [5, 6]. On the other hand in case of unknown initial correspondence
of robot locations (no prior information on relative initial positions) the SLAM
estimation and the information fusion is often challenging. A further distinction
can be applied, classifying the approaches for solving SLAM in centralized and
distributed techniques. In centralized approaches, all the information acquired by
the teammates (commands and measurements) are gathered to a central node,
that performs computation over the whole team posterior. This solution is often
undesirable since it requires a stable communication among all the robots at each
time, and this prerequisite cannot be met when using an unreliable wireless channel,
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prone to failures and quickly saturated by the large amount of information gathered
to the central node. As a consequence distributed approaches are required, relaxing
the strong assumption that all the team has to remain inside the communication
range of the central node and improving the robustness with respect to a centralized
technique in which the system cannot perform estimation in case of failures of the
central node. Distributed approaches allow the robots to build their own world rep-
resentation using only local information and the data exchanged with the teammates
in the communication range. Although the computation remains local, the outcome
of the estimation over the map model is expected to be as shared as possible, in
order to enhance team coordination. For example in cooperative information gain-
based exploration [7] the robots are supposed to have a shared representation of the
surrounding world in order to allow coordinated actions. If each robot has its own
map, the information gain of each robot cannot be easily compared with the ones of
the other teammates and also the task allocation becomes challenging, since there is
no common reference frame on which target assignment can be performed. Finally,
the technique used to solve SLAM is required to be scalable (in terms of memory
and computational complexity) and robust to dynamic environments, since the team
travels in the same scenario and each robot should build a consistent map although
facing the teammates that represent moving obstacles.

As witnesses of the attention paid by the robotic community to the mentioned
challenges, there is a large literature in the field of multi robot SLAM (see Section 2).
In such a scenario, the use of Rao-Blackwellized Particle Filters (RBPF), which are
probably the most used approach to estimate metric maps in single robot scenarios,
found relatively few contributions, since the high dimensionality of the state in the
estimation process prevents efficient solutions unless ad-hoc techniques are applied.
We here propose an extension of the grid-based SLAM to the multi robot context
for the purpose of building a metric representation of the environment by means of
a distributed estimation process. Relaxing the strict assumptions that characterize
related work, our approach is suitable for a realistic setting in which the relative
initial positions of the robots are unknown and robots can communicate only within
a limited communication range. Data exchange among robots is only required when a
meeting among robots occurs, whereas single robot RBPF-SLAM is performed when
no communication is available. A further contribution of this work is the possibility
of taking into account the uncertainty in relative measurements during rendezvous,
which is shown to have a major influence on the quality of the estimation process,
and cannot be neglected in most of real world applications.

The article is organized as follows. An overview of the state-of-the-art approaches
to multi robot SLAM is presented in Section 2. In Section 3 our approach to
RBPF-SLAM is described in deep and clarified through practical examples. Then in
Section 4 we present results from simulations and real tests. Conclusions are drawn
in Section 5.

2 Related Work

Multi robot SLAM is an active research field and many efforts were devoted to find
suitable filtering techniques able to deal with a team of robots performing coop-
erative exploration in unknown environments. As mentioned above, the problem
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imposes harder constraints than single robot SLAM, so many authors proposed ad-
hoc extensions of the bayesian framework in order to adapt it to distributed multi
agent estimation. As for the study of single robot SLAM problem, it is possible
to distinguish feature-based representations, in which the map model is expressed
by means of landmarks in the environment, from metric representations, which
provide a fine-grained model of the scenario. In the rest of this section we describe
relevant approaches for multi robot SLAM based on both metric and landmark-
based representations.

In order to face the challenge of integrating the information collected by different
robots in a consistent representation, research works proposed the use of the
Extended Kalman Filter (EKF) [8], to jointly estimate robots and landmarks pos-
terior included in an augmented state space. In [9], multi robot SLAM problem is
addressed, relaxing the hypothesis of known initial correspondence. Further study
on distributed estimation by means of EKF can be found in [10] and [11]. Since
the EKF involves a complexity which is quadratic in the state space dimension,
Thrun [12] formulated the landmark-based multi robot SLAM using the Sparse
Extended Information Filter (SEIF), which constitutes an efficient solution of the
SLAM problem in the information space. Taking advantages from the structure of
the filter, SEIF approach can be performed in a distributed manner, overcoming the
non easily decomposable structure of the EKF.

As metric maps are characterized by higher resolution and allow finer planning
and exploration, many authors proposed to go over the less detailed landmark-
based representations, by exploiting the idea of sub-map approach in order to
build a graph-like topological map, in which vertices represent local metric maps
and edges describe relative poses of adjacent local maps. These algorithms are
shown to be extendable to the multi robot SLAM [2, 13]. Unfortunately, when the
number of features in the environment increases, the computation cost becomes
unsustainable. Other approaches to multi robot SLAM with metric world models
are based on feature matching applied to grid maps. In a recent work [14], Carpin
borrowed some concepts from image processing, applying line detection algorithms
and Hough transform to the original metric map. Exploiting spectral information
the author computes a set of possible transformations, i.e., rotation and translation,
needed to consistently merge the maps of two robots. In [15], instead, a manifold
map structure is applied to multi robot SLAM scenario, by adopting a maximum-
likelihood estimation algorithm [16] for the manifold representation. Because of
the centralized processing, the communication issue should be carefully considered,
and many drawbacks arise reducing the potential number of teammates in the
system.

