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Abstract— The Extended Kalman Filter (EKF) has been the
de facto approach to the SimultaneousLocalization and Mapping
(SLAM) problem for nearly fifteen years.However, the EKF hastwo
seriousdeficienciesthat prevent it fr om being applied to large, real-
word envir onments: quadratic complexity and sensitivity to failur es
in data association.FastSLAM, an alternativeapproachbasedon the
Rao-BlackwellizedParticle Filter, has beenshown to scalelogarith-
mically with the number of landmarks in the map [10]. This effi-
ciency enablesFastSLAM to be applied to envir onments far larger
than could be handled by the EKF. In this paper, we will show that
FastSLAM alsosubstantially outperforms the EKF in envir onments
with ambiguousdata association.The performanceof the two algo-
rithms is compared on a real-world data set with various levels of
odometric noise.In addition, we will show how negative information
canbeincorporated into FastSLAM in order to impr ovethe accuracy
of the estimatedmap.

I . INTRODUCTION

Theproblemof simultaneouslocalizationandmapping,
alsoknown asSLAM, hasattractedimmenseattentionin
themobile roboticsliterature. SLAM addressestheprob-
lem of building a mapof anunknown environmentfrom a
sequenceof noisy landmarkmeasurementsobtainedfrom
amoving robot.Sincerobotmotionis alsosubjectto error,
themappingproblemnecessarilyinducesa robotlocaliza-
tion problem—hencethe nameSLAM. SLAM is consid-
eredby many to beanessentialcapabilityfor autonomous
robotsoperatingin environmentswhereprecisemapsand
positioningarenotavailable[3], [7], [14].

The dominantapproachto the SLAM problemwasin-
troducedin a seminalpaperby Smith, Self, andCheese-
man [13]. This paperproposedthe useof the Extended
KalmanFilter (EKF) for incrementallyestimatingthejoint
posteriordistribution over robot poseand landmarkpo-
sitions. In the last decade, this approachhas found
widespreadacceptancein field robotics,asa recenttuto-
rial paperdocuments[2].

EKF-basedapproachesto SLAM suffer from two im-
portant limitations. First, sensorupdatesrequire time
quadraticin the total numberof landmarks

�
in themap.

This complexity stemsfrom the fact that the covariance
matrix maintainedby the Kalman filter has ��� ����� ele-
ments,all of which must be updatedeven if just a sin-
gle landmarkis observed. Quadraticcomplexity limits the
numberof landmarksthatcanbehandledby thisapproach
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to only afew hundred—whereasnaturalenvironmentmod-
elsfrequentlycontainmillions of features.

Second,EKF-basedSLAM algorithmsrely heavily on
theassumptionthatthemappingbetweenobservationsand
landmarksis known. Associatinga small numberof ob-
servationswith incorrectlandmarksin theEKF cancause
thefilter to diverge. Theproblemof determiningthecor-
rect mappingof observationsto landmarksis commonly
referredto asthedataassociation,or correspondenceprob-
lem.

An alternativeapproachto theSLAM problemhasbeen
introducedthat factorsthe SLAM posteriorinto a local-
ization problemand

�
independentlandmarkestimation

problemsconditionedon therobotposeestimate.This al-
gorithm, calledFastSLAM [10], usesa modifiedparticle
filter for estimatingthe posteriorover robot paths. Each
particlepossesses

�
independentKalmanfilters thatesti-

matethe landmarklocationsconditionedon the particle’s
path. The resultingalgorithm is an instanceof the Rao-
Blackwellizedparticlefilter [5], [11]. By representingpar-
ticlesasbinarytreesof KalmanFilters,observationscanbe
incorporatedinto FastSLAM in ����

����� ��� time, where

 is the numberof particles,and

�
is the numberof

landmarks.FastSLAM hasbeendemonstratedwith up to
100,000landmarks,problemsfar beyond the reachof the
EKF.

