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Abstract— In this paper, we propose a novel approach of
simultaneous localized feature selection and model detection for
unsupervised learning. In our approach, local feature saliency,
together with other parameters of Gaussian mixtures, are esti-
mated by Bayesian variational learning. Experiments performed
on both synthetic and real-world datasets illustrate that our
approach is superior over both global feature selection and
subspace clustering methods.

Index Terms— Unsupervised, localized, feature selection,
Bayesian.

I. INTRODUCTION

Clustering is the unsupervised classification of data ob-
jects into different groups (clusters) such that objects in one
group are similar together and dissimilar from another group.
Applications of data clustering are found in many fields,
such as information discovering, text mining, web analysis,
image grouping, and bioinformatics. A clustering algorithm
typically considers all the available features to “learn” from
data. In practice, however, some features can be irrelevant
and therefore hinder the clustering performance, especially
in a high-dimensional dataset. A viable solution is feature
selection, a technique that chooses the “best” feature subset
for clustering.

Feature selection has been extensively studied in supervised
learning scenarios [1]–[6]. In unsupervised learning, feature
selection becomes a more complex problem due to the un-
availability of class labels [7]–[9]. The objective of feature
selection is threefold: improving the performance of clustering,
providing fast and cost-efficient solution, and providing a
better understanding of the underlying process that generated
the data. In general, unsupervised feature selection algorithms
conduct feature selection in a global sense by producing a
common feature subset for all the clusters. This, however, can
be invalid in the clustering practice, where the local intrinsic
property of data matters more. In the illustrative example
shown in Figure 1 (a), the relevant feature subset for cluster
C1 is {x1, x2}, while clusters C2 and C3 can be grouped using
{x2} and {x1}, respectively. A common feature subset, i.e.,
{x1, x2}, is unable to reflect the inherent structural property
of the three clusters. Apparently, clustering with local features
is highly desired. From a probability perspective, the local
saliency of the l-th feature to the j-th cluster indicates that
the sample distribution of the j-th cluster has a strong peak
on the l-th feature. On the other hand, a non-salient feature
does not have such a natural cluster structure (see Figure

(a) Three clusters in 2-D view.
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(b) Distribution of individual clusters on each feature.

Fig. 1: A three-cluster dataset with cluster C1 embedded in
feature set {x1, x2}, cluster C2 embedded in feature subset
{x2}, and cluster C3 embedded in feature subset {x1}.

1 (b) for an example). Moreover, in real-world problems,
the number of clusters is usually unknown, and hence needs
to be detected. Note that different feature subsets may lead
to different number of clusters. Feature selection and model
detection are strongly dependent [10]. This suggests that these
two objectives must be achieved simultaneously.

In this paper, we address the problem of simultaneous lo-
calized feature selection and model detection for unsupervised
learning. We propose a novel localized Bayesian inference
approach of Gaussian mixtures, which computes the local
feature saliency, the number of clusters, and other parameters
of a mixture model through variational learning. The rest of
this paper is organized as follows: In Section II, we briefly
review related work in the literature. The Gaussian mixture
model with local feature saliency is presented in Section III.
Variational learning is used in Section IV to identify the
mixture model and perform localized feature selection. We
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present our experimental results in Section V, and conclusions
in Section VI.

II. RELATED WORK

Most global approaches for unsupervised feature selection
can be categorized as filters, wrappers or hybrids [11]. Filter
approaches pre-select features and then provide the selected
features to a clustering algorithm. Wrapper approaches, on
the other hand, incorporate the clustering algorithm in feature
searching and selection. A hybrid method tries to incorporate
the advantages of both filters and wrappers. It uses criteria,
typically independent to mining algorithms, to find a feature
subset. A mining algorithm is subsequently employed to
decide the final feature subset. Mitra et al. [9] propose a filter
approach that accomplishes feature selection in two steps. In
the first step, the features are partitioned into a number of sub-
sets by k-Nearest-Neighbor (KNN) rule based on the feature
similarity calculated from an information compression index.
Then, the feature that has the most compact subset is selected,
and its k neighboring features are discarded. Dash et al. [12]
introduce an entropy measure, which is low if the data has
distinct clusters and high otherwise. The feature importance is
evaluated based on this entropy measure, and relevant feature
subset is chosen accordingly. The wrapper method presented in
[8] evaluates the cluster quality over different feature subsets
by normalizing cluster separability (for k-means clustering)
or likelihood (for Expectation Maximization (EM) cluster-
ing) using the cross-projection method. The candidate feature
subsets are generated by a sequential forward search. The
number of clusters is estimated by merging clusters one at
a time based on the Bayesian Information Criterion (BIC).
Law et al. [10] assume that features are independent given a
mixture component, and follow a common distribution up to a
probability. The complement of this probability is defined as
feature saliency and estimated by the Maximum Likelihood
(ML) or Maximum A Priori (MAP) with the EM algorithm
using Gaussian mixture models. Minimal Message Length
(MML) is used to estimate the number of components. [13]
and [7] employ the same Gaussian mixture model as in [10] to
describe the feature relevance, but integrate model detection
and feature selection under the Bayesian framework. Dash and
Liu propose a hybrid approach in [14], which uses entropy
measure to rank the importance of features, and then use k-
means to decide the final feature subset. More recently, Raftery
and Dean [15] recast the problem of comparing two nested
subset of variables as a model comparison problem, and solve
it using approximate Bayes factors. A greedy add-and-remove
algorithm is used to find the local optimum in the model space.

