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Abstract

Simultaneous localization, mapping and moving object tracking (SLAMMOT)
involves both simultaneous localization and mapping (SLAM) in dynamic en-
vironments and detecting and tracking these dynamic objects. In this paper,
we establish a mathematical framework to integrate SLAM and moving ob-
ject tracking. We describe two solutions: SLAM with generalized objects, and
SLAM with detection and tracking of moving objects (DATMO). SLAM with
generalized objects calculates a joint posterior over all generalized objects and
the robot. Such an approach is similar to existing SLAM algorithms, but with
additional structure to allow for motion modeling of generalized objects. Un-
fortunately, it is computationally demanding and generally infeasible. SLAM
with DATMO decomposes the estimation problem into two separate estima-
tors. By maintaining separate posteriors for stationary objects and moving
objects, the resulting estimation problems are much lower dimensional then
SLAM with generalized objects. Both SLAM and moving object tracking
from a moving vehicle in crowded urban areas are daunting tasks. Based on
the SLAM with DATMO framework, we propose practical algorithms which
deal with issues of perception modeling, data association, and moving object



detection. The implementation of SLAM with DATMO was demonstrated us-
ing data collected from the CMU Navlab11 vehicle at high speeds in crowded
urban environments. Ample experimental results shows the feasibility of the
proposed theory and algorithms.

1 Introduction

Establishing the spatial and temporal relationships among a robot, stationary objects and
moving objects in a scene serves as a basis for scene understanding. Localization is the
process of establishing the spatial relationships between the robot and stationary objects,
mapping is the process of establishing the spatial relationships among stationary objects,
and moving object tracking is the process of establishing the spatial and temporal relation-
ships between moving objects and the robot or between moving and stationary objects.
Localization, mapping and moving object tracking are difficult because of uncertainty and
unobservable states in the real world. Perception sensors such as cameras, radar and laser
range finders, and motion sensors such as odometry and inertial measurement units are noisy.
The intentions, or control inputs, of the moving objects are unobservable without using extra
sensors mounted on the moving objects.

Over the last decade, the simultaneous localization and mapping (SLAM) problem has at-
tracted immense attention in the mobile robotics and artificial intelligence literature (Smith
and Cheeseman, 1986; Thrun, 2002). SLAM involves simultaneously estimating locations of
newly perceived landmarks and the location of the robot itself while incrementally building
a map. The moving object tracking problem has also been extensively studied for several
decades (Bar-Shalom and Li, 1988; Blackman and Popoli, 1999). Moving object tracking
involves both state inference and motion model learning. In most applications, SLAM and
moving object tracking are considered in isolation. In the SLAM problem, information as-
sociated with stationary objects are positive; moving objects are negative, which degrades
the performance. Conversely, measurements belonging to moving objects are positive in the
moving object tracking problem; stationary objects are considered background and filtered
out. In (Wang and Thorpe, 2002), we pointed out that SLAM and moving object tracking
are mutually beneficial. Both stationary objects and moving objects are positive information
to scene understanding. In (Wang et al., 2003b), we established a mathematical framework
to integrate SLAM and moving object tracking, which provides a solid basis for understand-
ing and solving the whole problem, simultaneous localization, mapping and moving object
tracking, or SLAMMOT.

It is believed by many that a solution to the SLAM problem will open up a vast range of po-
tential applications for autonomous robots (Thorpe and Durrant-Whyte, 2001; Christensen,
2002). We believe that a solution to the SLAMMOT problem will expand the potential for
robotic applications still further, especially in applications which are in close proximity to
human beings. Robots will be able to work not only for people but also with people. Figure
1 illustrates a commercial application, safe driving, which motivates the work in this paper.

To improve driving safety and prevent traffic injuries caused by human factors such as



Figure 1: Robotics for safe driving. Localization, mapping, and moving object tracking are
critical to driving assistance and autonomous driving.

speeding and distraction, methods for understanding the surroundings of the vehicle are
critical. We believe that being able to detect and track every stationary object and every
moving object, to reason about the dynamic traffic scene, to detect and predict critical
situations, and to warn and assist drivers in advance, is essential to prevent these kinds of
accidents.

To detect and track moving objects using sensors mounted on a moving ground vehicle at
high speeds, a precise localization system is essential. It is known that GPS and DGPS often
fails in urban areas because of ”urban canyon” effects, and good inertial measurement units
(IMU) are very expensive.

If we have a stationary object map in advance, map-based localization techniques (Olson,
2000)(Fox et al., 1999)(Dellaert et al., 1999) can be used to increase the accuracy of the
pose estimate. Unfortunately, it is difficult to build a usable stationary object map because
of temporary stationary objects such as parked cars. Stationary object maps of the same
scene built at different times could still be different, which means that online map building
is required to update the current stationary object map.

SLAM allows robots to operate in an unknown environment, to incrementally build a map
of this environment and to simultaneously use this map to localize the robots themselves.
However, we have observed (Wang and Thorpe, 2002) that SLAM can perform badly in
crowded urban environments because the static environment assumption may be violated;
moving objects have to be detected and filtered out.

Even with precise localization, it is not easy to solve the moving object tracking problem
in crowded urban environments because of the wide variety of targets (Wang et al., 2003a).
When cameras are used to detect moving objects, appearance-based approaches are widely
used and moving objects should be detected no matter whether they are moving or not. If
laser scanners are used, feature-based approaches are usually the preferred solution. Both
appearance-based and feature-based methods rely on prior knowledge of the targets. In urban
areas, there are many kinds of moving objects such as pedestrians, bicycles, motorcycles,



cars, buses, trucks and trailers. Velocities range from under 5 mph (such as a pedestrian’s
movement) to 50 mph. When using laser scanners, the features of moving objects can
change significantly from scan to scan. As a result, it is often difficult to define features or
appearances for detecting specific objects.

Both SLAM and moving object tracking have been solved and implemented successfully in
isolation. However, when driving in crowded urban environments composed of stationary
and moving objects, neither of them is sufficient in isolation. The SLAMMOT problem
aims to tackle the SLAM problem and the moving object tracking problem concurrently.
SLAM provides more accurate pose estimates together with a surrounding map. Moving
objects can be detected using the surrounding map without recourse to predefined features
or appearances. Tracking may then be performed reliably with accurate robot pose estimates.
SLAM can be more accurate because moving objects are filtered out of the SLAM process
thanks to the moving object location prediction. SLAM and moving object tracking are
mutually beneficial. Integrating SLAM and moving object tracking would satisfy both the
safety and navigation demands of safe driving. It would provide a better estimate of the
robot’s location and information of the dynamic environments, which are critical to driving
assistance and autonomous driving.

In this paper we first establish the mathematical framework for performing SLAMMOT.
We will describe two algorithms, SLAM with generalized objects and SLAM with detection
and tracking of moving object (DATMO). SLAM with DATMO decomposes the estimation
problem of SLAMMOT into two separate estimators. By maintaining separate posteriors
for stationary objects and moving objects, the resulting estimation problems are much lower
dimensional than SLAM with generalized objects. This makes it feasible to update both
filters in real-time. In this paper, SLAM with DATMO is applied and implemented.

There are significant practical issues to be considered in bridging the gap between the pre-
sented theory and its applications to real problems such as driving safely at high speeds
in crowded urban areas. These issues arise from a number of implicit assumptions in per-
ception modeling and data association. When using more accurate sensors, these problem
are easier to solve, and inference and learning of the SLAM with DATMO problem become
more practical and tractable. Therefore, we mainly focus on issues of using active ranging
sensors. SICK laser scanners (see Figure 2) are used and studied in this work. Data sets
(Wang et al., 2004) collected from the Navlab11 testbed are used to verify the theory and
algorithms. Visual images from an omni-directional camera and a tri-camera system are
only used for visualization. Sensors carrying global localization information such as GPS
and DGPS are not used.

The remainder of this paper is organized as follows. In Section 2, related research is ad-
dressed. The formulations and algorithms of SLAM and moving object tracking are briefly
reviewed in Section 3. In Section 4, we introduce SLAM with generalized object and SLAM
with DATMO and discuss some of important issues such as motion mode learning, com-
putational complexity and interaction. The proposed algorithms which deal with issues of
perception modeling, data association and moving object detection are described in Section
5, Section 6 and Section 7, respectively. Experimental results which demonstrated the fea-
sibility of the proposed theory and algorithms are in Section 8. Finally, the conclusion and



Figure 2: Right: the Navlab11 testbed. Left: SICK LMS221, SICK LMS291 and the tri-
camera system.

future work are in Section 9.

2 Related Work

The SLAMMOT problem is directly related to a rich body of the literature on SLAM and
tracking.