Sinceeachparticlerepresentsa differentrobotposehy-
pothesis,dataassociationcanbeconsideredseparatelyfor
every particle. This hastwo advantages.First, the noise
of robotmotiondoesnot affect theaccuracy of dataasso-
ciation. Second,if observationsareassociatedcorrectlyin
someparticlesandincorrectlyin others,the incorrectpar-
ticleswill receive lower probabilitiesandwill beremoved
in future resamplingsteps. In this way, FastSLAM can
“forget” incorrectassociationsfrom the past,whenother
correctassociationsbetterexplain thedata.

We will demonstratethat FastSLAM substantiallyout-
performsthe Kalman Filter on real-world datawith am-
biguousdataassociation.By addingextraodometricnoise,
we will show thatFastSLAMcontinuesto performwell in
situationsin which the KalmanFilter inevitably diverges.
In fact, FastSLAM can estimatean accuratemap in this
environmentwithout any odometryat all. Finally, we will
show how to incorporatenegative information into Fast-
SLAM. Theconsiderationof negativeevidenceresultsin a
measurableincreasein theaccuracy of theresultingmap.



I I . SLAM PROBLEM DEFINITION

TheSLAM problemis bestdescribedasa probabilistic
Markov chain. Therobot’s poseat time � will bedenoted��� . If the robot is operatingin a planarenvironment,this
poseis therobot’s ����� positionandits headingorientation.
Therobot’s environmentis assumedto becomprisedof

�
immobile, point landmarks.Eachlandmarkis character-
izedby its locationin space,denoted��� for � �"!#�%$%$%$&� � .
Thesetof all landmarkswill bedenotedas � .

Robotposesevolve accordingto a probabilisticlaw, re-
ferredto asthemotionmodel:

' � ���)(+*,� � ����-/. � (1)

Thecurrentpose��� is a probabilisticfunctionof therobot
control *,� andthepreviouspose����-/. .

To mapits environment,therobotcansenselandmarks.
It maybeableto measurerangeandbearingto landmarks,
relative to its local coordinateframe. The measurement
at time � will bedenoted0 � . Sensormeasurementsarealso
governedby aprobabilisticlaw, referredto asthemeasure-
mentmodel:

' ��0 �)(1��� �%��2�34��5 � � (2)

where5 � is theindex of thelandmarkcurrentlybeingper-
ceived. The observation 0 � is a probabilisticfunction of
the currentposeof the robot ��� and the landmarkbeing
observed ��2�3 . While robots often can sensemore than
one landmarkat a time, we follow the commonpractice
of assumingthat eachobservation correspondsto a mea-
surementof exactly onelandmark[2]. This conventionis
adoptedsolely for mathematicalconvenience.It posesno
restriction,asmultiple landmarksightingsat a singletime
stepcanbeprocessedsequentially.

In short, SLAM is the problemof determiningthe lo-
cationsof all landmarks� androbot poses� � from mea-
surements0 � �60 . �%$%$%$&�%0 � andcontrols * � � *). �%$&$%$%� */� .
In probabilisticterms,this is expressedby the following
posterior:

' � � � �%� ( 0 � � * � � (3)

Herewe usethesuperscript
�

to refer to a setof variables
from time1 to time � . If theassociations5 � areknown, the
SLAM problemis simpler. Theposteriorbecomes:

' � � � �%� ( 0 � � * � ��5 � � (4)

I I I . DATA ASSOCIATION

In real-world SLAM problems,themapping5 � between
observations and landmarksis rarely known. The total
numberof landmarks

�
is alsounknown. Every time the

robot makes an observation, that readingmust be corre-
spondedwith anexisting landmarkor consideredascom-
ing from a previously unseenlandmark. If this mapping
is not obvious, picking the wrong associationcan cause

uncertainty
Landmark position

Fig. 1. MeasurementAmbiguity: Two landmarks(shown asblack cir-
cles)arecloseenoughthat theobservation(shown asanx) plausibly
couldhavecomefrom eitherone.

a filter to diverge. A betterunderstandingof how uncer-
tainty in the SLAM posteriorgeneratesambiguityin data
associationwill demonstratehow simpledataassociation
heuristicsoftenfail.