All the aforementioned algorithms select features globally,
which may be unsuitable for certain clustering problems
as described in Section I. In these cases, feature subsets
associated to individual clusters is more useful and can
provide us a better understanding of the data. In bipartite
graph partitioning [16], [17], features are grouped together
with patterns in each cluster. However, features are divided
exclusively, which prevents the possibility of a feature being
relevant to more than one cluster. Other approaches along

this direction, usually referred as subspace clustering [18]–
[20], aim to seek high density areas embedded in a high
dimensional feature space. CLIQUE [21] combines density
analysis and grid-based clustering to find low dimensional
clusters embedded in the high dimensional space. However,
it requires grid size and density threshold as input parameters.
PROCLUS [22] samples dataset, and then selects k clusters
and repeatedly improves the clustering. In PROCLUS, average
dimensionality of subspaces is required as an input, which is
difficult to be determined a priori. SURFING [20] tries to rank
feature subsets based on a density-like measure. Clustering
is performed subsequently on the top-ranked feature subsets.
Greedy forward search is adopted to navigate the possible
subspaces. More recently, COSA [23] assigns weights to each
dimension for each instance based on the dispersion of its
k nearest neighbors (knn), yielding a distance matrix from
the weighted inverse exponential distance. The distance matrix
is then processed by distance-based clustering methods, i.e.,
hierarchical clustering. After clustering, the overall importance
value for each dimension of each cluster is calculated. Again,
COSA requires a parameter, λ, that controls the strength of
incentive for clustering on more dimensions, together with
the number of clusters. In [24], the Parsimonious Model
with Gaussian Mixtures (PMGM) is proposed, attempting to
find component-specific feature space via shared distributions.
PMGM encodes hard saliency in the EM-based optimization,
and provides model selection using BIC.

In this paper, we propose a localized feature saliency mea-
sure and integrate it into the Bayesian inference framework.
Our approach can discover clusters embedded in local feature
subspaces. Note that the goal of our method fundamentally
differs from that of traditional subspace clustering. In subspace
clustering, subspaces which contain high density areas are usu-
ally detected first, then the embedded clusters are discovered.
Our approach, on the other hand, focuses on detecting clusters
and their individual feature subsets simultaneously through
variational Bayesian learning. In addition, no prior knowledge
is required in the proposed method. The soft saliency encoded
in our model can be used for both feature selection and feature
evaluation.

III. MIXTURE MODEL AND LOCALIZED FEATURE

SALIENCY

A. Mixture Model

From a model-based perspective, each cluster can be math-
ematically represented by a parametric distribution. One of
the most widely used distributions is the Gaussian (Normal)
distribution. In statistical pattern recognition, the sampling
distribution of the sample mean is approximately normal, even
if the distribution of the population from which the sample
is taken is not normal. In addition, the normal distribution
maximizes information entropy among all distributions with
known mean and variance, which makes it the natural choice
of the underlying distribution for data summarized in terms of
sample mean and variance. If we model the entire dataset by
a mixture of Gaussians, the clustering problem, subsequently,
reduces to a problem of estimating the parameters of the
Gaussian mixture.
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A finite mixture of densities with K components is rep-
resented by p(y) =

∑K
j=1 πjp(y|θj), where πj are called

mixing coefficients, and θj are the parameters corresponding
to component j. We use π to denote the set {πj}j=1,...,K , and
similarly for θ ≡ {θj}j=1,...,K . Consider an observed dataset
Y ≡ {yi|i = 1, . . . , N}, where data points yi are drawn from
the mixture distribution independently. We introduce a set of
latent variables zij ∈ {0, 1} such that zij = 1 indicates that a
given data point yi is drawn from component j, and zij = 0
otherwise. Conditional on Z = {zij} and θ, the likelihood is
given by,

P (Y|θ, Z) =
N∏

i=1

K∏
j=1

p(yi|θj)zij . (1)

B. Localized Feature Saliency

We assume features are conditionally independent, and
the importance of a feature can be different for different
clusters. The feature relevance is represented by a matrix
S = {sjl}K×D, where sjl = 1 indicates that feature l is
associated with component j, and sjl = 0 otherwise. Let
ρjl = Pr(sjl = 1) be the probability that feature l is
relevant to component j. Motivated by [10], the likelihood
for Gaussian mixtures with localized feature saliency can be
obtained through the following proposition.