Dirk Hähnel et al. (Hähnel et al., 2002) presented an online algorithm to incorporate people
tracking into the mapping process with a mobile robot in populated environments. The local
minima in the scans are used as the features for people detection. The sampling-based joint
probabilistic data association filters are used for tracking people. A hill climbing strategy
is used for scan alignment. Their work performs well in indoor environments populated
with moving people. However, feature-based detection may fail in environments where a
wide variety of moving objects exist. In (Hähnel et al., 2003), the EM algorithm is used
for segmenting stationary and moving object without defining features. The technique was
tested with data collected in indoor and outdoor environments. However this is an off-line
algorithm which is not suitable for real-time applications.

The approach in (Biswas et al., 2002)(Anguelov et al., 2002) uses simple differencing to
segment temporary-stationary objects, and then learn their shape models and identify classes
of these objects using a modified version of the EM algorithm. In (Anguelov et al., 2004), a
predefined probabilistic model consisting of visual features (shape and color) and behavioral
features (its motion model) is learned using the EM algorithm and is used for recognizing
door objects in corridor environments. Although recognition could improve the performance
of SLAMMOT and provide higher level scene understanding, these off-line algorithms are
not feasible for real-time applications and urban areas contain richer and more complicated
objects in which recognition is still a hard problem both theoretically and practically.

Wolf and Sukhatme (Wolf and Sukhatme, 2005) proposed to use two modified grid occupancy
maps to classify static and moving objects, which is similar to our consistency-based moving
object detection algorithm (Wang and Thorpe, 2002). The third map containing static corner
features is used for localization. Without dealing with the moving object motion modeling
issues and without moving object pose prediction capability, their approach would be less



robust than the proposed approach in this paper. Montesano et al. (Montesano et al., 2005)
integrated the SLAMMOT and planning processes to improve robot navigation in dynamic
environments as well as extended our SLAM with DATMO algorithm to jointly solve the
moving and stationary object classification problem in an indoor environment. In this paper,
the proposed theory of SLAM with generalized objects and SLAM with DATMO address
more related issues such as interaction, and the proposed algorithms are demonstrated from
a ground vehicle at high speeds in crowded urban environments.

The SLAMMOT problem is also closely related to the computer vision literature. Demird-
jian and Horaud (Demirdjian and Horaud, 2000) addressed the problem of segmenting the
observed scene into static and moving objects from a moving stereo rig. They apply a ro-
bust method, random sample consensus (RANSAC), for filtering out the moving objects and
outliers. Although the RANSAC method can tolerate up to 50% outliers, the percentage of
moving objects is often more than stationary objects and degeneracies exist in our applica-
tions. With measurements from motion sensors, stationary and moving object maps, and
precise localization, our moving object detectors perform reliably in real-time.

Recently, the problem of recovery non-rigid shape and motion of dynamic scenes from a
moving camera has attracted immense attention in the computer vision literature. The ideas
based on the factorization techniques and the shape basis representation are presented in
(Bregler et al., 2000)(Brand, 2001)(Torresani et al., 2001)(Xiao et al., 2004) where different
constraints are used for finding the solution. Theoretically, all of these batch approaches are
inappropriate to use in real-time. Practically, these methods are computational demanding
and many difficulties such as occlusions, motion blur and lighting conditions remain to be
developed.

3 Foundations

SLAM assumes that the surrounding environment is static, containing only stationary ob-
jects. The inputs of the SLAM process are measurements from perception sensors such as
laser scanners and cameras, and measurements from motion sensors such as odometry and
inertial measurement units. The outputs of the SLAM process are the robot pose and a
stationary object map (see Figure 3.a). Given that the sensor platform is stationary or that
a precise pose estimate is available, the inputs of the moving object tracking problem are
perception measurements and the outputs are locations of moving objects and their motion
modes (see Figure 3.b). The SLAMMOT problem can also be treated as a process with-
out the static environment assumption. The inputs of this process are the same as for the
SLAM process, but the outputs are both robot pose and map, together with the locations
and motion modes of the moving objects (see Figure 3.c).

Leaving aside perception and data association, the key issue in SLAM is the computational
complexity of updating and maintaining the map, and the key issue of the moving object
tracking problem is the computational complexity of motion modelling. As SLAMMOT
inherits the complexity issue from SLAM and the motion modelling issue from moving object
tracking, the SLAMMOT problem is both an inference problem and a learning problem.



(a) the simultaneous localization and mapping (SLAM) process

(b) the moving object tracking (MOT) process

(c) the simultaneous localization, mapping and moving object tracking (SLAMMOT)
process

Figure 3: The SLAM process, the MOT process and the SLAMMOT process. Z denotes the
perception measurements, U denotes the motion measurements, x is the true robot state, M
denotes the locations of the stationary objects, O denotes the states of the moving objects
and S denotes the motion modes of the moving objects.

In this section we briefly introduce SLAM and moving object tracking.

3.1 Notation

Let k denote the discrete time index, uk the vector describing a motion measurement from
time k − 1 to time k, zk a measurement from perception sensors such as laser scanners at
time k, xk the state vector describing the true pose of the robot at time k, and Mk the map
contain l landmarks, m1,m2, . . . ,ml, at time k. In addition, we define the following sets:

Xk
△
= {x0, x1, . . . , xk} (1)

Zk
△
= {z0, z1, . . . , zk} (2)

Uk
△
= {u1, u2, . . . , uk} (3)

3.2 Simultaneous Localization and Mapping

The SLAM problem is to determine the robot poses xk and the stationary object map Mk

given perception measurements Zk and motion measurement Uk.

The formula for sequential SLAM can be expressed as



Figure 4: A Dynamic Bayesian Network (DBN) of the SLAM problem of duration three. It
shows the dependencies among the motion measurements, the robot, the perception mea-
surements and the stationary objects. In this example, there are two stationary objects, m1

and m2. Clear circles denote hidden continuous nodes and shaded circles denote observed
continuous nodes. The edges from stationary objects to measurements are determined by
data association.

p(xk,Mk | Uk, Zk) · (4)

Using Bayes’ rule and assumptions that the vehicle motion model is Markov and the en-
vironment is static, the general recursive Bayesian formula for SLAM can be derived and
expressed as (See (Thrun, 2002; Durrant-Whyte et al., 2003) for more details.)

p(xk,Mk | Zk, Uk)
︸ ︷︷ ︸

Posterior at k

∝ p(zk | xk,Mk)
︸ ︷︷ ︸

Perception model

· (5)

∫

p(xk | xk−1, uk) p(xk−1,Mk−1 | Zk−1, Uk−1)
︸ ︷︷ ︸

Posterior at k − 1

dxk−1

︸ ︷︷ ︸

Prediction

where p(xk−1,Mk−1 | Zk−1, Uk−1) is the posterior probability at time k−1, p(xk,Mk | Zk, Uk)
is the posterior probability at time k, p(xk | xk−1, uk) is the motion model, and p(zk | xk,M)
is the stage describing the perception model. The motion model is calculated according to
robot kinematics/dynamics. The perception model can be represented using different ways
such as features/landmarks and occupancy-grids.

Equation 5 explains the computation procedures in each time step. Figure 4 shows a Dynamic
Bayesian Network (DBN) for SLAM over three time-steps, which can be used to visualize
the dependencies between the robot and stationary objects (Paskin, 2003).

The extended Kalman filter (EKF)-based solution (Smith and Cheeseman, 1986; Smith
et al., 1990; Leonard and Durrant-Whyte, 1991) to the SLAM problem is elegant, but is



computational complex. Approaches using approximate inference, using exact inference on
tractable approximations of the true model, and using approximate inference on an ap-
proximate model have been proposed (Paskin, 2003; Thrun et al., 2002; Bosse et al., 2003;
Guivant and Nebot, 2001; Leonard and Feder, 1999; Montemerlo, 2003). Paskin (Paskin,
2003) included an excellent comparison of these techniques.

3.3 Moving Object Tracking

Just as with SLAM, moving object tracking can be formulated with Bayesian approaches
such as Kalman filtering. Moving object tracking is generally easier than SLAM since only
the moving object pose is maintained and updated. However, as motion models of moving
objects are often time-varying and not known with accuracy, moving object tracking is more
difficult than SLAM in terms of online motion model learning.

The general recursive probabilistic formula for moving object tracking can be expressed as

p(ok, sk | Zk) (6)

where ok is the true state of a moving object at time k, and sk is the true motion mode of
the moving object at time k, and Zk is the perception measurement set leading up to time
k. The robot (sensor platform) is assumed to be stationary for the sake of simplicity.

Using Bayes’ rule, Equation 6 can be rewritten as

p(ok, sk | Zk) = p(ok | sk, Zk)
︸ ︷︷ ︸

State inference

· p(sk | Zk)
︸ ︷︷ ︸

Mode learning

(7)

which indicates that the moving object tracking problem can be solved in two stages: the
first stage is the mode learning stage p(sk | Zk), and the second stage is the state inference
stage p(ok | sk, Zk).