The multi robot SLAM problem turns out to be even more challenging when using
Rao-Blackwellized Particle Filters. In such a case each robot carries on several map
hypotheses (one for each particle) and it is not straightforward to merge this large
amount of data among the teammates. In [17], Howard distinguishes the case of
known initial correspondences from the one in which robots are deployed without
any a-priori information on their relative poses. After detailing his solution to the
former case, Howard focuses the attention on the latter, proposing to solve the multi
robot posterior estimation by augmenting the state space of each robot with the
trajectories of the other robots in the team. When two robots meet at occasional
rendezvous, each agent initializes a new set of samples, which are in charge of
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approximating the trajectory posterior of the met teammate. After the meeting each
robot continues to iterate both filters, by using its own sensor measurements and the
data communicated by the other robot. Once all teammates have met, each robot
behaves as a central node, performing estimation of the SLAM posterior over the
whole team. Although this work is strictly related to the proposed approach, some
limitations reduce its effectiveness. Howard assumed for his approach a stable wire-
less connection that allows the robots to exchange every command and measurement
from sensors among all robots at each sampling time. Moreover, a careful study of
this technique reveals that the approach is substantially centralized and each robot
uses a fixed particle set size to estimate over an augmented state space, although this
has a large impact on the consistency of the map as we underlined in our previous
work [18]. Finally the error on relative measurements is neglected and, as shown
in Section 4, this approximation can lead to poor results in real scenarios. Further
comparisons with the approach of [17] are reported in Section 4.2.

3 Multi Robot RBPF-SLAM

3.1 Problem Statement

We consider the case in which a team of N robots, each one equipped with laser
scanner, camera and odometric pose estimation, travels in an unknown indoor
scenario, with the primary aim of building a consistent metric representation of
the environment. The robots start from unknown initial poses (relative positions
between robots are unknown too) and each agent of the formation has local
knowledge of the surrounding environment (given by laser and camera). Moreover
communication among agents is possible only within a maximum distance r, by
means of an unreliable wireless channel. Without loss of generality we assume that a
rendezvous event is only between two robots at a time.

Each robot is asked to obtain a metric map of the environment since the team
is assumed to work in a highly symmetric scenario in which it is tricky to solve the
correspondence problem of a landmark-based representation. This map should be as
shared as possible among the teammates in order to enhance team coordination and
allow active rendezvous and loop closing procedures.

3.2 Notation

In this subsection we introduce the basic notation used in the paper. We assume
that each robot of the team is denoted with a unique identification number, so we
will call robot i the i-th robot of the formation. The pose of the robot i at time t,
expressed in the reference frame Ri0 is pi0

i,t
.= [xi0

i,t yi0
i,t θ i0

i,t ]�, where xi0
i,t and yi0

i,t describe
robot position and θ i0

i,t represents its orientation. We further define the homogeneous
coordinates of the robot, obtained from the pose pi0

i,t by augmenting the vector with
a unit component, i.e., p̃i0

i,t
.= [xi0

i,t yi0
i,t θ i0

i,t 1]�.
Let ui0

i,t be the column vector containing the odometric estimate of the robot pose
pi0

i,t, sampled at the t-th discrete time. The odometric trajectory up to time t can be
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described by the following matrix containing subsequent odometric poses, assumed
by the robot, ordered by columns:

ui0
i,1:t

.= [
ui0

i,1 ui0
i,2 · · · ui0

i,t

] =
⎡

⎢
⎣

xi0
i,1 xi0

i,2 · · · xi0
i,t

yi0
i,1 yi0

i,2 · · · yi0
i,t

θ i0
i,1 θ i0

i,2 · · · θ i0
i,t

⎤

⎥
⎦ . (1)

When sampling the odometric pose, robot i also acquires measurements from the
laser scanner. The latter provides a distance measurement for � discrete angles within
laser field of view. In the example of Fig. 1 the laser returns distance information for
angles in the interval [θ i0

i,t − π/2, θ i0
i,t + π/2] with resolution of five degrees. We can

summarize all the measurements acquired before time t in the following matrix:

zi,1:t
.= [

zi,1 zi,2 · · · zi,t
] ∈ R

�×t, (2)

in which the t-th column contains the distance measurements of the scan acquired at
time t.

It is worth noticing that the distance data are expressed in polar coordinates
relative to the robot reference frame, whereas they can be reported to a global
reference frame introducing the information on the pose at the corresponding time
steps. The information acquired by each robot can be packed in a unique variable
containing prioceptive and eteroceptive data, that will be used for SLAM posterior
estimation:

di0
i,1:t

.=
[

ui0
i,1:t

zi,1:t

]
=

[
ui0

i,1 ui0
i,2 · · · ui0

i,t
zi,1 zi,2 · · · zi,t

]
. (3)

Finally we denote a meeting with the time stamps of the robots involved, re-
spectively ti

j,k and t j
i,k (as they can be different for lack of synchronization), where

the superscript indicates the robot from which the time stamp is sampled, the
first subscript corresponds to the id of the met teammate and the last subscript
indicates that the time is referred to the k-th rendezvous event. For sake of simplicity

Fig. 1 Range measurements
from laser scanner at time t.
The length of each radius is an
entry of the vector zi,t
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subscripts are omitted when they can be easily inferred from the context. When it is
not specified, vectors are intended to be column vectors.

3.3 Approach Overview

The approach we propose is an efficient extension of RBPF single robot SLAM.
Before and after each rendezvous the robots of the team perform their estimation
using RBPF-SLAM, following the path drawn by [19] and [20]. When a ren-
dezvous occurs, a simple procedure allows to fuse the information in an effective
and distributed fashion. This multi robot approach can be summarized in three
phases:

– Data exchange: the two robots, namely i and j, exchange the data acquired
since the last meeting (or since the beginning, if it is the first meeting between
the two robots) to the rendezvous instant; in order to minimize the data to be
exchanged, robot i communicates only the odometric data and the corresponding
laser scanner measurements, i.e., di0

i,ti
j,k−1:ti

j,k
, whereas j communicates d j0

j,t j
i,k−1:t j

i,k

;

– Reference frame transformation: from the information received by the teammate,
and using relative pose measurements, each robot suitably roto-translates the
data received in its own reference frame;

– Estimation on virtual data: once the data are roto-translated, they are used to
estimate SLAM posterior as they were due to laser and odometric measurements
acquired by the robot itself. RBPF estimate the posterior from received data,
using suitable process models with the corresponding uncertainties.