Proposition 1: Let p(·|θjl) represent the distribution of a
salient feature l for the component j, and q(·|λjl) be the
distribution if feature l is non-salient to j. Assuming that the
features are conditionally independent, the likelihood function
can be written as,

p(Y|θ) =
N∏

i=1

K∑
j=1

πj

D∏
l=1

(
ρjlp(yil|θjl) + (1 − ρjl)q(yil|λjl)

)
.

(2)
where θ = {{πj}, {θjl}, {ρjl}, {λjl}} is the set of all the
parameters.
Proof: The proof is provided in the Appendix.

The mixture components with localized feature saliency
can be interpreted as follows. Assume that samples Yj are
clustered to component j with feature association indicator
vector (sjl)|l=1,...,D. The distribution of Yj has significant
cluster structure (strong peak) on feature subset F+ in which
sjl = 1, while the distribution on feature subset F− in which
sjl = 0 lacks such a cluster structure. The probability ρjl

indicates the weighting of the l-th feature on the j-th cluster.
By maximizing the overall likelihood, the model produces
clusters embedded in different feature subsets. Moreover, our
formulation can be further explained under the framework of
generative models. We first create the component pool. Given
component j, each pattern is generated in a feature-by-feature
manner. Specifically, the value of the l-th feature is drawn
from the distribution p(·|θjl) (salient features) or from the
distribution q(·|λjl) (non-salient features), based on the result
of tossing a coin with the bias of ρjl on the head. The dataset
is thereby created by sampling N patterns independently from
the component pool with a priori πj .

IV. LOCALIZED FEATURE SELECTION WITH VARIATIONAL

LEARNING

The parameters of the above mixture model can be esti-
mated by Maximal Likelihood (ML) with EM, or by Varia-
tional Learning of Bayesian approximation (VB). ML method
treats the parameters as unknown but fixed, while VB places
a prior probability on the parameters. These two algorithms
usually produce identical results in many cases [25]. However,
in order to integrate cluster number estimation, ML method
usually requires other criteria, such as Entropy measure or
Minimal Message Length (MML). For VB approach, this pro-
cess can be implemented by proper choice of prior probability
over mixing coefficients. Another problem encountered by ML
is that singular components lead to infinite likelihood, which
is not the case with VB. We now present the Variational
Bayesian approach to approximate the parameters in the model
presented in Section III.

A. Variational Approximation

In general, to evaluate the likelihood of mixtures, condi-
tioned on the mixing coefficients, we must marginalize the
parameters as follows,

P (Y|θ) =
∫
P (Y,Θ|θ) dΘ (3)

where Θ ≡ {θ, z, Z, S} denotes all the parameters and latent
variables. The integral sign denotes the joint integral over θ
and the summation over z and S. This integral is analytically
intractable. We therefore use variational methods to find a
lower bound for P (Y|π).

Consider the following transformation applied to the log
marginal likelihood,

lnP (Y|θ) ≥
∫
Q(Θ) ln

P (Y,Θ|θ)
Q(Θ)

dΘ = L(Q) (4)

The function L(Q) forms a rigorous lower bound on the
true log marginal likelihood. Through a suitable choice of
the Q distribution, the quantity L(Q) may be tractable to
compute. From Equation (4), the difference between the true
log likelihood lnP (Y|π) and the bound L(Q) is given by
Kullback-Leibler divergence KL(Q||P ). Q(Θ) is chosen from
some family of distributions such that the lower bound L(Q)
is sufficiently simplified for evaluation. Since the true log
likelihood is independent of Q, we see that P (Θ) can be
approximated with Q(Θ) by minimizing the KL divergence.
Assuming that Q(Θ) factorizes over subsets {Θi} of the
variables in Θ, Q(Θ) =

∏
iQi(Θi), the KL divergence can

then be minimized over all possible factorial distributions by
performing free-form minimization over Qi,

Qi(Θi) =
exp〈lnP (Y,Θ)〉k �=i∫

exp〈lnP (Y,Θ)〉k �=i dΘi
(5)

where 〈·〉k �=i denotes an expectation with respect to the
distributions Qk(Θk) for all k �= i. Equation (5) shows
that the sufficient statistics of each distribution Qi depends
on the moments of other distributions Qk �=i, which implies
an iterative solution for estimating the variational variables.



4

In other words, with sufficient parameter initialization, the
statistics can be updated by taking each factor in turn and
replacing its sufficient statistics by the revised estimates. In
each iteration of the re-estimation process, the KL divergence
is reduced, and both the lower bound L(Q) and the likelihood
are increased. Thus, the convergence is guaranteed.