Two factorscontributeto uncertaintyin theSLAM pos-
terior: measurementnoiseandmotion noise. Eachleads
to a differenttypeof dataassociationambiguity. Noisein
the measurementmodel will result in higher uncertainty
in the landmarkpositions. Uncertainlandmarkpositions
will leadto measurementambiguity, or confusionbetween
nearbylandmarks.(SeeFigure1.) A mistake dueto mea-
surementambiguitywill have a relatively small effect on
estimationerror becausethe observation plausibly could
have comefrom eitherlandmark.

?
Pose uncertainty

Fig. 2. Motion Ambiguity: Observationsmay be associatedwith com-
pletely different landmarksif the orientationof the robot changesa
smallamount.

Ambiguity dueto motionnoisecanhavemuchmorese-
vereconsequences.Highermotionnoisewill leadtohigher
robotposeuncertaintyafterincorporatinga control. If this
uncertaintyis highenough,differentplausibleposesof the
robotwill leadto drasticallydifferentdataassociationhy-
pothesesfor thesubsequentobservations.Motion ambigu-
ity is easily inducedif thereis significantangularuncer-
tainty in the robot poseestimate.(SeeFigure2.) If mul-
tiple observationsare incorporatedper timestep,the mo-
tion of the robot will correlatethe associationsof all of
the landmarks. If a SLAM algorithmchoosesthe wrong
associationfor a single landmarkdueto motion ambigu-
ity, with high probability the restof the associationswill
alsobewrong.Thiswill adda largeamountof errorto the
robot’s pose,andoftencauseafilter to diverge.

EKF SLAM algorithmscommonlydeterminedataasso-
ciationusingamaximumlikelihoodapproach.Eachobser-
vationis associatedwith thelandmarkthatwasmostlikely
to have generatedit. At every time step,only the single
most probabledataassociationhypothesisis considered.
More sophisticatedEKF dataassociationalgorithmshave



. . .
2

s
3

s
t

1

1 3
z

1

z

t

z

u u u2

2

Θ

t
z

2

1
s s

Θ

Fig. 3. The SLAM problem: The robot movesthroughposes7#8:9;9�9<7%=
basedon a sequenceof controls,>?819;9�9<>1= . As it moves,it observes
nearbylandmarks. At time @BADC , it observes landmark EF8 . The
measurementis denotedG#8 . At time @�AIH , it observes the other
landmark,EKJ , andat time @LANM , it observes EF8 again. The SLAM
problemis concernedwith estimatingthe locationsof the landmarks
andtherobot’spathfrom thecontrols> andthemeasurementsG . The
gray shadingillustratesthe fact that knowledgeof the robot’s path
rendersthelandmarkpositionsEF8 and E+J conditionallyindependent.

beendevelopedto considerthe bestassociationof all ob-
servationssimultaneously[12], however theseapproaches
still rely on a singledataassociationhypothesisat every
timestep. In a scenariowith ambiguousdataassociation,
an algorithmthat maintainsa singledataassociationwill
sometimespick thewrongassociation.If theambiguityis
dueto the robot’s motion, this will lead to divergenceof
theEKF.

The following sectionsof this paperwill describeFast-
SLAM, analternativeapproachto theSLAM problemthat
cansampleover multiple dataassociationhypotheses.Ex-
perimentaldatawill show thatthis resultsin betterperfor-
mancein situationswith significantmotionambiguity.

IV. FASTSLAM WITH KNOWN DATA ASSOCIATION

Figure3 illustratesagenerativeprobabilisticmodel(dy-
namicBayesnetwork) thatdescribestheSLAM problem.
Fromthis diagramit is clearthat theSLAM problemcon-
tains importantconditionalindependences.In particular,
knowledgeof the robot’s path �#. �%$&$%$%� �O� rendersthe indi-
vidual landmarkmeasurementsindependent. So for ex-
ample,if anoracleprovidedus with theexactpathof the
robot, the problemof determiningthe landmarklocations
could be decoupledinto

�
independentestimationprob-

lems, one for eachlandmark. This conditional indepen-
denceis thebasisfor theFastSLAMalgorithm.