Without a priori information, online mode learning of time-series data is a daunting task.
In practice, the motion mode of moving objects can be approximately composed of several
motion models such as the constant velocity model, the constant acceleration model and the
turning model. Therefore the mode learning problem can be simplified to a model selection
problem. Figure 5 shows a DBN for multiple model-based moving object tracking.

Multiple model-based moving object tracking is still difficult though because the motion
mode of moving objects can be time-varying. The only way to avoid the exponentially
increasing number of histories is to use approximate and suboptimal approaches which merge
or reduce the number of the mode history hypotheses in order to make computation tractable.

Generalized Pseudo-Bayesian (GPB) approaches (Tugnait, 1982) apply a simple suboptimal
technique which keeps the histories of the target mode with the largest probabilities, discards
the rest, and renormalizes the probabilities. In the GPB approaches of first order (GPB1),
the state estimate at time k is computed under each possible current model. At the end of
each cycle, the r motion mode hypotheses are merged into a single hypothesis. The GPB1
approach uses r filters to produce one state estimate. In the GPB approaches of second
order (GPB2), the state estimate is computed under each possible model at current time



Figure 5: A DBN for multiple model based moving object tracking. Clear circles denote
hidden continuous nodes, clear squares denotes hidden discrete nodes and shaded circles
denotes continuous nodes.

k and previous time k − 1. There are r estimates and covariances at time k − 1. Each is
predicted to time k and updated at time k under r hypotheses. After the update stage, the
r2 hypotheses are merged into r at the end of each estimation cycle. The GPB2 approach
uses r2 filters to produce r state estimates.

In the interacting multiple model (IMM) approach (Blom and Bar-Shalom, 1988), the state
estimate at time k is computed under each possible current model using r filters and each
filter uses a suitable mixing of the previous model-conditioned estimate as the initial con-
dition. It has been shown that the IMM approach performs significantly better than the
GPB1 algorithm and almost as well as the GPB2 algorithm in practice. Instead of using r2

filters to produce r state estimates in GPB2, the IMM uses only r filters to produce r state
estimates.

In both GPB and IMM approaches, it is assumed that a model set is given or selected
in advance, and tracking is performed based on model averaging of this model set. The
performance of moving object tracking strongly depends on the selected motion models.
Given the same data set, the tracking results differ according to the selected motion models.

4 SLAMMOT

In the previous section, we have briefly described the SLAM and moving object tracking
problems. In this section, we address the approaches to concurrently solve the SLAM and
moving object tracking problems, SLAM with generalized objects and SLAM with DATMO.

4.1 SLAM with Generalized Objects

Without making any hard decisions about whether an object is stationary or moving, the
SLAMMOT problem can be handled by calculating a joint posterior over all objects (robot
pose, stationary objects, moving objects). Such an approach would be similar to existing
SLAM algorithms, but with additional structure to allow for motion mode learning of the
generalized objects.



4.1.1 Bayesian Formulation

The formalization of SLAM with generalized objects is straightforward. First we define that
the generalized object is a hybrid state consisting of the state and the motion mode.

yi
k

△
= {yi

k, s
i
k} and Yk

△
= {y1

k,y
2

k, . . . ,y
l
k} (8)

where yk is the true state of the generalized object, sk is the true motion mode of the
generalized object and l is the number of generalized objects. Note that generalized objects
can be moving, stationary, or move-stop-move entities. We then use this hybrid variable Y
to replace the variable M in Equation 5 and the general recursive probabilistic formula of
SLAM with generalized objects can be expressed as:

p(xk,Yk | Uk, Zk) (9)

Using Bayes’ rules and assumptions that the motion models of the robot and generalized
objects are Markov and there is no interaction among the robot and generalized objects, the
general recursive Bayesian formula for SLAM with generalized objects can be derived and
expresses as: (See Appendix A for derivation.)

p(xk,Yk | Uk, Zk)
︸ ︷︷ ︸

Posterior at k

∝ p(zk | xk,Yk)
︸ ︷︷ ︸

Update

∫ ∫

p(xk | xk−1, uk)
︸ ︷︷ ︸

Robot predict

p(Yk | Yk−1)
︸ ︷︷ ︸

generalized objs

· p(xk−1,Yk−1 | Zk−1, Uk−1)
︸ ︷︷ ︸

Posterior at k − 1

dxk−1 dYk−1 (10)

where p(xk−1,Yk−1 | Zk−1, Uk−1) is the posterior probability at time k−1, p(xk,Yk | Uk, Zk)
is the posterior probability at time k. In the prediction stage p(xk | xk−1, uk)p(Yk | Yk−1),
the states of the robot state and generalized objects are predicted independently with the
no interaction assumption. In the update stage p(zk | xk,Yk), the states of the robot and
generalized objects as well as their motion models are updated concurrently. In the cases
that interactions among the robot and generalized objects exist, the formula for SLAM with
generalized objects is also shown in Appendix A.

Figure 6 shows a DBN representing the SLAM with generalized objects of duration three
with two generalized objects, which integrates the DBNs of the SLAM problem and the
moving object tracking problem.

4.1.2 Motion Modeling/Motion Mode Learning

Motion modeling of generalized objects is critical for SLAM with generalized objects. A
general mechanism for solving motion modeling of stationary, moving objects and objects
between stationary and moving has to be developed.

The IMM algorithm and its variants (Mazor et al., 1998) have been successfully implemented
in many tracking applications for dealing with the moving object motion modeling problem
because of their low computational cost and satisfactory performance.



Figure 6: A DBN for SLAM with Generalized Objects. It is an integration of the DBN of
the SLAM problem (Figure 4) and the DBN of the moving object tracking problem (Figure
5).

Adding a stationary motion model to the motion model set with the same IMM algorithm
for dealing with move-stop-move maneuvers was suggested in (Kirubarajan and Bar-Shalom,
2000; Coraluppi et al., 2000; Coraluppi and Carthel, 2001). However, as observed in (Shea
et al., 2000; Coraluppi and Carthel, 2001), all of the estimates tend to degrade when the stop
(stationary motion) model is added to the model set and mixed with other moving motion
models. This topic is beyond the scope intended by this paper. We provide a theoretical
explanation of this phenomenon and a practical solution, move-stop hypothesis tracking, in
Chapter 4 of (Wang, 2004).

4.1.3 Highly Maneuverable Objects

The framework of SLAM with generalized objects indicates that measurements belonging
to moving objects contribute to localization and mapping as well as stationary objects.
Nevertheless, highly maneuverable objects are difficult to track and often unpredictable
in practice. Including them in localization and mapping would have a minimal effect on
localization accuracy.

4.1.4 Computational Complexity

In the SLAM literature, it is known that a key bottleneck of the Kalman filter solution is its
computational complexity. Because it explicitly represents correlations of all pairs among
the robot and stationary objects, both the computation time and memory requirement scale
quadratically with the number of stationary objects in the map. This computational burden
restricts applications to those in which the map can have no more than a few hundred
stationary objects. Recently, this problem has been subject to intense research.



In the framework of SLAM with generalized objects, the robot, stationary and moving objects
are generally correlated through the convolution process in the prediction and update stages.
Although the formulation of SLAM with generalized objects is elegant, it is clear that SLAM
with generalized objects is much more computationally demanding than SLAM due to the
required motion modeling of all generalized objects at all time steps. Given that real-time
motion modeling of generalized objects and interaction among moving and stationary objects
are still open questions, the computational complexity of SLAM with generalized objects is
not further analyzed.

4.2 SLAM with DATMO

SLAM with generalized objects is similar to existing SLAM algorithms, but with additional
structure to allow for motion modelling of generalized objects. Unfortunately, it is com-
putationally demanding and generally infeasible. Consequently, in this section we provide
the second approach, SLAM with DATMO, in which the estimation problem is decomposed
into two separate estimators. By maintaining separate posteriors for stationary objects and
moving objects, the resulting estimation problem is of lower dimension than SLAM with
generalized objects, making it feasible to update both filters in real time.

4.2.1 Bayesian Formulation

Let ok denote the true hybrid state of the moving object at time k.

oi
k

△
= {oi

k, s
i
k} (11)

where ok is the true state of the moving object, sk is the true motion mode of the moving
object.

In SLAM with DATMO, three assumption are made to simply the computation of SLAM
with generalized objects. One of the key assumptions is that measurements can be decom-
posed into measurement of stationary and moving objects. This implies that objects can be
classified as stationary or moving in which the general SLAM with DATMO problem can be
posed as computing the posterior

p(xk,Ok,Mk | Zk, Uk) (12)

where the variable Ok = {o1

k,o
2

k, . . . ,o
n
k} denotes the true hybrid states of the moving

objects, of which there are n in the world at time k, and the variable Mk = {m1

k,m
2

k, . . . ,m
q
k}

denotes the true locations of the stationary objects, of which there are q in the world at time
k. The second assumption is that when estimating the posterior over the stationary object
map and the robot pose, the measurements of moving objects carry no information about
stationary landmarks and the robot pose, neither do their hybrid states Ok. The third
assumption is that there is no interaction among the robot and the moving objects. The
robot and moving objects move independently of each other.