B. Local feature saliency with variational learning

We now apply Bayesian variational approach to the mixture
of Gaussians with localized feature saliency. Given the sets of
hidden variables Z = {z(i)

j } and S = {s(i)jl }, the distribution
of the Gaussian mixture is

p(Y|Z, S, θ) =
N∏

i=1

K∏
j=1

[ D∏
l=1

(
p(yil|θjl)

)s
(i)
jl

(
q(yil|λjl)

)1−s
(i)
jl

]z
(i)
j

(6)

where μ = {μjl} and T = {τjl} denote the means and inverse
variances of the “useful” subcomponents, while ε = {εjl}
and γ = {γjl} are the set of parameters for the “noisy”
subcomponents. The distribution of the hidden variable Z
given the mixing probabilities π = {πj} and the distribution of
the hidden variable S given the mixing probabilities ρ = {ρjl}
are governed as,

P (Z|π) =
N∏

i=1

K∏
j=1

π
zij

j , (7)

P (S|ρ) =
N∏

i=1

K∏
j=1

D∏
l=1

ρ
s
(i)
jl

jl (1 − ρjl)1−s
(i)
jl . (8)

In order to accomplish model selection, the above Bayesian
model is completed by introducing conjugate priors over the
means and inverse covariances,

P (μ) =
K∏

j=1

D∏
l=1

N (μjl|ml, c) (9)

P (T ) =
K∏

j=1

D∏
l=1

Γ(τjl|α, β) (10)

where Γ(·) is the gamma distribution, ml, c, α, and β are
hyperparameters that control the prior distributions. The hyper-
parameters are chosen such that the prior distribution is broad
enough to cover the whole dataset. Since the actual model
parameters are represented by the means of the corresponding
distributions, they are not sensitive to these hyperparameters.
Particularly, we set m to the mean of the dataset, c = α =
β = 10−7.

For conjugate hierarchical models, the expressions on the
right side of Equation (5) will have the same functional forms
as in the priors . Applying Equation (5) to the above Bayesian
model, and taking an iterative optimization, we get (more

details regarding the derivation can be found in the Appendix),

QZ(Z) =
N∏

i=1

K∏
j=1

r
zij

ij (11)

Qμ(μ) =
K∏

j=1

D∏
l=1

N (μjl|mv
jl, c

v
jl) (12)

QT (T ) =
K∏

j=1

D∏
l=1

Γ(τjl|αv
jl, β

v
jl) (13)

QS(S) =
N∏

i=1

K∏
j=1

D∏
l=1

ω
s
(i)
jl

ijl (1 − ωijl)1−s
(i)
jl (14)

where rij ,mv
jl, c

v
jl, α

v
jl, β

v
jl, and ωijl are variational parameters

for maximization and determining the density involved in Q,
defined by

rij =
πj r̃ij∑K

j=1 πj r̃ij
(15)

r̃ij = exp{1
2

d∑
l=1

ωijl[ψ(αv
jl) − log βv

jl

− αv
jl

βv
jl

((yi
l −mv

jl)
2 +

1
cvjl

)]} (16)

mv
jl =

cmi + (αv
jl/β

v
jl)

∑n
i=1 rijωijly

i
l

c+ (αv
jl/β

v
jl)

∑n
i=1 rijωijl

(17)

cvjl =c+
αv

jl

βv
jl

N∑
i=1

rijωijl (18)

αv
jl =α+

1
2

N∑
i=1

rijωijl (19)

βv
jl =β +

1
2

N∑
i=1

rijωijl[(yi
l −mv

jl)
2 +

1
cvjl

] (20)

ωijl =
ρjlω̃ijl

ρjlω̃ijl
+ (1 − ρjl) (21)

ω̃ijl = exp{1
2
rij [ψ(αv

jl) − log βv
jl

− αv
jl

βv
jl

((yi
l −mv

jl)
2 +

1
cvjl

)]} (22)

ξijl = exp{−1
2
γjl(yi

l − εjl)2 +
1
2

log γjl} (23)

where ψ(x) is the digamma function ψ(x) = d log Γ(x)/dx.
The model parameters πj , ρjl, εjl, and γjl are given by the

mean value of corresponding variational factors:

πj =
1
N

N∑
i=1

rij (24)

ρjl =
1
N

N∑
i=1

ωijl (25)

εjl =
∑N

i=1 ωijly
i
l∑N

i=1 ωijl

(26)

1
γjl

=
∑N

i=1 ωijl(yi
l − εjl)2∑N

i=1 ωijl

(27)
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The above steps iterate alternatively until convergence.
This model has a property that the components with similar
parameters fitting the same Gaussian will compete each other,
yielding a dominant cluster. Thus, we can initialize the model
with a large number of clusters, and eliminate the trivial
clusters during iteration. Finally, the algorithm will produce
a model with localized feature saliency represented by ρjl,
and identify the number of clusters simultaneously.

One should notice that seeking the feature saliency for
individual clusters introduces more parameters than global
feature selection approaches. This, subsequently, increases
the potential risks posed by local extrema. To this end,
variational learning is a better choice for the optimization
than EM. Unlike EM, which assumes an unknown but fixed
value for a parameter, variational learning formulates the
model parameters as distributions. The variational parameters
are initialized based on broad distributions. In addition, the
estimated model parameters are represented by the means of
the corresponding approximation functions. Thus, variational
learning can provide robust and stable optimization results,
and can also alleviate the overfitting problem, often suffered
by EM.