This conditional independenceimplies that the poste-
rior (4) canbe factoredas follows into a robot pathpos-
teriorandaproductof individual landmarkposteriorscon-
ditionedon therobot’s path:

' � � � �%� ( 0 � � * � ��5 � �

� ' � � � ( 0 � � * � ��5 � �QP�SR .
' ����� (:� � �%0 � � * � ��5 � � (5)

A derivationof this factorizationis givenin theAppendix.
FastSLAMestimatesthefactoredSLAM posteriorusinga
modifiedparticlefilter, with

�
independentKalmanFilters

for eachparticleto estimatethelandmarkpositionscondi-
tionedon the hypothesizedrobot paths. The resultingal-
gorithm is an instanceof the Rao-Blackwellizedparticle
filter [5], [11].

A. Particle Filter PathEstimation

FastSLAMestimatesthe robotpathposteriorin (5) us-
ing a particlefilter, in a way that is similar (but not identi-
cal) to theMonteCarlo Localization(MCL) algorithm[1].
At eachpoint in time, FastSLAM maintainsa setof par-
ticlesrepresentingtheposterior' � � � ( 0 � � * � ��5 � � , denotedT � . Eachparticle � �;U V WYX[Z T � representsa “guess”of the
robot’s path:
T � � \ � �;U V WYX^] W � \ � V WYX. � � V W)X� �%$%$%$&� � V WYX� ] W (6)

We usethe superscriptnotation
V WYX

to refer to the _ -th
particlein theset.

Theparticleset
T � is calculatedincrementally, from the

set
T ��-/. at time �a`b! , a robotcontrol *,� , anda measure-

ment 0 � . First, eachparticle � �;U V WYX in
T ��-/. is usedto gen-

erateaprobabilisticguessof therobot’s poseat time � :
� V WYX� c ' � �O�)(K*,� � � V WYX��-/. � (7)

This guessis obtainedby samplingfrom the probabilis-
tic motion model. This estimateis thenaddedto a tem-
porarysetof particles,alongwith the path � ��-/.OU V WYX . Un-
der theassumptionthat thesetof particlesin

T ��-/. is dis-
tributedaccordingto ' � � ��-/. ( 0 ��-d. � * ��-/. ��5 ��-/. � (which is
anasymptoticallycorrectapproximation),thenew particle
is distributedaccordingto:
' � � � ( 0 ��-d. � * � ��5 ��-/. � (8)

This distribution is commonlyreferredto asthe proposal
distributionof particlefiltering.

After generating
 particlesin this way, the new setT � is obtainedby samplingfrom the temporaryparticle
set. Eachparticle � �;U V WYX is drawn (with replacement)with
a probabilityproportionalto a so-calledimportancefactore V WYX� , which is calculatedasfollows [9]:

e V WYX� � targetdist.
proposaldist.

� ' � � �;U V W)X ( 0 � � * � ��5 � �' � � �4U V WYX ( 0 ��-/. � * � ��5 ��-/. � (9)

The exact calculationof (9) will be discussedfurther be-
low. The resulting sampleset

T � is distributed accord-
ing to an approximationto the desired path posterior' � � � ( 0 � � * � ��5 � � , an approximationwhich is correctas
thenumberof particles
 goesto infinity. We alsonotice
thatonly themostrecentrobotposeestimate� V W)X��-/. is used
whengeneratingtheparticleset

T � . This will allows usto
silently“forget” all otherposeestimates,renderingthesize
of eachparticleindependentof thetime index � .



B. LandmarkLocationEstimation

FastSLAM representsthe conditional landmark esti-
mates ' ����� (f� � �%0 � � * � ��5 � � in (5) using Kalman filters.
Sincethis estimateis conditionedon the robot pose,the
Kalmanfilters areattachedto individual poseparticlesinT � . More specifically, the full posteriorover pathsand
landmarkpositionsin the FastSLAM algorithm is repre-
sentedby thesampleset
g � � \ � �;U V WYX ��h V WYX. �+i V WYX. �&$%$%$&��h V WYXP �+i V WYXP

] W (10)

Here h V W)X� and i V W)X� are the meanand covarianceof the
Gaussianrepresentingthe � -th landmark�O� , attachedto the
_ -th particle.In theplanarrobotnavigationscenario,each
meanh V WYX� is a two-elementvector, and i V WYX� is a 2 by 2
matrix.