Using Bayes’ rules and the assumptions addressed in Appendix B, the general recursive
Bayesian formula for SLAM with DATMO can be derived and expresses as: (See Appendix



Figure 7: A Dynamic Bayesian Network of the SLAM with DATMO problem of duration
three with one moving object and one stationary object.

B for derivation.)

p(xk,Ok,Mk | Zk, Uk) (13)
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where zm
k and zo

k denote measurements of stationary and moving objects, respectively. Equa-
tion 13 shows how the SLAMMOT problem is decomposed into separate posteriors for moving
and stationary objects. It also indicates that DATMO should take account of the uncertainty
in the pose estimate of the robot because perception measurements are directly from the
robot.

Figure 7 shows a DBN representing three time steps of an example SLAM with DATMO
problem with one moving object and one stationary object.



4.2.2 Detection/Classification

Correctly detecting or classifying moving and stationary objects is essential for successfully
implementing SLAM with DATMO. In the tracking literature, a number of approaches have
been proposed for detecting moving objects, which can be classified into two categories: with
and without the use of thresholding. Gish and Mucci (Gish and Mucci, 1987) proposed an
approach that detection and tracking occur simultaneously without using a threshold. This
approach is called track before detect (TBD), although detection and tracking are performed
simultaneously. However, the high computational requirements of this approach make the
implementation infeasible. Arnold et al. (Arnold et al., 1993) showed that integrating TBD
with a dynamic programming algorithm provides an efficient solution for detection without
thresholding, which could be a solution for implementing SLAM with generalized objects
practically. In Section 7, we will present two reliable approaches for detecting or classifying
moving and stationary objects from laser scanners.

4.3 Interaction

Thus far, we have described the SLAMMOT problem which involves both SLAM in dynamic
environments and detection and tracking of these dynamic objects. We presented two solu-
tions, SLAM with generalized objects and SLAM with DATMO. In this section, we discuss
one possible extension, taking interaction into account, for improving the algorithms.

The multiple moving object tracking problem can be decoupled and treated as the single
moving object tracking problem if the objects are moving independently. However, in many
tracking applications, objects move dependently such as sea vessels or air fighters moving in
formation. In urban and suburban areas, cars or pedestrians often move in formation as well
because of specific traffic conditions. Although the locations of these objects are different,
velocity and acceleration may be nearly the same in which these moving objects tend to have
highly correlated motions. Similar to the SLAM problem, the states of these moving objects
can be augmented to a system state and then be tracked simultaneously. Rogers (Rogers,
1988) proposed an augmented state vector approach which is identical to the SLAM problem
in the way of dealing with the correlation problem from sensor measurement errors.

In Appendix A, we provided the formula of SLAM with generalized objects in the cases
that interactions among the robot and generalized objects exist. Integrating behavior and
interaction learning and inference would improve the performance of SLAM with generalized
objects and lead to a higher level scene understanding.

Following the proposed framework of SLAM with generalized objects, Wang et al. (Wang
et al., 2007) introduced a scene interaction model and a neighboring object interaction model
to take long-term and short-term interactions between the tracked objects and its surround-
ings into account, respectively. With the use of the interaction models, they demonstrated
that anomalous activity recognition is accomplished easily in crowded urban areas. Inter-
acting pedestrians, bicycles, motorcycles, cars and trucks are successfully tracked in difficult
situations with occlusion.



In the rest of the paper, we will demonstrate the feasibility of SLAMMOT from a ground
vehicle at high speeds in crowded urban areas. We will describe practical SLAM with
DATMO algorithms which deal with issues of perception modeling, data association and
classifying moving and stationary objects. Ample experimental results will be shown for
verifying the proposed theory and algorithms.

5 Perception Modeling

Perception modeling, or representation, provides a bridge between perception measurements
and theory ; different representation methods lead to different means to calculate the theoret-
ical formulas. Representation should allow information from different sensors, from different
locations and from different time frames to be fused.

In the tracking literature, targets are usually represented by point-features (Blackman and
Popoli, 1999). In most air and sea vehicle tracking applications, the geometrical information
of the targets is not included because of the limited resolution of perception sensors such as
radar and sonar. However, the signal-related data such as the amplitude of the radar signal
can be included to aid data association and classification. On the other hand, research on
mobile robot navigation has produced four major paradigms for environment representation:
feature-based approaches (Leonard and Durrant-Whyte, 1991), grid-based approaches (Elfes,
1988; Thrun et al., 1998), direct approaches (Lu and Milios, 1994; Lu and Milios, 1997), and
topological approaches (Choset and Nagatani, 2001).

Since feature-based approaches are used in both MOT and SLAM, it should be straight-
forward to use feature-based approaches for accomplish SLAMMOT. Unfortunately, it is
extremely difficult to define and extract features reliably and robustly in outdoor environ-
ments according to our experiments. In this section, we present a hierarchical free-form
object representation to integrate direct methods, grid-based approaches and feature-based
approaches for overcoming these difficulties.

5.1 Hierarchical Free-Form Object Based Representation

In outdoor or urban environments, features are extremely difficult to define and extract as
both stationary and moving objects do not have specific sizes and shapes. Therefore, instead
of using ad hoc approaches to define features in specific environments or for specific objects,
free-form objects are used.

At the preprocessing stage, scan points are grouped or segmented into segments. Hoover et
al. (Hoover et al., 1996) proposed a methodology for evaluating range image segmentation
algorithms, which are mainly for segmenting a range image into planar or quadric patches.
Unfortunately, these methods are infeasible for our applications. Here we use a simple
distance criterion, namely the distance between points in two segments must be longer than
1 meter. Although this simple criterion can not produce perfect segmentation, more precise
segmentation will be accomplished by localization, mapping and tracking using spatial and
temporal information over several time frames. An example of scan segmentation is shown



Figure 8: An example of scan segmentation. The black solid box denotes the robot (2mx5m).
Each object has its own grid-map and coordinate system.

in Figure 8.

In this framework, the scan segments over different time frames are integrated into free-form
objects after localization, mapping and tracking processes. This approach is hierarchical
since these three main representation paradigms are used on different levels. Local localiza-
tion is accomplished using direct methods, local mapping is accomplished using grid-based
approaches and global SLAM is accomplished using feature-based approaches. This rep-
resentation is also suitable for moving object tracking. Feature-based approaches such as
Kalman filtering can be used for manage tracking uncertainty and the shape information of
moving object is also maintained using grid-maps. Note that an free-form object can be as
small as a pedestrian or as big as several street blocks.

5.2 Local Localization

Registration or localization of scan segments over different time frames can be done using
the direct methods, namely the iterative closest point (ICP) algorithm (Rusinkiewicz and
Levoy, 2001). As range images are sparser and more uncertain in outdoor applications
than indoor applications, the pose estimation and the corresponding distribution from the
ICP algorithm may not be reliable. Sparse data causes problems of correspondence finding,
which directly affect the accuracy of direct methods. If a point-point metric is used in the
ICP algorithm, one-to-one correspondence will not be guaranteed with sparse data, which
will result in decreasing the accuracy of transformation estimation and slower convergence.
Research on the ICP algorithms suggests that minimizing distances between points and
tangent planes can converge faster. But because of sparse data and irregular surfaces in
outdoor environments, the secondary information derived from raw data such as surface
normal can be unreliable and too sensitive. The other issue is featureless data, which causes
correspondence ambiguity as well.

In (Wang and Thorpe, 2004), we presented a sampling- and correlation-based range image
matching (SCRIM) algorithm for taking correspondence errors and measurement noise into
account. For dealing with the sparse data issues, a sampling-based approach is used to



Figure 9: Hierarchical free-from object based representation.

estimate the uncertainty from correspondence errors. Instead of using only one initial relative
transformation guess, the registration process is run 100 times with randomly generated
initial relative transformations. For dealing with the uncertain data issues, a correlation-
based approach is used with the grid-based method for estimating the uncertainty from
measurement noise along with the sampling-based approach. Measurement points and their
corresponding distributions are transformed into occupancy grids using our proposed SICK
laser scanner noise model. After the grid maps are built, the correlation of the grid maps is
used to evaluate how strong the grid-maps are related. Now the samples are weighted with
their normalized correlation responses. We have shown that the covariance estimates from
the SCRIM algorithm describe the estimate distribution correctly. See (Wang and Thorpe,
2004) for more detailed information of the SCRIM algorithm.