Finally, after the filtering of received data is complete, the particles within the
filters restart from their poses before the meeting, and continue the estimation
process, according to grid-based RBPF-SLAM.

The approach is detailed in the following subsections, describing each phase in
chronological order.

3.4 Team Setup and Single Robot RBPF-SLAM

The robots start from unknown initial poses and they begin to acquire information
from the surrounding environment and from the prioceptive sensors. Robot i fixes
the reference frame in its own initial pose, namely Ri0. Each agent can start at a
generic instant of time and no synchronization among the teammates is needed.
According to RBPF-SLAM framework [20], since the map posterior can be com-
puted analytically given the robot path, it is possible to factorize the joint probability
through Rao-Blackwellization [21]:

prob
(

pi0
i,1:t, mi | zi,1:t, ui0

i,1:t
) = prob

(
mi | pi0

i,1:t, zi,1:t
) · prob

(
pi0

i,1:t | zi,1:t, ui0
i,1:t

)
(4)

In Eq. 4 the state includes the robot trajectory, namely pi0
i,1:t = {pi0

i,1, pi0
i,2, . . . , pi0

i,t}
and the map mi, both estimated from the measurements zi,1:t and the odometric data
ui0

i,1:t. The previous equation provides the basis for single robot grid-based RBPF-
SLAM: the particle filter is applied to the problem of estimating potential trajectories
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and a map hypothesis is associated to each sample. The posterior of robot trajectory
is approximated by a set of weighted random samples:

prob
(

pi0
i,1:t | di0

i,1:t
) ≈

n∑

s=1

ω
[s]
t δ

(
pi0

i,1:t − { p̄i0
i,1:t}[s]

)
(5)

where n is the particle set size, { p̄i0
i,1:t}[s] is the trajectory of the s-th sample at time t,

ω
[s]
t is the corresponding weight

(∑n
s=1 ω

[s]
t = 1

)
, and δ(·) is the Dirac delta function.

Filter prediction is obtained by drawing particles from the proposal distribution
π(pi0

i,t | pi0
i,t−1, di0

i,t), which is often derived from a probabilistic description of the
motion model of the robot, see [22]. Sample weights are then updated according
to [23]:

ω
[s]
t � ω

[s]
t−1prob

(
zi,t | { p̄i0

i,t}[s], m[s]
i

)
, s = 1, . . . , n. (6)

hence using the measurement likelihood to assign importance weight to each particle.
Particles degeneracy (i.e., the situation in which most part of the sample set has
negligible weight) is then prevented by a resampling phase that randomly chooses the
samples which best fit current and past observations, according to particles weights.
A common condition for resampling is based on the ef fective sample size [24], which
is an approximated measure of particle diversity:

Ñeff = 1
∑n

s=1

(
ω

[s]
t

)2 . (7)

Particles are re-sampled if the previous quantity drops below a given threshold,
usually fixed to n/2, see [25].

Before the first rendezvous, the robot i estimates its belief prob(pi0
i,1:t, mi | zi,1:t,

ui0
i,1:t) (from the beginning to the current time) given the acquired information di0

i,1:t.
An example of the estimated map and the trajectory hypotheses carried on by the
filter is reported in Fig. 2, showing two robots performing single robot RBPF-SLAM.
Since the wheel odometry is inaccurate and provides poor motion estimation, several
authors proposed to improve the accuracy of relative motion estimation, by using of
a scan-matching procedure among laser scans acquired at subsequent poses. This
approach is usually referred to as laser-stabilized odometry [17] and it allows to
retrieve precise motion estimation while reducing the amount of data to be used for
posterior estimation. The scan-matching procedure can be seen as a preprocessing
block that discards the redundant data (measures acquired when the robot does
not move) and outliers (scans with large matching errors). For further details refer
to [17].

3.5 First Rendezvous and Data Exchange

Since we made no strict assumption on communication between robots nor on their
synchronization, a rendezvous episode, between two generic robots, i and j, should
be denoted using the time stamp of each robot involved, i.e., ti

j,k and t j
i,k.

At the first rendezvous (k = 1) each robot transfers its own piece of information,
respectively contained in di0

i,1:ti
j,k

and d j0
j,1:t j

i,k

, to the teammate, using for example
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Fig. 2 Single robot RBPF-
SLAM before first rendezvous
event. Each robot estimates
both trajectory and map
hypotheses in its own
reference frame

j0

i
j

i0

wireless communication or other short range technologies (bluetooth, RFId, etc.).
These data contain a list of odometric poses with the corresponding laser scan for
each time step, see Eq. 3.

Remark 1 The robots are required to exchange few preprocessed data, and the com-
munication can be limited to rendezvous events. This makes the approach suitable
when using an unreliable wireless communication, since, in the short range, the
wireless channel is supposed to be more stable, and long distance communications,
although useful for enhancing team coordination, are not strictly necessary for our
SLAM posterior estimation. The robots can even stop when they meet and wait until
a proper connection is established.

For the symmetry of the process and without loss of generality, in the following
subsections we will limit our description to robot i.