The posteriorover the � -th landmarkpose ��� is easily
obtained. Its computationdependson whetheror not the
landmarkwasobserved. If the landmarkis observed, we
obtain:
' �����SRd2�3 (1� � �%0 � � * � ��5 � � (11)j ' ��0 �)( ��2�3;� ��� ��5 � � ' ����2�3 (1� ��-/. �%0 ��-/. � * ��-/. ��5 ��-/. �
If landmark� is notobserved,wesimplyleavetheGaussian
unchanged:
' �����lkRd2�3 (�� � �%0 � � * � ��5 � � � ' ����� (;� ��-/. �%0 ��-/. � * ��-/. ��5 ��-/. � (12)

TheFastSLAMalgorithmimplementstheupdateequation
(11) usingthe extendedKalmanfilter (EKF). As in exist-
ing EKF approachesto SLAM, this filter usesa linearized
versionof theperceptualmodel' ��0 �)(1��� �%��2 3 ��5 � � [2]. One
significantdifferencebetweenFastSLAM’suseof Kalman
filtersandthatof thetraditionalSLAM algorithmis thatthe
updatesin the FastSLAM algorithminvolve only a Gaus-
sianof dimensiontwo (for the two landmarklocationpa-
rameters).In theEKF-basedSLAM approacha Gaussian
of size m �onqp

hasto beupdated(with
�

landmarksand
3 robot poseparameters).This calculationcan be done
in constanttime in FastSLAM, whereasit requirestime
quadraticin

�
in theEKF.

C. ImportanceWeights

Before the robot path particlescan be resampled,the
importanceweights(9) mustbe calculated.For the sake
of brevity, the derivation of theseimportanceweightshas
beenomitted.Theweight e[� is equalto:

e V WYX� j ' � � �4U V WYX ( 0 � � * � ��5 � �' � � �;U V WYX ( 0 ��-/. � * � ��5 ��-d. �
� ' ��0 �)( � V W)X213 � �

V WYX� � ' ��� V WYX2�3 ��r ��213 (13)

This quantitycanbecomputedin closedform becausethe
landmarkestimatorsare Kalman filters. For a complete
derivationof theimportanceweights,see[10].

V. FASTSLAM WITH UNKNOWN DATA ASSOCIATION

If the mappingbetweenobservationsandlandmarksis
known, theFastSLAMalgorithmsamplesoverrobotpaths,
andcomputestheconditionallandmarkestimatesanalyti-
cally for every path sample. When this mappingis un-
known, FastSLAM can be extendedto sampleover pos-
sible dataassociationsas well as robot paths. Thereare
severalwaysthatthis samplingcanbedone.

A. Per-Particle MaximumLikelihoodDataAssociation

The simplestapproachto samplingover dataassocia-
tions is to adoptthemaximumlikelihoodassignmentpro-
cedureusedby EKFs, but on a per-particle basis. Parti-
clesthatpick thecorrectdataassociationwill receive high
probabilitiesbecausethey explain themeasurementswell.
Particlesthat assignobservationsincorrectlywill receive
lower probabilitiesand be removed in future resampling
steps.Thisprocedurecanbewrittenas:

5 V WYX� � sut4vuwxsFy2�3 ' ��0 �)(1� V WYX� �&�O213;��5 � � (14)

Per-particle data association has two clear conse-
quences.First, robot motion noisedoesnot affect the ac-
curacy of dataassociation,givenanappropriatenumberof
particles. This fact alonewill result in significantly im-
proved performancein situationswith substantialmotion
ambiguity. If appliedto the scenarioshown in Figure2,
someof theparticleswill representtheposeontheleft and
pick thefirst dataassoociationhypothesis,andotherparti-
cleswill pick thesecondhypothesis.