C. Computational Complexity

The computational complexity of the proposed algorithm
is O(NDK) in each iteration. The total computational time
depends on the number of iterations required for converging.
Specifically, in each iteration, we have to compute measures
in Equations (15)-(27). Computing ξijl is O(1). There are
(NDK) ξs, and require O(NDK). Similarly, ω and ω̃ require
O(NDK). Computing αv

jl requires to navigate through all the
samples, indicating that the complexity is O(NDK). Similar
results can be obtained for βv , cv , mv, and r̃. For r, the com-
plexity is O(NK), since the summation of Equation (15) can
be re-used. The complexity for ρ, ε, and γ is O(NDK). For
p, it is O(NK). Thus, the overall computational complexity
for one iteration is O(NDK).

D. Advantages of the proposed approach

The proposed method integrates localized feature selection,
model detection, and clustering into a unified framework. Its
major advantages are summarized as follows,

1) Compared with global methods, our method can reveal
cluster-wise feature relevance, thus provides users more
accurate information about the underlying model which
generates the data.

2) Compared with subspace clustering methods, our
method does not require users to provide parameters
that are critical but almost impossible to be set in
advance, for example, the number of clusters, the density
threshold, or the desired dimensionality.

3) Our method avoids heuristical navigation over the large
pool of possible feature subsets. The computational
cost for each iteration of the proposed algorithm is
O(NDK). It does not grow exponentially with D or
N . Thus, our method is scalable to large datasets.

V. EXPERIMENTAL RESULTS

In general, the performance of an unsupervised feature
selection algorithm is hard to be evaluated. Localized feature
selection makes it even more difficult as we have an additional
layer of complexity brought by the association of clusters
with different feature subsets. To thoroughly evaluate the pro-
posed Localized Feature Selection with Variational Bayesian
(LFSVB) algorithm, we have compared it with the leading
unsupervised feature selection methods on both synthetic and
real-world datasets. Specifically, in the comparison, we choose
a global method proposed in [13], which is also based on
the Bayesian framework with variational learning (GFSVB).
We have also selected a recently published and well-accepted
subspace clustering method, viz., COSA [23]. Unlike other
subspace clustering approaches that usually yield only hard-
decisions (either accept or reject a feature), COSA can produce
soft feature saliency (feature importance), similar to our ap-
proach, and thus make the comparison more meaningful. In
addition, COSA software is publicly available 1. Finally, we
also compare our approach with the parsimonious model with
Gaussian mixtures (PMGM) [24].

A. Synthetic Data

1) Synthetic datasets with hard feature saliency: First, we
applied the four algorithms (LFSVB, GFSVB, COSA and
PMGM) to 100 synthetic datasets with 0-1 (hard) feature
saliency (a feature is either relevant or irrelevant). As we know
the underlying model from which the patterns were sampled
from, the performance of an algorithm is interpreted as: can
the algorithm find the given model? The synthetic datasets
are created by a data generator. It first generates c Gaussian
components N (μj ,Σj), j = 1, · · · , c, separately, where Σj is
restricted to a diagonal matrix. The values of μj are chosen
randomly from -4 to 4 and from 0.1 to 0.3 for Σj . Compo-
nents can have different number of features Dj , and different
number of patterns Nj . Those Gaussians are then embedded
into subsets of a D-dimensional background with Gaussian
noise N (0, I). Specifically, we randomly select D1 features
from the background data, and replace the first N1 positions
with component 1. This embeds the first component into the
background. Similarly, we can embed all the rest clusters into
the background. Finally, a D-dimensional dataset consisting
of c Gaussian mixtures, with each component corresponding
to an individual relevant feature subset, is generated. The total
number of patterns is N =

∑c
j=1Nj . In our experiment,

one hundred datasets are generated with dimensionality (D)
varying from 10 to 50, the number of salient features (Dj)
from 1 to 8, the cluster size (Nj) from 100 to 500, and number
of clusters from 3 to 7.

We initialize LFSVB with k = 20. The global feature
selection approach is initialized in the same manner. COSA
is initialized with default settings. COSA-distance matrix is
computed, then processed by hierarchal clustering. Clusters
are manually selected based on the visual inspection of the
dendrogram. Feature importance is normalized so that the
value of the top-rank-feature is 1.

1http://www-stat.stanford.edu/˜jhf/COSA.html
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Fig. 2: Histograms of feature saliency on 100 synthetic datasets
for GFSVB (uper panel), COSA (middle panel), and LFSVB
(lower panel), respectively.

Note that PMGM produces binary feature weights (either 0
or 1), while the other three algorithms yield feature weight
in the range of [0,1]. To evaluate the performance of the
algorithms for feature selection, we need to find a cut-off
threshold of feature saliency for LFSVB, GFSVB, and COSA.
Figure 2 shows the histograms of the feature saliency obtained
by GFSVB, COSA, and LFSVB, respectively, for all the
clusters in the 100 datasets. Clearly, the saliency values are
mainly distributed in the range of [0,0.2] and [0.8,1]. In the
following experiments, we simply choose 0.5 as the cut-off
threshold for the three algorithms.