3.6 Reference Frame Transformation

When robot i receives d j0
j,1:t j

i,k

, in order to successfully include this piece of information

in its posterior, it is required to transfer the data in its own reference frame, i.e., it has
to obtain di0

j,1:t j
i,k

. As mentioned in Section 3.2, laser scanner data are expressed in local

coordinates, hence only the odometry has to be transformed in Ri0. The coordinate
transformation to express u j0

j,1:t j
i,k

in Ri0 requires the knowledge of the relative pose

between Ri0 and R j0, i.e., pi0
j0. From Fig. 3 it is possible to observe that pi0

j0 is the
composition of the relative poses of four reference frames, i.e., the reference frames
of the two robots (Ri0, R j0) and the reference frames corresponding to the robots
poses during rendezvous (Ri, R j). Accordingly we can write:

pi0
j0 = pi0

i ⊕ pi
j � pj0

j (8)
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Fig. 3 Reference frames
involved in coordinate
transformation during a
rendezvous event

where pi0
i and pj0

j are the poses of the two robot when the meeting occurs, later called
rendezvous poses, pi

j is the relative pose between the teammates, and ⊕, � are the
pose compounding operators [26], see also Remark 3.

In this context we assume that when the robots meet, they are able to measure
their relative pose and the corresponding uncertainty using a pan-tilt camera associ-
ated to the laser (line of sight between the teammates is required). For each robot,
the relative pose of the teammate can be obtained from the relative distance ρ (given
by the laser), the angle αi

j at which robot i sees the robot j, and the angle α
j
i , at which

robot j observes robot i (angular measurements can be easily performed through
cameras).

Remark 2 The angle α
j
i and the final odometric pose of robot j in R j0 should be

previously communicated by robot j itself. The distance ρ is measured by the robot i,
i.e., ρ = ρi

j. If ρ
j

i is also communicated by robot j, although not strictly necessary, can
be averaged with ρi

j allowing, under the hypothesis of independent Gaussian noise,
to reduce the variance of distance measurement to σ 2

ρ = σ 2
ρi

j
σ 2

ρ
j

i

/(σ 2
ρi

j
+ σ 2

ρ
j

i

).

From the observation of Fig. 4, we notice that the relative angle between the
rendezvous poses can be computed using simple geometric considerations:

θ i
j + α

j
i = β = αi

j ± π =⇒ θ i
j = ±π + αi

j − α
j
i (9)

Since both signs of π represent the relative angle, for sake of simplicity, we
consider the plus sign. Hence the relative pose of robot j with respect to robot i
becomes:

pi
j =

⎡

⎢
⎣

ρ cos αi
j

ρ sin αi
j

π + αi
j − α

j
i

⎤

⎥
⎦ . (10)
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Fig. 4 When a rendezvous
event occurs each robot knows
its final pose, respectively
expressed in Ri0 and R j0, and
is able to measure the relative
pose of the teammate. It is
possible to attach a reference
frame to the rendezvous pose
of each robot in order to
understand how the overall
transformation is the
composition of the roto-
translation between the
represented reference frames

From the previous equation we can further compute the first-order approximation
of the relative pose uncertainty, expressed by the covariance matrix Ppi

j
= [Pmn],

with m, n = 1, 2, 3,

P11 = σ 2
ρ cos2 αi

j + ρ2σ 2
αi

j
sin2 αi

j

P12 = P21 =
σ 2

ρ − ρ2σ 2
αi

j

2
sin

(
2αi

j

)

P13 = P31 = −ρσ 2
αi

j
sin αi

j

P22 = σ 2
ρ sin2 αi

j + ρ2σ 2
αi

j
cos2 αi

j

P23 = P32 = ρσ 2
αi

j
cos αi

j

P33 = σ 2
αi

j
+ σ 2

α
j
i

(11)

where σαi
j
, σ

α
j
i

and σρ are the standard deviations of relative angles and distance
measurements. From the knowledge of the relative pose and the rendezvous poses,
it is possible to compute the vector describing the relative pose between Ri0 and R j0,
according to [8] and [9]. The angle between the two reference frames can be obtained
as:

θ i0
j0 = θ i0

i,t + θ i
j − θ

j0
j,t =

= π + αi
j − α

j
i + θ i0

i,t − θ
j0
j,t (12)

whereas the Cartesian components of the pose vector can be expressed as:
[

xi0
j0

yi0
j0

]

=
[

xi0
i

yi0
i

]
+

[
ρ cos

(
θ i0

i + αi
j

)

ρ sin
(
θ i0

i + αi
j

)

]

+

+
[

cos θ i0
j0 − sin θ i0

j0

sin θ i0
j0 cos θ i0

j0

][
x j0

j

y j0
j

]

. (13)

It is worth noticing that each summand in Eqs. 12 and 13 corresponds to a term
in Eq. 8, enlightening the role played by each reference frame in the definition of
the relative pose between Ri0 and R j0. The first two components of pi0

j0 correspond
to the translation to be applied in order to express the position of robot j in Ri0,
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whereas the last component provides the rotation angle. Hence a generic pose pj0
j,t =

[x j0
j,t y j0

j,t θ
j0
j,t ]� in R j0 can be reported in Ri0 through the following transformation:

[
xi0

j,t

yi0
j,t

]

=
[

cos θ i0
j0 − sin θ i0

j0

sin θ i0
j0 cos θ i0

j0

] [
x j0

j,t

x j0
j,t

]

+
[

xi0
j0

yi0
j0

]

, (14)

and:

θ i0
j,t = θ

j0
j,t + θ i0

j0. (15)

Equations 14 and 15 can be rewritten in compact form using homogeneous
coordinates:

p̃i0
j,t = Ti0

j0 p̃ j0
j,t, (16)

where:

Ti0
j0 = T

(
xi0

j0, yi0
j0, θ

i0
j0

) =

⎡

⎢⎢
⎢
⎣

cos θ i0
j0 − sin θ i0

j0 0 xi0
j0

sin θ i0
j0 cos θ i0

j0 0 yi0
j0

0 0 1 θ i0
j0

0 0 0 1

⎤

⎥⎥
⎥
⎦

. (17)

Hence in order to transform u j0
j,1:t j

i,k

in ui0
j,1:t j

i,k

we apply:

ũi0
j,1:t j

i,k
= Ti0

j0 ũ j0
j,1:t j

i,k

. (18)

Once the stabilized odometry of robot j is roto-translated into the reference frame
of robot i, the latter has all the necessary information to evaluate SLAM posterior
including received data.