The secondconsequenceof per-particle data associa-
tion is built-in, delayeddecision-making. At any given
time, somefractionof theparticleswill receive plausible,
but wrong dataassociations.In the future, new observa-
tionsmaybereceivedthatclearlyrefutetheseprior assign-
ments.Theseparticleswill receive low probabilityandbe
removed from the filter. As a result, the effect of wrong
associationsmadein thepastcanberemovedfrom thefil-
ter at a later time. This is in starkcontrastto the EKF, in
which theeffect of anincorrectdataassociationcannever
be removed onceit is incorporated.Moreover, no heuris-
tics areneededto managetheremoval of old associations.
Thisis donein astatisticallyvalid manner, simplyasacon-
sequenceof theresamplingstepof theparticlefilter.

Naturally, samplingover robot pathsanddataassocia-
tionswill requiremoreparticlesthansamplingover robot
pathsalone.Resultsin thenext sectionwill show thateven
a modestnumberof particles( 
 �z!O{u{ ) will result in
substantiallyimproveddataassociationover theEKF.

B. Monte-CarloDataAssociation

Per-particle data associationcan be taken a step fur-
ther. Insteadof assigningeachparticle the most likely
dataassociation,eachparticle can draw a randomasso-
ciation weightedby the probabilitiesof each landmark



having generatedthe observation. Using this approach
FastSLAM will alsogeneratecorrectdataassociationhy-
pothesesgivenmeasurementambiguity. If a smallnumber
of landmarksexhibit measurementambiguity, this proce-
durecanhave a small positive effect on estimationaccu-
racy. However, uniformly highmeasurementerrorinduces
a combinatorialnumberof plausibledataassociationsfor
every set of observations. This, in turn, would require
exponentiallymoreparticlesthanthe samescenariowith
known dataassociation.

C. MutualExclusion

If more than one observation is received per timestep,
mutualexclusioncanbeusedto eliminatedataassociation
hypothesesthatassignmultiple measurementsto thesame
landmark. Mutual exclusioncanbe appliedin EKFs, but
only if the dataassociationsof all observationsare con-
sideredsimultaneously. This considerationis, in general,
computationallydifficult with a large numberof observa-
tions. SinceFastSLAM maintainsa set of dataassocia-
tion hypotheses,the mutual exclusion constraintcan be
appliedin a greedyfashion. Eachobservation is associ-
atedwith themostlikely landmarkin eachparticlethathas
not received an observation yet. Sincethe greedyheuris-
tic will sometimesapply the mutual exclusion constraint
incorrectly, moreparticleswill be neededwhenapplying
this technique.However, mutualexclusionmakesthepro-
cessof decidingwhento addnew landmarksa muchsim-
pler problem.Insteadof incorrectlyassigninganobserva-
tion from anunseenlandmarkto a nearby, previously seen
landmark,mutualexclusionwill forcethecreationof anew
landmark.

D. NegativeInformation

Modeling the world asa collectionof point landmarks
is anaffirmative representation.It allowsusto make infer-
encesaboutwhereobjectsare in theworld, but not where
objectsarenot. However, inferencesin feature-basedstate
spacescanbemadeusingtheabsenceof observations,of-
ten referredto as“negative information.” In particular, if
a robot expectsto seea landmarkanddoesnot, the robot
shouldbecomelessconfidentthat this landmarkactually
exists.

In order to exploit negative information in SLAM, we
will borrow a techniquenormally usedfor making evi-
dencegrids. For eachlandmarkin every particle,we will
estimatea singlebinaryvariable| indicatingwhetherthis
landmarkrepresentsa real landmarkin theworld. Instead
of keepingtrackof theprobability ' �}| ( 0 � � , wewill instead
estimatethelog oddsratio:

����� ' �}| ( 0 � �
!~` ' �}| ( 0 � � (15)

The log-oddsformulationof thebinaryBayesfilter is ex-
tremelyeasyto update.A completedescriptionof thispro-

Fig. 4. Typical FastSLAMrun. Theyellow pathis theestimatedpathof
thevehicle. Thebluedashedline is theGPSgroundtruth data.The
yellow circlesaretheestimatedpositionsof thelandmarks.

cedureis given in [15]. In short,every time the landmark
is observed,aconstantvalueis addedto thelog oddsratio.
Every time the landmarkis not observed when it should
havebeen,aconstantvalueis subtractedfrom thelog odds
ratio. If this ratio falls below a given threshold,the land-
markis consideredto bespuriousandremoved.