We compute 4 quantities to evaluate the performance of the
algorithms: accuracy of cluster number ACN = |ĉ−c|

c , where
ĉ is the estimated number of clusters, and c is the true value;
clustering accuracy CA = 1 − Ñ

N , where Ñ is the number

of mis-clustered samples; feature precision FPj = |D̂j

⋂
Dj |

|D̂j

⋃
Dj | ,

where D̂j and Dj are the estimated and true feature subset
for cluster j, respectively, and | · | represents the set length;

and feature recall FRj = |D̂j

⋂
Dj |

|Dj | . The statistical summary
over the 100 synthetic datasets are reported in Table I, while
an example is provided in Table II, showing the results for the
synthetic dataset (syn 0) with 30 features and 3 clusters.

Compare to global feature selection. From the example
in Table II, we can see clearly that the proposed algorithm
correctly detects the underlying clusters as well as the feature
subsets corresponding to each cluster. On the other hand,
GFSVB yields a feature subset which is close to the union
of feature subsets identified by LFSVB, except that feature 19
is missing. Table I shows that, over the 100 synthetic datasets,
both the algorithms estimated the cluster numbers accurately.
The cluster accuracy of GFSVB is slightly higher than that
of LFSVB. However, both the algorithms can discover the

clusters well. The feature recall measure of GFSVB is high,
but the feature precision measure of GFSVB is low, while
both values of LFSVB are high. This indicates that the global
feature selection algorithm can detect if a feature is relevant to
the dataset, however, it can not determine if a salient feature
really plays a critical role on a particular cluster. On the other
hand, the proposed model not only provides information on
whether a feature is relevant or not, but also shows which
cluster the feature is relevant or irrelevant to.

Compare to subspace clustering. As an example, Table II
shows that localized feature subsets for C1 and C2 are cor-
rectly identified by COSA. It misses a salient feature (feature
26) for cluster 3, while LFSVB can recognize all three clusters
with the corresponding feature subsets. The overall cluster
accuracy of COSA is slightly better than that of LFSVB, while
LFSVB outperforms COSA on feature precision and feature
recall, as shown in Table I. Moreover, COSA only produces
a COSA-distance matrix, and requires other clustering algo-
rithms for subsequent processing. The number of clusters is
also required as an input. On the other hand, our method
provides a fully-automated solution by integrating localized
feature selection, model detection, and clustering into a unified
framework.

Compare to parsimonious model with Gaussian mixture.
The example results shown in Table II and the statistical
measures shown in Table I indicate that proposed algorithm
performs equivalently to PMGM. Notice that PMGM yields
binary feature weight (either 0 or 1), while our algorithm
produces feature saliency as a probability measure in the range
of [0,1]. Subsequently, the proposed method can be applied for
both feature selection and feature evaluation.

2) Synthetic dataset with soft feature saliency: The feature
saliency in real-world datasets is usually soft, which means
that it can be any value between 0 or 1. To approximate
this situation, we generate a 20-dimensional dataset where the
feature saliency is distributed in the range of [0, 1]. This dataset
contains 2 Gaussian components N (m1,Σ1) and N (m2,Σ2),
where m1 = (0.5, . . . , 0.5), m2 = (−0.5, . . . ,−0.5), Σ1

and Σ2 are both diagonal, having (0.2, . . . , 0.2) on the di-
agonal terms. The feature saliency of clusters 1 and 2 are
(0.05, 0.10, . . . , 1) and (1, 0.95, . . . , 0.05), respectively. Each
component contains 500 points. We generate the data based
on the procedure described in Section III with a common
distribution of N (0, I).

We run the four algorithms on this dataset 10 times. Both
LFSVB and PMGM detect two clusters successfully, while
GFSVB yields 3 clusters. For COSA, we manually select
the clusters. Table III shows the feature saliency obtained by
LFSVB, COSA, PMGM, and GFSVB, respectively. We can
see that GFSVB determines that all feature saliency is greater
than 0.5. PMGM can discover that the two clusters have
different relevant feature subset. However, it does not obtain
the true feature saliency due to its binary coding scheme. On
the other hand, LFSVB and COSA correctly discover that
feature relevance associated to cluster 1 is different from that
of cluster 2. Specifically, the relevance of features increases
with feature index for cluster 1, but decreases for cluster 2.
This provides additional and more accurate information than
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TABLE I: Statistical summary on 100 synthetic datasets, where ACN is the average accuracy of cluster number, CA is the
average clustering accuracy, FPj is the average feature precision, and FRj is the average feature recall. For COSA, the number
of clusters (ĉ) is set manually with visual inspection of the dendrogram (denoted by *).

algorithm ACN CA FPj FRj

GFSVB 0.993 (0.010) 0.996 (0.009) 0.445 (0.081) 0.982 (0.010)
COSA 1.00* (0.00) 0.992 (0.005) 0.927 (0.005) 0.975 (0.018)
LFSVB 0.993 (0.010) 0.970 (0.012) 0.985 (0.012) 0.990 (0.011)
PMGM 0.993 (0.010) 0.971 (0.011) 0.980 (0.015) 0.989 (0.015)

TABLE II: Experimental results on synthetic dataset (syn 0) with hard feature saliency. For COSA, the number of clusters (ĉ)
is set manually with visual inspection of the dendrogram (denoted by *). Truth indicates the actual model which generates the
dataset. C1,C2, and C3 represent different clusters.