Remark 3 The use of homogeneous coordinates is quite unusual in planar trans-
formations. Nevertheless, in the analyzed case, a planar rotation, which represents
a mapping R

2 −→ R
2, is insufficient to describe the transformation of the three

dimensional state space, which includes both position and orientation of the robot.
The latter, instead, can be easily treated with homogeneous coordinates, exploiting
the analogies between the considered problem and rigid transformations in 3D space.
We further observe that composition rules used for 3D roto-translations still apply to
our case. Hence we can rewrite Eq. 8 by exploiting the transformation corresponding
to each term:

Ti0
j0 = Ti0

i Ti
j

(
T j0

j

)−1 =

= T
(
xi0

i , yi0
i , θ i0

i

)
T

(
xi

j, yi
j, θ

i
j

)(
T

(
x j0

j , y j0
j , θ

j0
j

))−1

. (19)

Developing Eq. 19 we obtain analogous results as Eqs. 14 and 15.

Remark 4 The data received were preprocessed by robot j, which refined odometry
through laser stabilization [17]. Such a preliminary computation reduces the number
of recorded poses, since outliers or successive poses in which the robot was stationary
are discarded. This fact further shrinks the communication overhead.
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Remark 5 If a wireless communication is active in the considered scenario, the robots
can exchange information also in the interval of time between two meetings. In
particular the robots can share their current poses, which are fundamental, once
the robots know the transformation between their reference frames, in order to
plan active rendezvous. Notice that rendezvous remains central, since the odometric
information transferred between the robots gradually derives, whereas when meeting
occurs pose constraints are added as clarified in the next subsection.

3.7 SLAM Posterior Estimation on Virtual Data

In order to obtain grid-based SLAM posterior, for the single robot case, RBPF use
the odometric information for the prediction phase, and the measurements from laser
scanner for filter update. With respect to Eq. 3 we can state that at each time, as new
odometric and laser measures are acquired by robot i, one more column is added to
the matrix di0

i,1:t, and this column provides the input for filter estimation one step
ahead. In particular, the prediction phase of the filter is based on the change of
odometric pose between time t and time t + 1. Hence the prediction only exploits the
odometric constraint given by two subsequent odometric poses, i.e., it only depends
on the difference between ui0

i,t+1 and ui0
i,t, and from its covariance matrix, given by

the uncertainty of odometry. Analogously the update phase only depends on laser
measurements and the corresponding uncertainty.

We extend the estimation process to the multi robot case by introducing the
concept of virtual data. When a rendezvous event occurs, instead of acquiring a single
piece of information from odometry and laser, the robot acquires a large amount of
information, which includes the past acquisitions of the met teammate. Hence robot
i acquires virtual measurements and odometry from robot j, gaining knowledge on
places that were not physically visited. As a consequence, instead of adding one single
column to di0

i,1:ti
j,1

, it concatenates all the data received d j0
j,1:t j

i,1
, suitably roto-translated,

obtaining:

di0
i,1:ti

j,1+t j
i,1

=
[

ui0
i,1 ui0

i,2 · · · ui0
i,ti

j,1
ui0

j,t j
i,1

· · · ui0
j,2 ui0

j,1

zi,1 zi,2 · · · zi,ti
j,1

z j,t j
i,1

· · · z j,2 z j,1

]

. (20)

It is worth observing that the data are included in reverse order and this is not an
arbitrary choice but is due to problem constraints. In a real scenario a rendezvous
event imposes a constraint on rendezvous poses, whereas the initial poses of each
robot remain unobserved, and can only be inferred from the rendezvous poses and
odometric data. In our approach this rendezvous constraint can be exploited applying
a suitable prediction model from ui0

i,ti
j,1

to ui0
j,t j

i,1
. When passing from column ti

j,1 to

ti
j,1 + 1 in Eq. 20, the prediction is not due to a physical movement of the robot but

is due to relative pose measurements. As a consequence the odometric constraint is
substituted by the rendezvous constraint expressed by the relative pose of the two
robots pi

j and the corresponding covariance matrix Ppi
j
. The estimation over the

remaining data is performed according to RBPF-SLAM since between each column
an odometric constraint (given by robot j) holds. When RBPF end the estimation
over the odometric path of robot j, each particle restarts from its pose at time ti

j,1 and
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all particle poses are predicted one step ahead according to the odometry of robot i,
as in single robot RBPF-SLAM.

We further explain the approach by means of a simple example. In Fig. 5, the
initial positions of robot i and j are S1 and S2, whereas points F1 and F2 are their
rendezvous poses respectively. Therefore, the procedure corresponds to attach the
inverted odometric data (from F2 to S2) to the initial odometric data carried on by
robot i (from S1 to F1). This piece of information can be used as input to RBPF,
that extract the SLAM posterior from the rough data. When applying the prediction
step from the last pose of i (F1) to the final pose of j (F2), a proper prediction
model is considered. The update model remains unaltered since measurements are
always given by the laser. After this step the filter continues using the odometry for
prediction since the poses from F2 back to S2 are linked by odometric constraints.
When RBPF end the estimation over the path of robot j, each particle restarts from
its rendezvous pose and particles are predicted one step later to S3. Hence the robot
continues the estimation through RBPF-SLAM applied to its own measurements
until the exploration process ends at a generic point F3.