5.3 Local Mapping

The results of local localization or registration are integrated into grid-maps via grid-based
approaches. Measurements belonging to stationary objects are integrated/updated into the
local grid map. Each moving object has its own grid-map, which contains the shape (geo-
metrical information) of this moving object and has its own coordinate systems. See Figure
9 for an illustration.

After locally localizing the robot using the SCRIM algorithm, the new measurement is
integrated into the local grid map. The Bayesian recursive formula for updating the local
grid map is computed by: (See (Elfes, 1988; Elfes, 1990) for a derivation.)

lxy
k = log
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1 − p(gxy | Zm
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0 (14)
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Figure 10: Generated grid maps along the trajectory. The boxes indicate the boundaries of
the grid maps.

where g is the grid map, gxy be the occupancy value of a grid cell at 〈x, y〉, l is the log-odds
ratio, and

lxy
0 = log

p(gxy)

1 − p(gxy)
(15)

Theoretically, there are two important requirements to select the size and resolution of the
local grid maps for accomplishing hierarchical free-form object based SLAM: one is that the
local grid maps should not contain loops, and the other is that the quality of the grid map
should be maintained at a reasonable level. To satisfy these requirements, the width, length
and resolution of the local grid maps can be adjusted on-line in practice.

For the experiments addressed in this paper, the width and length of the grid maps are set
as 160 meters and 200 meters respectively, and the resolution of the grid map is set at 0.2
meter. When the robot arrives at the 40 meter boundary of the grid map, a new grid map
is initialized. The global pose of a local map and its corresponding distribution is computed
according to the robot’s global pose and the distribution. Figure 10 shows the local grid
maps generated along the trajectory using the described parameters. Figure 11 shows the
details of the grid maps, which contain information from both stationary objects and moving
objects.

5.4 Global SLAM

As grid-based approaches need extra computation for loop-closing and all raw scans have
to be used to generate a new global consistent map, the grid-map is only built locally.
For accomplishing global SLAM in very large environments, each local grid map is treated
as a three-degree-freedom feature as shown in Figure 9 and loop closing is done with the
mechanism of the feature-based approaches.

Figure 12 shows the result without loop-closing and Figure 13 shows the result using the



(a) Grid Map 1. (b) Grid Map2. (c) Grid Map 3. (d) Grid Map 4.

Figure 11: Details of the grid maps. Gray denotes areas which are not occupied by both
moving objects and stationary objects, whiter than gray denotes the areas which are likely
to be occupied by moving objects, and darker than gray denotes the areas which are likely
to be occupied by stationary objects.

feature based EKF algorithm for loop-closing with correct loop detection. Extension 2
provides a full reply of this loop closing processing. Information from moving objects is
filtered out in both figures. The covariance matrix for closing this loop contains only 14
three degree-of-freedom features.

Since we set the whole local grid maps as features in the feature-based approaches for loop-
closing, the uncertainty inside the local grid maps is not updated with the constraints from
loop detection. Although Figure 13 shows a satisfactory result, the coherence of the overlay
between grid maps is not guaranteed. Practically, the inconsistency between the grid-maps
will not effect the robot’s ability to perform tasks. Local navigation can be done with the
current built grid map which contains the most recent information about the surrounding
environment. Global path planning can be done with the global consistent map from feature-
based approaches in a topological sense. In addition, the quality of the global map can
be improved by adjusting sizes and resolutions of the local grid maps to smooth out the
inconsistency between grid maps. At the same time, the grid-maps should be big enough to
have high object saliency scores in order to reliably solve the revisiting problem.

5.5 Local Moving Object Grid Map

There is a wide variety of moving objects in urban and suburban environments such as
pedestrians, animals, bicycles, motorcycles, cars, trucks, buses and trailers. The critical
requirement for safe driving is that all such moving objects be detected and tracked correctly.
Figure 14 shows an example of different kinds of moving objects in an urban area where
the hierarchical free-form object representation is suitable and applicable because free-form
objects are used without predefining features or appearances.

As the number of measurement points belonging to small moving objects such as pedestrians
is often less than four, the centroid of the measurement points is used as the state vector of



Figure 12: The result without loop-closing. Information from moving object is filtered out.

Figure 13: The result with loop-closing. Information from moving object is filtered out.
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Figure 14: A wide variety of moving objects in urban areas. A: a dump truck, B: a car, C:
a truck, D: two pedestrians, E: a truck.
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Figure 15: Different portions of a moving car.

the moving object. The state vector, or object-feature of a small moving object contains only
location without orientation because the geometrical information is insufficient to correctly
determine orientation.

However, when tracking large moving objects, using the centroid of the measurements is
imprecise. Different portions of moving objects are observed over different time frames
because of motion and occlusion. This means that the centroids of the measurements over
different time frames do not present the same physical point. Figure 15 shows the different
portions of a moving car observed over different time frames.

Therefore, the SCRIM algorithm is used to estimate the relative transformation between
the new measurement and the object-grids and its corresponding distribution. As the online
learned motion models of moving objects may not be reliable at the early stage of tracking,
the predicted location of the moving object may not good enough to avoid the local minima
problem of the ICP algorithm. Applying the SCRIM algorithm to correctly describe the
uncertainty of the pose estimate is especially important.
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Figure 16: Registration results of the example in Figure 15 using the SCRIM algorithm. The
states are indicated by Box, and the final scan points are indicated by ×.

Since the big object orientation can be determined reliably, the state vector, or object-
feature, can consist of both location and orientation. In addition, the geometrical information
is accumulated and integrated into the object-grids. As a result, not only are motions of
moving objects learned and tracked, but their contours are also built. Figure 16 shows the
registration results using the SCRIM algorithm.

The moving objects’ own grid maps only maintain their shape information but not their
trajectories. Although the trajectories of moving objects can be stored and maintained
with lists, it is difficult to retrieve information from the lists of multiple moving objects.
Therefore, local moving object grid maps are created to store trajectory information from
moving objects using the same mechanism of maintaining local stationary object grid maps.
Figure 11 shows examples of the local stationary and moving object grid maps.

By integrating trajectory information from moving cars and pedestrians, lanes and sidewalks
can be recognized. This kind of information is extremely important to robots operating in
environments occupied by human beings. In the applications of exploration, robots can
go wherever there is no obstacle. However, for tasks in environments shared with human
beings, robots at least have to follow the same rules that people obey. For example, a robot
car should be kept in the lane and should not go onto the unoccupied sidewalks. Both the
stationary object map and the moving object map provide essential and critical information
to accomplish these tasks.

6 Data Association

In this section, we present simple yet effective solutions for solving data association issues in
SLAMMOT.
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Figure 17: The revisiting problem. Because of the accumulated pose error, the current grid
map is not consistent with the pre-built map

6.1 Revisiting in SLAM

One of the most important step to solve the global SLAM problem is to robustly detect
loops or recognize the pre-visited areas. It is called the revisiting problem (Stewart et al.,
2003; Thrun and Liu, 2003; Hähnel et al., 2003). Figure 17 shows that the robot entered
the explored area and the current grid map is not consistent with the pre-built map. The
revisiting problem is difficult because of accumulated pose estimate errors, unmodelled uncer-
tainty sources, temporary stationary objects and occlusion. Here we describe one approach,
information exploiting, for dealing with these issues.

For loop closing, not only recognizing but also localizing the current measurement within
the global map has to be accomplished. Unfortunately, because of temporary stationary
objects, occlusion, and featureless areas (Wang, 2004), recognizing and localizing places are
difficult even with the proper information about which portions of the built map are more
likely. For instance, Figure 18 shows that the currently built stationary object maps may be
very different from the global stationary object map because of temporary stationary objects
such as ground vehicles stopped by traffic lights and parked cars. Since the environments are
dynamic, stationary objects may be occluded when the robot is surrounded by big moving
objects such as buses and trucks.

In order to deal with the addressed situations, big regions are used for loop-detection instead
of using raw scans. In large scale regions, large and stable objects such as buildings and
street blocks are the dominating factors in the recognition and localization processes, and
the effects of temporary stationary objects such as parked cars is minimized. It is also more
likely to have more salient areas when the size of the regions is larger. In other words, the
ambiguity of recognition and localization can be removed more easily and robustly. As the
measurements at different locations over different times are accumulated and integrated into
the local grid maps, the occlusion of stationary objects is reduced as well. Figure 19 shows
a grid-map pair of the same regions built at different times. Although the details of local
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Figure 18: A temporary stationary bus. Rectangles denote the detected and tracked moving
objects. The segment numbers of these moving objects are shown.

grid-maps are not the same in the same region because of the described reasons, full grid
maps contain enough information for place recognition and localization.