Data Algo. ĉ accuracy Feature subset

syn 0 Truth 3 - C1:[8, 19, 30], C2:[5, 23, 24], C3:[7, 16, 26]
D = 30 LFSVB 3 99.2% C1:[8, 19, 30], C2:[5, 23, 24], C3:[7, 16, 26]

COSA 3* 98.5% C1:[8, 19, 30], C2:[5, 23, 24], C3:[7, 16]
GFSVB 3 98.3% [5, 8, 16, 23, 24, 26, 30]
PMGM 3 99.0% C1:[8, 19, 30], C2:[5, 23, 24], C3:[7, 16, 26]

TABLE III: Average feature saliency on the synthetic dataset with soft feature saliency. The feature saliency is in a decreasing
order for cluster 1, and in a increasing order for cluster 2.
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GFSVB and PMGM.

B. Real-world datasets

For the evaluation on real-world datasets, we utilized six
datasets: Heart, Ion, Vehicle, Wine, WDBC, and Yeast, from the
UCI machine learning repository [26], with varying number
of features, patterns, and categories, as summarized in Ta-
ble IV. Class labels are provided in the datasets for supervised
learning, which are excluded during the clustering process. A
confusion matrix is computed according to the true class labels
and the cluster index. Based on confusion matrix, mutual
information is calculated as,

I(X ;Y) = −
∑
X

∑
Y
p(x, y) log

p(x, y)
p(x)p(y)

(28)

where x and y are true labels and cluster index respectively,
p(x, y) is the joint probability, and p(x) and p(y) are the
marginal probability distribution of X and Y respectively. The

TABLE IV: Summary of the UCI datasets, where N is the
number of samples, D the number of attributes, and c the
number of classes.

data Description N D c

Heart Heart Disease of Statlog 270 13 2
Ion Ionosphere Database 351 34 2

Vehicle vehicle classification 846 18 4
Wine wine recognition 178 13 3

WDBC Diagnostic breast cancer 569 30 2
Yeast Protein Localization Sites 1484 8 10

mutual information measures the dependence between X and
Y . Thus, a higher value of I indicates that the clustering results
are closer to the true class group.

Table V shows the mean and standard deviation of the
cluster numbers and mutual information over 10 runs for the
four algorithms. Again, cluster numbers for COSA are set
manually based on the dendrogram. On the average mutual
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TABLE V: Mutual information I and the estimated cluster
number ĉ, represented by mean and standard deviation over
10 different runs, on UCI datasets. For COSA, the number of
clusters is determined manually (denoted by *).

Data Algo ĉ(std) I(std)

Heart LFSVB 2.8(0.8) 0.15(0.07)
COSA 2* 0.21(0.01)
GFSVB 3.0(0.7) 0.09(0.06)
PMGM 3.1(0.6) 0.11 (0.05)

Ion LFSVB 3.8(1.1) 0.33(0.1)
COSA 4* 0.30(0.01)
GFSVB 3.4(0.9) 0.21(0.05)
PMGM 3.3(0.8) 0.31 (0.05)

Vehicle LFSVB 9.9(1.7) 0.63(0.05)
COSA 9* 0.48(0.01)
GFSVB 10.5(1.5) 0.58(0.09)
PMGM 9.5(1.6) 0.60 (0.04)

Wine LFSVB 3.1(0.3) 1.44(0.07)
COSA 3* 1.26(0.01)
GFSVB 3.4(0.7) 1.42(0.06)
PMGM 3.2(0.6) 1.42 (0.07)

WDBC LFSVB 6.3(0.8) 0.68(0.02)
COSA 10* 0.59(0.01)
GFSVB 7.6 (0.9) 0.67(0.02)
PMGM 8.1(0.6) 0.68 (0.03)

Yeast LFSVB 11.4(2.1) 0.40(0.06)
COSA 13* 0.15(0.02)
GFSVB 6.8(0.8) 0.36(0.01)
PMGM 8.2(1.5) 0.39(0.05)

information, LFSVB outperforms GFSVB on five (out of six)
datasets (Heart, Ion, Vehicle, Wine, and Yeast). On WDBC, it
is as good as GFSVB. LFSVB also outperforms COSA on five
(out of six) datasets (Ion, Vehicle, Wine, WDBC and Yeast).
The proposed algorithm outperforms PMGM on two datasets
(Heart, Vehicle). On the other datasets, those two algorithms
have similar performance.