During the estimation over the external data, the robot i processes the information
of the other robot as it was traveling backward following the trajectory of the robot
j. The surplus of information di0

j,1:t j
i,1

represents a kind of virtual movement, since

the robot i acquires measurements on the environment and on the odometric poses
of robot j that were not obtained physically from its own sensors but were ob-
served and communicated by another robot. After the rendezvous, robot i posterior
prob(pi0

i,1:ti
j,1+t j

i,1
, mi | di0

i,1:ti
j,1
, di0

j,1:t j
i,1
) includes the data of robot j and both the map and

the trajectories are updated accordingly.
Finally we must observe that the approach is effective since the estimation process

is remarkably faster than the acquisition of new measurements. As a consequence
the information carried on by the other robot are quickly included in the posterior,

Fig. 5 Multi robot
RBPF-SLAM. After
rendezvous the overall map
and trajectory hypotheses
include the information
acquired by both robots
involved in the meeting
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preserving the on-line nature of the estimation process. Details on latencies are
reported in Section 4.

3.8 Following Rendezvous Events

The procedure described in the previous subsection can be easily generalized to an
arbitrary number of meetings. After the first rendezvous each new meeting with a
previously met robot corresponds to a loop closing event, adding constraints that
are introduced in the filter through a resampling phase which selects the trajectories
that best describe all the information acquired. Moreover, including virtual data from
other robots, loop closure can occur also if the robot revisits places traveled by the
met teammates. At the k-th rendezvous, robot j does not transfer the entire data
d j0

j,1:t j
i,k

but only the piece of information from the last meeting to the current time

stamp, i.e., d j0
j,t j

i,k−1:t j
i,k

. This is not only a necessity dictated by the limited bandwidth,

but derives from structural properties of the filtering process. If the same data are
included twice in the RBPF, the filter interprets this information as the robot traveled
twice in a place that was actually visited only once. As a consequence resampling
phases occur although no useful information for resampling is added. Based on this
consideration our method allows to preserve filter consistency and at the same time
it takes advantage of the small amount of data exchanged during rendezvous.

Remark 6 (Application to heterogeneous teams) We focused on the very specific
case of robots equipped with a laser scanner since this setup is widespread for
indoor mobile robotics applications, for laser capability of acquiring accurate range
information over long distances. In smaller scenarios, however, one can envision
to apply the same approach with other distance sensors, as ultrasound sensors [27]
or cameras [28], by simply choosing a suitable sensor model. Moreover the team
can be heterogeneous: in such a case the communication between agents should
include further information on robot sensor models, which have to be applied when
performing estimation over virtual data (see Section 3.7). Also the choice of cameras
(and distance measurements from laser scanner) for relative pose estimation can
be easily substituted by other technological solutions, thus reducing to a similar
probabilistic treatment, under a suitable uncertainty propagation (see Section 3.6).
For instance the literature on relative pose estimation includes the use of vision
based techniques [29] or the inference of relative pose from multiple distance
measurements [30].

We conclude this section observing that when more than two robots intervene
in the estimation process the procedure described above remains unchanged. The
only aspect to be carefully considered is the imposition of the constraints given
by the odometry, measurements and rendezvous events. In our implementation
we preferred each robot to provide only the information acquired through its own
sensors, regardless past meetings with other teammates. Roughly speaking the robot
does not transfer virtual data received in previous meetings, since in such a case,
the constraints would become difficult to manage. In this fashion we preserve the
simplicity of implementation making the proposed technique an effective extension
of grid-based RBPF-SLAM.
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The proposed approach is validated and discussed in the following section in which
both simulations and experimental results are presented.

4 Test and Discussion

In this section we report the results of the implementation of our approach in
simulations and real scenarios. Both virtual and real tests were carried out using
the adaptive resampling technique, proposed by Stachniss et al. [25], and stabilized
laser odometry, further detailed in [17]. The mobile robots used are ActivMedia
Pioneer P3-DX equipped with laser range sensor SICK LMS200, a LOGITECH pan-
tilt camera and odometry pose estimation. The scenario is an indoor environment, in
which the robots travel for the purpose of building a consistent and shared map.

4.1 Multi Robot Simulations

Simulations were performed in MobileSim, a real time simulator, used to test the
approach in realistic environments, with an arbitrary number of robots. Before
introducing some results from the simulated multi robot system we underline the
importance of considering the uncertainty in the relative pose measurement, when
dealing with multi robot SLAM. In Fig. 6 a simple example of RBPF multi robot
SLAM is reported. Robot 1 starts from point S1 and meets robot 2 in I1, receiving
data from the latter. Then robot 1 continues its estimation until it arrives in a generic
position F1. We limit this simple example to robot 1 perspective. In Fig. 6a we
consider the error on relative measurement and the resulting map of the corridor,
estimated from data of both robots, is achieved in a correct manner. In Fig. 6b we

Fig. 6 Toy example of multi
robot RBPF-SLAM. In (a) the
uncertainty in relative
measurement is taken into
account, whereas it is
neglected in (b)
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neglect the uncertainty in the relative measurement and, as expected, the underesti-
mation of the uncertainty leads to an inconsistent map. This phenomenon worsens
in real tests in which the error affecting measurements is even bigger due to sensor
calibration errors and measurements noise.

After these preliminaries we present the results of simulations in a logistic space.
Three robots travel in the environment, and meetings occur randomly when they
are in reciprocal field of view and their distance is less than 3 meters (for simplicity
teleoperation is used for moving the agents since in this context we are not interested
in the particular exploration policy). During each rendezvous event, robots exchange
data and they are able to estimate the map from received information. At the end
of the process each robot has the overall map, built in a cooperative fashion. In
Fig. 7 the estimated maps are shown. Figure 7a reports the trajectory of robot 1
and the map built by the robot neglecting the rendezvous events: robot 1 starts in
the position denoted with the red circle, ending its exploration in the place labeled
with the green square. In such a case the agent performs single robot SLAM and it
is able to recover only a partial representation of the environment. Figure 7b shows
the case in which the robot takes advantage of the rendezvous episodes (according to
our approach) and is able to include the information acquired by the teammates in its
SLAM posterior. The corresponding information for robot 2 and 3 are shown in Fig.
7c, d and e, f, respectively. Figure 7c and e report the single robot SLAM outcome
and the trajectories followed by the agents, whereas Fig. 7d and f show the estimated
map with the multi robot approach. We remark that the trajectories followed by the
agents, in the multi robot SLAM case, are identical to the corresponding trajectories
shown in Fig. 7a–e.