As local grid maps are used, visual image registration algorithms from the computer vision
literature can be used for recognition and localization. Following the SCRIM algorithm, we
use the correlation between local grid maps to verify the recognition (searching) results, and
we perform recognition (searching) between two grid maps according to the covariance matrix
from the feature-based SLAM process instead of sampling. The search stage is speeded up
using multi-scale pyramids. Figure 20 shows the recognition and localization results of the
examples in Figure 19 using different scales.

6.2 Data Association in MOT

Once a new moving object is detected, our algorithm initializes a new track for this object,
such as assigning an initial state and motion models to this new moving object. By using
laser scanners, we can only get the position but not the velocity and orientation, therefore
our algorithm uses the data from different times and then accomplishes data association in
order to initialize a new track.

Data association and tracking problems have been extensively studied and a number of
statistical data association techniques have been developed, such as the Joint Probabilistic
Data Association Filter (JPDAF) (Fortmann et al., 1983) and the Multiple Hypothesis
Tracking (MHT) (Reid, 1979)(Cox and Hingorani, 1996). Our system applies the MHT
method, which maintains a hypothesis tree and can revise its decisions while getting new



Figure 19: The grid-map pair of the same region built at different times: Grid-map 1 and
Grid map 16. Different moving object activities at different times, occlusion and temporary
stationary objects are shown.

Figure 20: Recognition and localization results using different scales of grid map 1 and grid
map 16. From left to right: 1/8 scale, 1/4 scale and 1/2 scale. Two grid maps are shown
with respect to the same coordinate system.

information. This delayed decision approach is more robust than other approaches. The
main disadvantage of the MHT method is its exponential complexity. If the hypothesis tree
is too big, it will not be feasible to search the whole hypotheses to get the most likely set
of matching. Fortunately, the number of moving objects in our application is usually less
than twenty and most of the moving objects only appear for a short period of time. Also,
useful information about moving objects from laser scanners, such as location, size, shape,
and velocity, is used for updating the confidence for pruning and merging hypotheses. In
practice, the hypothesis tree is always managed in a reasonable size.

7 Moving Object Detection

Recall that SLAM with DATMO makes the assumption that the measurements can be
decomposed into measurements of stationary and moving objects. This means that correctly
detecting moving object is essential for successfully implementing SLAM with DATMO.

In this section, we describe two approaches for detecting moving objects: a consistency based
approach and a motion object map based approach. Although these two approaches work
with the use of thresholding, the experimental results using laser scanners are satisfactory.
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Figure 21: Multiple car detection and data association. Top: the solid box denotes the
Navlab11 testbed and rectangles denote the detected moving objects. Bottom: the partial
image from the tri-camera system. Four lines indicate the detected ground vehicles.

7.1 Consistency-based Detection

The consistency-based moving object detection algorithm consists of two parts: the first is the
detection of moving points; the second is the combination of the results from segmentation
and moving point detection for deciding which segments are potential moving objects. The
details are as follows: given a new scan, the local surrounding map, and the relative pose
estimate from direct methods, we first transform the local surrounding map to the coordinate
frame of the current laser scanner, and then convert the map from a rectangular coordinate
system to a polar coordinate system. Now it is easy to detect moving points by comparing
values along the range axis of the polar coordinate system.

A segment is identified as a potential moving object if the ratio of the number of moving
points to the number of total points is greater than 0.5. Note that the consistency-based de-
tector is a motion-based detector in which temporary stationary objects can not be detected.
If the time period between consecutive measurements is very short, the motions of moving
objects will be too small to detect. Therefore, in practice an adequate time period should
be chosen for maximizing the correctness of the consistency-based detection approach.

Figure 21 shows a result of the detection and data association algorithms, and the partial
image from the tri-camera system.

7.2 Moving Object Map based Detection

Detection of pedestrians at very low speeds is difficult but possible by including information
from the moving object map. From our experimental data, we found that the data associated
with a pedestrian is very small, generally 1-4 points. Also, the motion of a pedestrian can
be too slow to be detected by the consistency-based detector. As the moving object map



contains information from previous moving objects, we can say that if a blob is in an area
that was previously occupied by moving objects, this object can be recognized as a potential
moving object.

8 Experimental results

So far we have shown the procedures in detail for accomplishing ladar-based SLAM with
DATMO from a ground vehicle at high speeds in crowded urban areas. To summarize, Figure
22 shows the flow diagram of SLAM with DATMO, and the steps are briefly described below:

8.0.1 Data collecting and preprocessing

Measurements from motion sensors such as odometry and measurements from perception
sensors such as laser scanners are collected. In our applications, laser scans are segmented.
The robot pose is predicted using the motion measurement and the robot motion model.

8.0.2 Tracked moving object association

The scan segments are associated with the tracked moving objects with the MHT algorithm.
In this stage, the predicted robot pose estimate is used.

8.0.3 Moving object detection and robot pose estimation

Only scan segments not associated with the tracked moving objects are used in this stage.
Two algorithms, the consistency-based and the moving object map-based detectors, are used
to detect moving objects. At the same time, the robot pose estimate is improved with the
use of the SCRIM algorithm.

8.0.4 Update of stationary and moving objects

With the updated robot pose estimate, the tracked moving objects are updated and the new
moving objects are initialized via the IMM algorithm. If the robot arrives the boundary
of the local grid map, a new stationary object grid map and a new moving object grid
map are initialized and the global SLAM using feature-based approaches stages is activated.
Otherwise, the stationary object grid map and the moving object grid map are updated with
the new stationary scan segments and the new moving scan segments, respectively. Now we
complete one cycle of local localization, mapping and moving object tracking.

8.0.5 Global SLAM

The revisiting problem is solved. The local grid maps are treated as three degree-of-freedom
features and the global SLAM problem is solved via extended Kalman filtering.



Figure 22: The flowchart of the SLAM with DATMO algorithm. Dark circles are data,
rectangles are processes and grey ovals are inferred or learned variables.



0 10 20 30 40 50 60 70 80 90
−15

−10

−5

0

5

10

15

X (meter)

−
Y

 (
m

e
te

r)

Object A 

Object B 

Object C 

Object D 

Figure 23: Raw data of 201 scans. Measurements associated with stationary objects are
filtered out. Measurements are denoted by × every 20 scans. Note that object B was
occluded during the tracking process.
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Figure 24: Results of multiple ground vehicle tracking. The trajectories of the robot and the
tracked moving objects are denoted with the text labels. × denotes that the state estimates
are not from the update stage but from the prediction stage because of occlusion.

Extension 1 provides a full reply of the SLAM with DATMO processing. As the experimental
results of a city sized SLAM and single car tracking have been shown in the previous sections,
multiple pedestrian and ground vehicle tracking will be shown to demonstrate the feasibility
of the proposed SLAMMOT theory and SLAM with DATMO algorithms. In addition, the
effects of 2-D environment assumption in 3-D environments, the issues about sensor selection
and limitation and ground truth for evaluating SLAMMOT will be addressed in this section.

8.1 Multiple Target Tracking

Figure 23 and 24 illustrate an example of multiple car tracking for about 6 seconds. Figure
23 shows the raw data of the 201 scans in which object B was occluded during the tracking
process. Figure 24 shows the tracking results. The occlusion did not affect tracking because
the learned motion models provide reliable predictions of the object states. The association
was established correctly when object B reappeared in this example. Extension 3 provides
a full reply of the multiple car tracking processing.
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Figure 25: An intersection. Pedestrians are pointed out by the arrow.

Figure 26: Visual images from the tri-camera system. Block boxes indicate the detected and
tracked pedestrians. Note that the images are only for visualization.

Figure 25-28 illustrate an example of pedestrian tracking. Figure 25 shows the scene in
which there are three pedestrians. Figure 26 shows the visual images from the tri-camera
system and Figure 27 show the 141 raw scans. Because of the selected distance criterion
in segmentation, object B consists of two pedestrians. Figure 28 shows the tracking result
which demonstrates the ability to deal with occlusion. Extension 4 provides a full reply of
this multiple pedestrian tracking processing.

8.2 2-D Environment Assumption in 3-D Environments

We have demonstrated that it is feasible to accomplish city-sized SLAM, and Figure 13 shows
a convincing 2-D map of a very large urban area. In order to build 3-D (21

2
-D) maps, we

mounted another scanner on the top of the Navlab11 vehicle to perform vertical profiling.
Accordingly, high quality 3D models can be produced. Figure 29, Figure 30 and Figure 31
show the 3-D models of different objects, which can be very useful to applications of civil
engineering, architecture, landscape architecture, city planning, etc. Extension 5 provides a
video that shows the 3D city modeling results.
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Figure 27: Raw data of 201 scans. Measurements are denoted by × every 20 scans.
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Figure 28: Results of multiple pedestrian tracking. The final scan points are denoted by
magenta × and the estimates are denoted by blue +.