Negative informationis particularlyusefulfor removing
spuriousfeaturesfrom the map. Thesefeaturesmay be
theresultof falsepositivesgeneratedby thefeaturedetec-
tion algorithm,or they maycorrespondto moving objects.
Resultsin the next sectionwill show that usingnegative
informationdramaticallyreducesthe numberof spurious
landmarksin theestimatedmap.

VI . EXPERIMENTAL RESULTS

TheFastSLAMandEKF algorithmswerecomparedus-
ing theUniversity of Sydney’s Victoria Park dataset. An
instrumentedvehicle with a laserrangefinderwas driven
throughVictoria Park. Encoderson the vehicle recorded
velocityandsteeringangle.Rangesandbearingsto nearby
treeswereextractedfrom thelaserdatausinga local min-
ima detector. The vehiclewasdriven aroundthe park for
approximately30 minutes,covering a distanceof over 4
km. Filter accuracy wascalculatedby comparingtheesti-
matedvehiclepathwith GPS.An exampleof a complete
runof FastSLAMis shown in Figure4.

Figure 5(a) shows the estimatedpath of the vehicle
basedsolelyon odometry. Eventhoughthis demonstrates
that the vehicle’s odometryis quite inaccurate,dataasso-
ciation is this dataset is generallystraightforward. The



(a) (b) (c) (d) (e)

Fig. 5. (a) raw odometry(b) EKF with low odometricerror (c) FastSLAMwith low odometricerror (d) EKF with high odometricerror (e) FastSLAM
with highodometricerror- In Figures(b) through(e) theredsolidpathis theestimatedpath.Thebluedashedpathis theGPSdata.

accuracy of the lasersensor, and the widely spacedfea-
turesrarelygenerateany kind of dataassociationambigu-
ity. It comesasno surprisethat the performanceof Fast-
SLAM and the EKF are comparable. Examplepath es-
timatesfor the EKF and FastSLAM with low odometric
noiseareshown in Figures5(b)and5(c).

The performanceof the two algorithmswasalsocom-
paredafteraddingvariousamountsof noiseto theobserved
controls.Theresultsof this comparisonareshown in Fig-
ure6. Theincreasedmotionnoisehadnomeasurableeffect
on the accuracy of FastSLAM. Additional motion noise
causedtheEKF to diverge,resultingin very high position
error on average. In all experiments,FastSLAM wasrun
with 100 particles. Examplepathestimatesfor the EKF
and FastSLAM with high odometricnoiseare shown in
Figures5(d) and5(e). In Figure5(d), theEKF hasclearly
diverged.

FastSLAM was also run on the Victoria Park dataset
without any odometryestimatesat all. This wasaccom-
plishedby addingvelocity to the vehicle’s state,and as-
sumingaoverly conservativemotionmodel.Thevehicle’s
translationalandrotationalvelocity wereassumedto vary
asacontinuousrandomwalk. Figure7showstheestimated
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Fig. 6. Accuracy of the vehiclepath with varying levels of odometry
noise

pathof thevehicle.
Not all of the featuresdetectedby the featureextractor

belongedto staticobjects. Somefeaturesweregenerated
by cars,and other moving objects. Featuresfrom mov-
ing objectsfrequentlyresultedin spuriouslandmarksbeing
addedto themap. In general,it is difficult to measurethe
accuracy of the estimatedmapwith this datasetbecause
thereis no groundtruth dataavailablefor the landmarks.
However, incorporatingnegative informationdid result in
44 percentfewer landmarkson average,andmany fewer
landmarksin dynamicareas(e.g.thestreet).