Fig. 7 Comparison of the maps of the simulated logistic space, obtained by each agent in the single
robot case (a), (c), (e), and with the proposed multi robot approach (b), (d), (f). The trajectories
of the robots are shown in the upper sub-figures, whereas the red circles, the green squares and the
triangles denote the starting points, the final positions and the rendezvous positions for each agent
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Remark 7 The approach is distributed and for the nature of the RBPF-SLAM, it
leads to non overlapping representations of the environment among the robots.
Although the maps built by each teammate are not exactly equal, due to the random
nature of the particle filter, they only differ by few cells, preserving the structure of
the scenario. As a consequence our approach allows to build a shared map which can
be used for team coordination.

In order to give quantitative evidence of the similarity between the maps of the
robots after the end of the SLAM process, we now compare these grid maps with
a ground truth map, estimated by a single robot that visits all the scenario. The test
scenario is challenging, since the robot is requested to cover an area of 1,100 m2,
producing an “ideal” map to be used as ground truth. The single robot map and the
corresponding trajectory followed by the agent are shown in Fig. 8.

Overcoming a simple visual inspection, we use the metric proposed by Carpin in
[14]. We report the following definition from the cited paper.

Definition 1 Let M1 and M2 be two grid maps. The agreement between M1 and M2

(indicated as agr(M1, M2)) is the number of cells in M1 and M2 that are both free
or both occupied. The disagreement between M1 and M2 (indicated as dis(M1, M2))
is the number of cells such that M1 is free and M2 is occupied or vice-versa. The
acceptance index between them is defined as:

ω(M1, M2) =
⎧
⎨

⎩

0 if agr(M1, M2) = 0
agr(M1, M2)

agr(M1, M2) + dis(M1, M2)
if agr(M1, M2) 
= 0 (21)

The acceptance index gives information on map similarity, once a suitable
roto-translation is applied (in our approach each robot preserves its initial refer-
ence frame). Rototranslation is computed according to [14]. Table 1 reports the

Fig. 8 Map of the logistic
space estimated with
RBPF-SLAM (single robot).
This grid map is used as
ground truth and compared
with the maps estimated with
the proposed multi robot
SLAM approach
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Table 1 Acceptance index of the three maps cooperatively built by the robots with respect to the
map estimated through single robot RBPF-SLAM

Robot 1 Robot 2 Robot 3

Acceptance index 0.96 0.95 0.97

acceptance index values of the maps estimated cooperatively by the three robots
(see Fig. 7b–f), with respect to map estimated by the single robot (see Fig. 8). The
high values of the acceptance index indicates the consistency of the maps produced
by the multi robot system and their similarity.

Figure 9 shows the length of the sensor data queue that should be processed at
each time step by one of the three robots. This length coincides with the number
of columns of Eq. 20 waiting for being included in the posterior. The x-axis of
the figure corresponds to physical time. Notice that the two peaks, that coincide
with the instant in which external data are received from the other teammates, are
quickly shortened by the RBPF. This observation allows us to conclude that, after
a latency, the estimation process comes back to its on-line nature. The maximum
delay observed, using common laptop, was 190 s. The delay is proportional to the
peak height (approximately given by the amount of data received), hence, frequent
meetings lead to lower peaks and shorter latencies, because agents are required to
exchange only the data acquired after the last meeting. We notice that the experiment
reported here is a worse case example, since the robots travel independently for a
long time and meet after exploring large areas, hence making the communication
more demanding. A more common situation is the one reported in Section 4.2 (see
Fig. 12 for comparison), which further highlights that the approach is sustainable and
suitable for long operation.

We conclude this section with some results on the practical advantages of our
technique with respect to single robot SLAM approach. In Table 2 we report the
distance traveled by each robots in the multi robot SLAM case (i.e., the length of
the trajectories shown in Fig. 7a–e) and the length of the path followed by the agent

Fig. 9 Length of the sensor
data queue that should be
processed at each time step
of simulation. The peaks
correspond to rendezvous
events in which external data
are added to the queue
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Table 2 Distance traveled by the robots and time required for building the overall map, in the multi
robot case and in the single robot scenario

Multi robot Single robot

Robot 1 Robot 2 Robot 3

Time (s) 805 795 992 1,425
Distance traveled (m) 128 113 183 402

in the single robot SLAM case, see Fig. 8. It is possible to verify that the overall
distance traveled by the team (i.e., the sum of the distances traveled by each robot
in the multi robot system) is similar to the one traveled by the single robot, but since
such distances are traveled in parallel, the overall estimation process is speeded up.
Evidence of such consideration is reported in the same table, in which we also show
the time required to build the complete map in the multi robot case (for each agent)
and in the single robot case. It is quite intuitive that the advantage of the information
exchange relies on the capability of the robots of estimating the whole map, without
spending time in acquiring sensor measurements. Hence, in our experiments, after
less than 1,000 s all the robots of the team have a complete map representation,
whereas a robot alone, would require about 1,500 s.

4.2 Real Tests

In this section we report the results of the implementation of our approach in two
real scenarios. The first experiment is useful to further explain the approach and
describe its real implementation. The second, instead, is an application of SLAM in
an artificially created environment, that reproduces the structure of a logistic space.