Figure 29: 3-D models of buildings on Filmore street.

Figure 30: 3-D models of parked cars in front of the Carnegie Museum of Art.



Figure 31: 3-D models of trees on S. Bellefield avenue.
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Figure 32: Dramatic changes between consecutive scans due to a sudden start.

Although the formulations derived in this paper are not restricted to two-dimensional appli-
cations, it is more practical and easier to solve the problem in real-time by assuming that the
ground is flat. For most indoor applications, this assumption is fair. But for applications
in urban, suburban or highway environments, this assumption is not always valid. False
measurements due to this assumption are often observed in our experiments. One is from
roll and pitch motions of the robot, which are unavoidable due to turns at high speeds or
sudden stops or starts (see Figure 32). These motions may cause false measurements such
as wrong scan data from the ground instead of other objects. Additionally, since the vehicle
moves in 3-D environments, uphill environments may cause the laser beam to hit the ground
as well (see Figure 33).

In order to accomplish 2-D SLAM with DATMO in 3-D environments, it is critical to detect
and filter out these false measurements. Our algorithms can detect these false measurements
implicitly without using other pitch and roll measurement. First, the false measurements are
detected and initialized as new moving objects by our moving object detector. After data
associating and tracking are applied to these measurements, the shape and motion inconsis-
tency will tell us quickly that these are false measurements. Also these false measurements
will disappear immediately once the motion of the vehicle is back to normal. The results
using data from Navlab11 show that our 2-D algorithms can survive in urban and suburban
environments. However, these big and fast moving false alarms may confuse the warning
system and cause a sudden overwhelming fear before these false alarm are filtered out by



Figure 33: False measurements from a uphill environment.

the SLAM with DATMO processes. Using 3-D motion and/or 3-D perception sensors to
compensate these effects should be necessary.

8.3 Sensor Selection and Limitation

The derived Bayesian formulations for solving the SLAMMOT problem are not restricted
to any specific sensors. In this section, we discuss the issues on selection and limitations of
perception and motion sensors.

8.3.1 Perception Sensors

In the tracking literature, there are a number of studies on issues of using different perception
sensors (Bar-Shalom and Li, 1995; Blackman and Popoli, 1999). In the SLAM literature,
use of different sensors has been proposed as well. For instance, bearing-only sensors such
as cameras (Deans, 2005), and range-only sensors such as transceiver-transponders (Kantor
and Singh, 2002; Newman and Leonard, 2003) have been used for SLAM. The fundamentals
for using heterogeneous sensors for SLAM, MOT, and SLAM with DATMO are the same.
The difference is sensor modelling according to sensor characteristics.

Although laser scanners are relatively accurate, some failure modes or limitations exist. Laser
scanners can not detect some materials such as glass because the laser beam can go through
these materials. Laser scanners may not detect black objects because laser light is absorbed.
If the surface of objects is not diffusing enough, the laser beam can be reflected out and not
returned to the devices. In our experiments these failure modes are rarely observed but do
happen. In Figure 34, the measurement from the laser scanner missed two black and/or clean
cars, which are shown clearly in the visual image form the tri-camera system. Heterogenous
sensor fusion would be necessary to overcome these limitations.
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Figure 34: The failure mode of the laser scanners. Car A and Car B are not shown completely
in the laser scanner measurement.

8.3.2 Motion Sensors

In this paper, we have demonstrated that it is indeed feasible to accomplish SLAMMOT
using odometry and laser scanners. However, we do not suggest the totally abandonment of
inexpensive sensors such as compasses and GPS if they are available. With extra information
from these inaccurate but inexpensive sensors, inference and learning can be easier and faster.
For instance, for the revisiting problem, the computational time for searching can be reduced
dramatically in the orientation dimension with a rough global orientation estimate from a
compass, and in the translation dimensions with a rough global location estimate from GPS.
The saved computational power can be used for other functionalities such as warning and
planning.

8.4 Ground Truth

It would of course be nice to have ground truth, to measure the quantitative improvement
of localization, mapping and moving object tracking with the methods introduced in this
paper. Unfortunately, getting accurate ground truth is difficult, and is beyond the scope of
the work in this paper. Several factors make ground truth difficult:

• Localization: collecting GPS data in city environments is problematic, due to reflec-
tions from tall buildings and other corrupting effects.

• Mapping: the accuracy and resolution of the mapping results are better than available
digital maps.



Figure 35: An available digital map. The locations of intersections are denoted by circles.

Figure 36: The reconstructed map is overlayed on an aerial photo.

• Moving object tracking: any system that works in the presence of uninstrumented
moving objects will have a difficult time assessing the accuracy of tracking data.

Some of these difficulties are illustrated by Figures 35, 36, and 37. Figure 35 shows the
locations of intersections on an available digital map. In Figure 37, those same intersections
are overlayed on our reconstructed map. In Figure 36, the reconstructed map is overlayed on
an aerial photo. Qualitatively, the maps line up, and the scale of the maps is consistent to
within the resolution of the digital maps. Quantitative comparisons are much more difficult.

9 Conclusion and Future Work

In this paper, we have developed a theory for performing SLAMMOT. We first presented
SLAM with generalized objects, which computes the joint posterior over all generalized
objects and the robot. Such an approach is similar to existing SLAM algorithms. Unfortu-
nately, it is computationally demanding and generally infeasible. Consequently, we developed
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Figure 37: The same intersections shown in Figure 35 are overlayed on our reconstructed
map.

SLAM with DATMO, in which the estimation problem is decomposed into two sperate es-
timators. By maintaining separate posteriors for the stationary and moving objects, the
resulting problems are much lower dimensional than SLAM with generalized objects.

We implemented SLAM with DATMO and described practical algorithms which deal with
the issues of perception modeling, data association and moving object detection. We have
demonstrated that performing SLAM and moving object tracking concurrently satisfies both
navigation and safety requirements in applications of intelligent transportation system and
autonomous driving in urban areas. The substantial results indicated that it is indeed
feasible to accomplish SLAMMOT from mobile robots at high speeds in crowded urban
environments.

As future work, a project to generate quantitative SLAMMOT results would need to:

• characterize the sensors used and their errors.

• carefully characterize the errors of dead reckoning (odometry and heading measure-
ments).

• instrument a few vehicles to be known moving objects, e.g. with accurate GPS or
accurate pose estimation systems.

• carefully map a few points on the map to very high resolution, e.g. by using a
theodolite to measure distances between corners of a few buildings, or by using carrier
phase GPS at the level of the building rooftops, where multipath would not be a factor.

We also plan to investigate accomplishing SLAMMOT using heterogeneous sensors and per-
forming higher level scene understanding such as interaction and activity learning.



A Derivation of SLAM with generic objects

In this section, we describe the formulation of SLAM with generic objects. Recall that the
probabilistic formula of online SLAM with generic objects can be described as:

p(xk,Yk | Zk, Uk) (16)

Using Bayes’ rule, Equation 16 can be derived and rewritten as:

p(xk,Yk | Zk, Uk) ∝ p(zk | xk,Yk) p(xk,Yk | Zk−1, Uk) (17)

Using the total probability theorem, the rightmost term of Equation 17 can be rewritten as:

p(xk,Yk | Zk−1, Uk) (18)

=
∫ ∫

p(xk, xk−1,Yk,Yk−1 | Zk−1, Uk) dxk−1 dYk−1

For deriving Equation 18 further, two situations are discussed: without and with interactions
between the robot and generic objects.

A.1 Without Interaction

Here we assume that there is no interaction between the robot and generic objects. We can
separate xk and Yk by:

p(xk,Yk, xk−1,Yk−1 | Zk−1, Uk)

= p(xk | xk−1,Yk,Yk−1, Zk−1, Uk)

· p(xk−1,Yk,Yk−1 | Zk−1, Uk)

= p(xk | xk−1,Yk,Yk−1, Zk−1, Uk)

· p(Yk | xk−1,Yk−1, Zk−1, Uk)

· p(xk−1,Yk−1 | Zk−1, Uk) (19)

Following the no interaction assumption and the common independency assumptions in the
SLAM literature, we can obtain the equations below:

p(xk | xk−1,Yk,Yk−1, Zk−1, Uk) = p(xk | xk−1, uk) (20)

p(Yk | xk−1,Yk−1, Zk−1, Uk) = p(Yk | Yk−1) (21)

p(xk−1,Yk−1 | Zk−1, Uk) = p(xk−1,Yk−1 | Zk−1, Uk−1) (22)

Putting all these equations into Equation 17, the Bayesian formula of online SLAM with
generic objects is given as:



p(xk,Yk | Zk, Uk)
︸ ︷︷ ︸

Posterior at k

∝ p(zk | xk,Yk)
︸ ︷︷ ︸

Update

∫ ∫

p(xk | xk−1, uk)
︸ ︷︷ ︸

Robot predict

p(Yk | Yk−1)
︸ ︷︷ ︸

generic objs

· p(xk−1,Yk−1 | Zk−1, Uk−1)
︸ ︷︷ ︸

Posterior at k − 1

dxk−1 dYk−1 (23)