LFSVB shows that different relevant feature subsets are
associated with different clusters, whose sizes are usually
smaller than the global relevant feature subset. PMGM also
selects a feature subset for each component. The difference
between LFSVB and PMGM is that LFSVB evaluates the
relevance of a feature with a saliency value in the range of
[0, 1] while PMGM uses a binary one. In addition, model
detection is fully integrated in LFSVB through variational
learning. A separate measure such as BIC is not required.

VI. CONCLUSION

In this paper, we propose a novel approach of simultaneous
localized feature selection and model detection for unsuper-
vised learning. Our approach provides a fully-automated solu-
tion to identify useful patterns embedded in feature subspaces
by integrating local feature selection, model detection, and
clustering into a unified Bayesian framework. On both syn-
thetic and real world datasets, we demonstrate the advantages
of our algorithm over global feature selection and subspace
clustering methods.

APPENDIX

(1) Likelihood for Gaussian mixtures with localized
feature saliency

Proof: Let S = {s(i)jl }, and Z = {z(i)
j } represent the

hidden variables. The dataset is assumed to be drawn from
the Gaussian distribution

p(Y|Z, S, θ) =
N∏

i=1

K∏
j=1

[ D∏
l=1

(
p(yil|θjl)

)s
(i)
jl

(
q(yil|λjl)

)1−s
(i)
jl

]z
(i)
j

(29)

Given mixing probabilities π = {πj} and ρ = {ρjl}, the
distributions of hidden variable Z and S are

P (Z|π) =
N∏

i=1

K∏
j=1

π
z
(i)
j

j , (30)

P (S|ρ) =
N∏

i=1

K∏
j=1

D∏
l=1

ρ
s
(i)
jl

jl (1 − ρjl)1−s
(i)
jl . (31)

The joint distribution p(Y, Z, S|θ) is

p(Y, Z, S|θ) = p(Y|θ)P (Z|π)P (S|ρ)

=
N∏

i=1

K∏
j=1

[ D∏
l=1

πj

(
ρjlp(yil|θjl)

)s
(i)
jl

(
(1 − ρjl)q(yil|λjl)

)1−sjl
]z

(i)
j

(32)

The likelihood is obtained by margining hidden variables Z
and S from the above equation. Notice that z(i)

j ∈ {0, 1} and

s
(i)
jl ∈ {0, 1}, we have

p(Y|θ) =
N∏

i=1

K∑
j=1

πj

D∏
l=1

(
ρjlp(yil|θjl) + (1 − ρjl)q(yil|λjl)

)

(33)

(2) Derivation of variational parameter update
We facrorize Q(Θ) as

Q(Θ) = QZ(Z)QS(S)Qμ(μ)QT (T ) (34)

Let us consider the derivation of the update equation for the
factor Q(Z) by applying Equation (5) and taking logarithm
on both sides,

lnQz(Z) = 〈ln p(Y,S, θ)〉 + const. (35)

where 〈·〉 represents the expectation of S and θ. Absorbing
any terms that do not depend on Z into the additional
normalization constant, we have,

lnQz(Z) = 〈ln p(Z|π)〉π + 〈ln p(Y|Z, S, θ)〉θ + const (36)

Substituting the two terms on the right side, and absorbing
any term that are independent of Z, we get

lnQZ(Z) =
N∑

i=1

K∑
j=1

zij ln r̃ij + const. (37)

where r̃ij has the form of Equation (16). Note that for each
value of i, the quantities 〈zij〉 are binary and sum to 1. QZ(Z)
can be normalized to,

QZ(Z) =
N∏

i=1

K∏
j=1

r
zij

ij (38)
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which has the form of Equation (15).
Similarly, applying Equation (14) to Equation (5), we have,

lnQS(S) =〈ln p(S|ρ)〉ρ + 〈ln p((Y |Z, S, θ)〉θ + cons

=
N∑

i=1

K∑
j=1

D∑
l=1

{s(i)jl ln ω̃ijl+

(1 − s
(i)
jl ) ln(1 − ω̃ijl)} + const (39)

where ω̃ijl has the form of Equation (22). Thus, QS(S) has
the form of

QS(S) ∝
N∏

i=1

K∏
j=1

D∏
l=1

ω̃
s
(i)
jl

ijl (1 − ωijl)1−s
(i)
jl (40)

Normalization QS(S) yields to Equation (21).
Applying Equation (5) to Qμ(μ),

lnQμ(μ) =
K∑

j=1

D∑
l=1

ln p(μjl) + 〈ln p(Z|π)〉Z+

N∑
i=1

K∑
j=1

D∑
l=1

〈z(i)
j 〉[s(i)jl ln p(yijl|μjl, θjl)+

(1 − s
(i)
jl ) ln p(yijl|λjl)] + const. (41)

This leads to a Gaussian distribution

Qμ(μ) =
K∏

j=1

D∏
l=1

N (μ|mv
jl, c

v
jl) (42)

where mv
jl and cvjl have the form of Equations (17) and (18),

respectively.
For further details on the derivation of variational learning,

readers are referred to [27].
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