We firstly considered the case in which two robots travel inside an office-like
environment cooperatively building a map. This experiment was performed in the
corridors and labs of Politecnico di Torino. The test scenario is challenging since it
was performed in an environment with many non reflective surfaces in presence of
people traversing corridors. The mobile robots are shown in Fig. 10. Each teammate

Fig. 10 Robots P3-DX used
for real tests. A bar code
marker is used to distinguish
the robots
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is equipped with a visual marker, and this marker is endowed with a bar code useful
to distinguish the robots. The map estimated by robot 1 and the corresponding
estimated trajectory (including the pieces of data received from robot 2) are shown
in Fig. 11. The reader is referred to the same figure for the following description.

The two teammates are initially deployed in separated locations, respectively
labeled with S1 and S2. The robots cover the first piece of trajectory until they arrive
in positions I1 and I2, where the first rendezvous occurs. Once the robots meet,
they measure the relative poses and exchange data using a wireless communication
(based on a client/server architecture). Robot 1 includes in its posterior the external
information related to the path S2 to I2 of robot 2 and then continues its route,
traveling in loop (A) and applying RBPF-SLAM. In the meanwhile robot 2 explores
the lab (B) and arrives in position F2. Robot 1 visits room (C) and, once arrived
in F1, it finally meets robot 2 for the second time. The data received from robot
2 allow robot 1 to complete its map, reducing the time required for exploration and
enhancing loop closing. The dual procedure is applied by robot 2, producing a similar
map.

In Fig. 12 we report the length of data queue of an agent: in this case the first
rendezvous occurred after the robots have explored a small area, hence the peak is
low and the virtual data is processed by the agent in few seconds. During the second
meeting, instead, the maximum observed latency was less than 40 s.

The second experiment was lead in an environment of approx. 300 m2 reproducing
the structure of a logistic space. In Fig. 13a the map estimated by robot 1 is shown.
The figure also shows robot trajectory, in which the red circle denotes robot starting
point, yellow triangles correspond to places in which a rendezvous occurred and

Fig. 11 Map estimated through RBPF multi robot SLAM during experimental test at Politecnico di
Torino. The corridor length is about 20 m whereas the particle set size was 100
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Fig. 12 Length of the sensor
data queue that should be
processed at each time step
of the real test. The peaks
correspond to rendezvous
events in which external data
is added to the queue
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green square corresponds to the end of robot 1 trajectory. Figure 13b reports the
same information with respect to robot 2. According to our approach the robots can
build a similar representation of the environment in a distributed fashion without

(a) Robot 1 (b) Robot 2

Fig. 13 Maps estimated by the two Pioneer P3-DX during the real test in logistic space-like
environment. Figures show robot trajectory (red circle is the starting point, green square is the end of
the path) and the rendezvous points (yellow triangles)
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physically traveling in the whole scenario. The acceptance index between the two
maps is equal to 0.92.

We further stress that no synchronization is needed and the approach requires
no central computation, constituting a fully distributed multi robot SLAM solution.
The formation of robots can be seen as a mobile sensor network, in which a
communication link appears between two nodes, only during rendezvous events.
In such a way fault tolerance problems in communication, as investigated in [27],
are relaxed and also in case the robots fail to detect a rendezvous case, this does
not influence the estimation process. These considerations remark the advantages
over the state of the art approaches. The robots are no longer constrained by
the communication ranges of the teammates as in [17], but can proceed in their
exploration independently. Moreover the approach takes into consideration the
uncertainty on relative measurements, whereas neglecting these errors can lead to
an underestimation of filter uncertainty, thus to inconsistencies in the occupancy
grid map. Finally each robot treats the virtual data as its own measurements, and
the filter is no longer required to perform estimation over an augmented state (see
[17]), hence avoiding the use of large sample size (the number of required samples
increases exponentially in the number of state variables [31]).

5 Conclusion

As multi robot systems are envisioned to play an important role in many robotic
applications, distributed techniques for solving Simultaneous Localization and Map-
ping are required, in order to enhance autonomous exploration and large scale
SLAM, increasing both efficiency and robustness of operation. Although Rao-
Blackwellized Particle Filters (RBPF) have been demonstrated to be an effective
solution to the problem of single robot SLAM, few extensions to teams of robots
exist, and these approaches are characterized by strict assumptions on both commu-
nication bandwidth and prior knowledge on relative poses of the teammates. The
present paper proposes an efficient extension of RBPF-SLAM to the multi robot
scenario. We relaxed the assumptions of related works, addressing the problem of
multi robot SLAM in the case of limited communication and unknown relative initial
poses. Our approach allows to jointly estimate SLAM posterior of the robots by fus-
ing the prioceptive and the eteroceptive information exchanged among teammates.
RBPF multi robot SLAM involves the communication of a small amount of data,
while taking into account the uncertainty in relative pose measurements. Moreover
it can be naturally extended to different communication technologies (bluetooth,
RFId, Wifi, etc.) regardless their sensing range. Before and after each rendezvous the
robots of the team perform their estimation using RBPF-SLAM. When a rendezvous
occurs, a simple procedure allows to enhance information fusion in an effective and
distributed fashion. This procedure can be summarized in three phases, respectively
called data exchange, reference frame transformation and estimation on virtual data.
When the filtering of received data is complete, the particles restart from their
poses before the meeting, and continue the estimation process, according to grid-
based RBPF-SLAM. At the end of the mapping process the robots share similar
(i.e., not exactly equal) representations of the map, up to a known roto-translation.
Overcoming the visual inspection that is often applied for result evaluation we use
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the acceptance index proposed by Carpin in [14] to provide an objective evaluation
of the estimation process. After the first meeting the robots know the relative
transformation between the reference frames of the met teammates, enhancing the
possibility of team coordination and active rendezvous. The technique is shown to be
an effective solution to multi robot SLAM and it is further validated through simu-
lations and real tests. Real experiments were performed in office-like environment
and in an artificially built scenario which reproduces the structure of a logistic space.
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