VI I . CONCLUSIONS

We have presentedan extensionof the FastSLAM al-
gorithm to the caseof unknown dataassociation.In ad-
dition to samplingover robot paths,this formulation of
FastSLAM alsosamplesover potentialdataassociations.
TheresultingalgorithmconsistentlyoutperformedtheEx-
tendedKalman Filter on a real world dataset with vari-
ouslevelsof odometricnoise.In addition,we have shown
how to incorporatenegative information into FastSLAM.
This techniqueis not specificto FastSLAM andcanalso
beappliedto otherSLAM algorithms,includingtheEKF.
Useof negative evidenceresultsin a measurabledecrease
in thenumberof falselandmarks,especiallyif the feature
detectorbeingusedgeneratesa large numberof spurious
features.

Fig. 7. Robotpathestimatedwithoutodometry



VII I . APPENDIX : DERIVATION OF FACTORIZATION

TheSLAM posterior(4) canberewrittenas:' � � � ( 0 � � * � ��5 � � ' ��� (1� � �%0 � � * � ��5 � � (16)

Thus,to derive thefactoredversion(5) it sufficesto show
that:

' ��� (:� � �&0 � � * � ��5 � � � P
�SR .
' ��� � (1� � �%0 � � * � ��5 � � (17)

This will be shown using induction. To do this we will
needtwo intermediateresults. The first is the probability
of the landmarkbeingobserved �O213 given the robot path,
theobservations,andthecontrols.' ����2�3 (1� � �%0 � � * � ��5 � � (18)�������^�� ' ��0 �)( ��2�3;� � � �%0 ��-d. � * � ��5 � �' ��0 �)(1� � �%0 ��-/. � * � ��5 � � ' ����2�3 (1� � �%0 ��-/. � * � ��5 � �
�L���������� ' ��0 �)( ��2�3;� ��� ��5 � �' ��0 �)(1� � �%0 ��-/. � * � ��5 � � ' ���O213 (:�

��-/. �%0 ��-/. � * ��-/. ��5 ��-/. �
Next wesolve for therightmostterm.' ����2�3 (1� ��-/. �%0 ��-/. � * ��-/. ��5 ��-d. �
� ' ��0 � (1�

� �%0 ��-/. � * � ��5 � �' ��0 �)( ��2�3;� �O� ��5 � � ' ����2�3 (1� � �%0 � � * � ��5 � � (19)

For our secondintermediateresult, we will computethe
probability of any landmark that is not being observed
giventherobotpath,theobservations,andthecontrols.' ��� �lkRd2�3 (1� � �%0 � � * � ��5 � ��~�������;�� ' �����lkRd2�3 (1� ��-/. �%0 ��-d. � * ��-/. ��5 ��-/. � (20)

Wewill assumethefollowing inductionhypothesis:' ��� (:� ��-d. �&0 ��-d. � * ��-/. ��5 ��-/. �

� P
�SR .
' ����� (1� ��-/. �%0 ��-/. � * ��-d. ��5 ��-/. � (21)

For thebasecaseof
� ��! equation(17) is trivially true.

In general,when
�o� ! :' ��� (:� � �&0 � � * � ��5 � � (22)���������� ' ��0 �)( �F� � � �%0 ��-/. � * � ��5 � �' ��0 �)(:� � �%0 ��-d. � * � ��5 � � ' ��� (:�

� �&0 ��-d. � * � ��5 � �
�~���������� ' ��0 ��( �O213;� ��� ��5 � �' ��0 �)(:� � �&0 ��-d. � * � ��5 � � ' ��� (:�

��-/. �%0 ��-/. � * ��-/. ��5 ��-/. �
�}�%�%�%�^��� ���� ' ��0 �)( ��2�3;� ��� ��5 � �' ��0 ��(:� � �%0 ��-/. � * � ��5 � �

P
��R .
' ����� (1� ��-/. �%0 ��-/. � * ��-/. ��5 ��-/. �

By replacingthetermsof theproductwith (19)and(20):' ��� (:� � �&0 � � * � ��5 � �

� ' ����2�3 (1� � �%0 � � * � ��5 � ��P
�lkR�2�3

' ����� (1� � �%0 � � * � ��5 � �

� P
�SR .
' ����� (1� � �%0 � � * � ��5 � � (23)
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