Assuming that there is no interaction among generic objects, we can further derive:

p(Yk | Yk−1) = p(y1

k | y1

k−1
)p(y2

k | y2

k−1
) · · · p(yl

k | yl
k−1

)

=
l∏

i=1

p(yi
k | yi

k−1
) (24)

A.2 With Interactions

Assuming that interactions among the robot and the generic objects exist, xk and Yk are
not decoupled and the right term of Equation 18 can be derived as

p(xk,Yk, xk−1,Yk−1 | Zk−1, Uk)

= p(xk,Yk | xk−1,Yk−1, Zk−1, Uk)

· p(xk−1,Yk−1 | Zk−1, Uk) · (25)

Then we take a reasonable independency assumption:

p(xk,Yk | xk−1,Yk−1, Zk−1, Uk)

= p(xk,Yk | xk−1,Yk−1, uk) (26)

Putting all these equations into Equation 17, the Bayesian formula of online SLAM with
generic objects is given as

p(xk,Yk | Zk, Uk)
︸ ︷︷ ︸

Posterior at k

∝ p(zk | xk,Yk)
︸ ︷︷ ︸

Update

·
∫ ∫

p(xk,Yk | xk−1,Yk−1, uk)
︸ ︷︷ ︸

Prediction with interactions
· p(xk−1,Yk−1 | Zk−1, Uk−1)

︸ ︷︷ ︸

Posterior at k − 1

dxk−1dYk−1 · (27)

B Derivation of SLAM with DATMO

In this section, we describe the formulation of online SLAM with DATMO.



B.1 Assumptions

Three assumptions are made to simplify the computation of SLAM with generic objects in
which it is possible to update both the SLAM filter and the DATMO filter in real-time.

The first assumption is that measurements can be decomposed into measurements of sta-
tionary and moving objects.

zk = zo
k ∪ zm

k and hence Zk = Zo
k ∪ Zm

k (28)

where zm
k and zo

k denote measurements of stationary and moving objects respectively. In
particular this implies the following conditional independence

p(zk | xk, Ok,Mk)

= p(zo
k | xk, Ok, Mk) p(zm

k | xk, Ok,Mk)

= p(zo
k | xk, Ok) p(zm

k | xk,Mk) (29)

where the variable Mk = {m1

k,m
2

k, . . . , m
q
k} denotes the true locations of the stationary

objects, of which there are q in the world at time k. The variable Ok = {o1

k,o
2

k, . . . ,o
n
k}

denotes the true hybrid states of the moving objects, of which there are n in the world at
time k.

Now the general SLAM with DATMO problem can be posed as computing the posterior

p(xk,Mk, Ok | Zk, Uk) (30)

The second assumption is that when estimating the posterior over the stationary object
map and the robot pose, the measurements of moving objects carry no information about
stationary landmarks and the robot pose, neither do their hybrid states Ok.

p(xk,Mk | Ok, Zk, Uk) = p(xk,Mk | Zm
k , Uk) (31)

The third assumption is that there is no interaction among the robot and the moving objects.
The robot and moving objects move independently of each other.

p(Ok | Ok−1) =
n∏

i=1

p(oi
k | oi

k−1
) (32)

B.2 Derivation

We begin by factoring out the most recent measurement:

p(xk, Ok,Mk | Zk, Uk) ∝ (33)

p(zk | xk, Ok,Mk, Zk−1, Uk) p(xk, Ok,Mk | Zk−1, Uk)

Observing the standard Markov assumption, we note that p(zk | xk, Ok, Mk, Zk−1, Uk) does
not depend on Zk−1, Uk, hence we have

p(xk, Ok,Mk | Zk, Uk) ∝ (34)

p(zk | xk, Ok,Mk) p(xk, Ok,Mk | Zk−1, Uk)



Furthermore, we can now partition the measurement zk = zo
k ∪ zm

k into moving and static,
and obtain by exploiting the first assumption and Equation 29:

p(xk, Ok,Mk | Zk, Uk) ∝ (35)

p(zo
k | xk, Ok) p(zm

k | xk,Mk) p(xk, Ok, Mk | Zk−1, Uk)

The rightmost term p(xk, Ok,Mk | Zk−1, Uk) can now be further developed, exploiting the
second assumption

p(xk, Ok,Mk | Zk−1, Uk)

= p(Ok | Zk−1, Uk) p(xk,Mk | Ok, Zk−1, Uk)

= p(Ok | Zo
k−1

, Uk) p(xk,Mk | Zm
k−1

, Uk) (36)

Hence we get for our desired posterior

p(xk, Ok,Mk | Zk, Uk)

∝ p(zo
k | xk, Ok)p(zm

k | xk,Mk)

· p(Ok | Zo
k−1

, Uk)p(xk,Mk | Zm
k−1

, Uk)

∝ p(zo
k | xk, Ok) p(Ok | Zo

k−1
, Uk)

︸ ︷︷ ︸

DATMO
· p(zm

k | xk,Mk) p(xk,Mk | Zm
k−1

, Uk)
︸ ︷︷ ︸

SLAM

(37)

The term p(Ok | Zo
k−1

, Uk) resolves to the following prediction

p(Ok | Zo
k−1

, Uk)

=
∫

p(Ok | Zo
k−1

, Uk, Ok−1) p(Ok−1 | Zo
k−1

, Uk) dOk−1

=
∫

p(Ok | Ok−1) p(Ok−1 | Zo
k−1

, Uk−1) dOk−1 (38)

Finally, the term p(xk,Mk | Zm
k−1

, Uk) in Equation 37 is obtained by the following step:

p(xk,Mk | Zm
k−1

, Uk)

= p(xk | Zm
k−1

, Uk,Mk) p(Mk | Zm
k−1

, Uk)

=
∫

p(xk | Zm
k−1

, Uk, Mk, xk−1) p(xk−1 | Zm
k−1

, Uk,Mk)

· p(Mk | Zm
k−1

, Uk) dxk−1

=
∫

p(xk | uk, xk−1)p(xk−1,Mk | Zm
k−1

, Uk−1)dxk−1 (39)

which is the familiar SLAM prediction step. Putting everything back into Equation 37 we
now obtain the final filter equation:

p(xk, Ok,Mk | Zk, Uk) (40)

∝ p(zo
k | Ok, xk)

︸ ︷︷ ︸

DATMO Update



·
∫

p(Ok | Ok−1) p(Ok−1 | Zo
k−1

, Uk−1) dOk−1

︸ ︷︷ ︸

DATMO Prediction
· p(zm

k | Mk, xk)
︸ ︷︷ ︸

SLAM Update

·
∫

p(xk | uk, xk−1) p(xk−1, Mk−1 | Zm
k−1

, Uk−1) dxk−1

︸ ︷︷ ︸

SLAM Prediction

From Equation 40, input to this SLAM with DATMO filter are two separate posteriors, one
of the conventional SLAM form and a separate one for DATMO. How to recover those SLAM
and DATMO posteriors at time k is simple.

For the SLAM part, we get

p(xk,Mk | Zm
k , Uk) (41)

=
∫

p(Ok,Mk, xk | Zk, Uk) dOk

∝ p(zm
k | Mk, xk) ·

∫

p(xk | uk, xk−1) p(xk−1, Mk−1 | Zm
k−1

, Uk−1) dxk−1

For the DATMO part , we get

p(Ok | Zk, Uk) (42)

=
∫ ∫

p(Ok, Mk, xk | Zk, Uk)dMkdxk

∝
∫

(p(zo
k | Ok, xk)

∫

p(Ok | Ok−1)

p(Ok−1 | Zo
k−1

, Uk−1)dOk−1)p(xk | Zm
k , Uk)dxk

where the posterior over the pose p(xk | Zm
k , Uk) is simply the marginal of the joint calculated

in Equation 41:

p(xk | Zm
k , Uk) =

∫

p(xk,Mk | Zm
k , Uk)dMk (43)

C Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org. Extension 1 is a video
that illustrates the processing of the SLAM with DATMO approach (Figure 22). Extension
2 is a video that shows the processing of loop closing (Figure 13). Extension 3 and 4 are
the videos illustrate the processing of multiple vehicle tracking (Figure 24) and multiple
pedestrian tracking (Figure 28), respectively. Extension 5 is a video shows the 3D city
modeling results (Figure 29, Figure 30 and Figure 31).



Extension Type Description
1 Video SLAM with DATMO
2 Video Loop closing
3 Video Multiple vehicle tracking
4 Video Multiple pedestrian tracking
5 Video City mapping
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