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Abstract A fiber optic sensing system for simultaneous measurement of refractive
index and temperature, based on a hybrid fiber Bragg grating/long-period grating

arrangement is described. The experimental results show that this setup has a good
performance in terms of linearity and sensitivity, the ratiometric output changes

4%/0.001 RIU and 3.6%/ıC, respectively. The sensor resolution for the refractive
index is �2 � 10

�5 RIU. The simultaneous measurement of the refractive index

and temperature was demonstrated. The sensing configuration has the ability to be
read-out in reflection and works in the telecommunications window.

Keywords fiber-optic sensors, gratings, refractive index, temperature, measurement

Introduction

It is currently recognized that the measurement and control of physical, chemical, and

biological parameters in natural environments is of large importance for ecosystems

monitoring and protection. In this context, the refractive index (RI) and temperature

measurements in coastal and estuary environments are required as part of a process

directed to the health assessment of their biodiversity. The RI has been used to measure the

salinity of seawater, detect water pollutants, and monitor water quality. In particular,

the level of salinity is not only a determinant for lagoon life species, but it is also

an indicator of water conductivity—a parameter that is essential in the context of the

utilization of electromagnetic techniques for the study of tidal dynamics by measurement

of induced currents generated by huge masses of water in motion [1].

In this field, fiber-optic sensors offer important advantages such as high sensitivity,

small size, and capability for on-site, real-time, remote, and distributed sensing. Optical

fiber gratings, including fiber Bragg gratings (FBGs) and long-period fiber gratings

(LPGs), are key elements in many optical telecommunication and sensing applications.

They are characterized by a periodic index modulation of the RI of the core of a
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single-mode fiber (SMF), where the LPG’s period is much longer (hundreds of microns)

than the FBG’s period (typically a half-wavelength). This structural difference results in

devices with fundamentally different properties and with a strong potential of application

[2–4].

Several fiber gratings based sensors have been proposed. A simple Fabry–Pérot cavity

with an FBG and fiber tip was demonstrated for RI measurement [5]. Another scheme,

based on two FBGs, was used for simultaneous measurement of temperature and salinity,

where one of the FBGs presents a smaller diameter of the cladding, allowing greater

interaction of the evanescent field with the surrounding liquid [6]. Other FBG techniques

based on the application of specific coatings have also been studied. For example, an

FBG coated with a hydrogel has been demonstrated as a salinity sensor [7]; another

system with two FBGs—one coated with a polyimide sensitive to the RI and another

with a temperature sensitive acrylate polymer—was used for simultaneous measurement

of temperature and salinity [8].

Other fiber-optic sensors for salinity that incorporate LPGs have been developed.

For instance, a single LPG has been used as a sensitive refractometer [9]. A more

advanced LPG-based interferometric configuration was also demonstrated [10]. Other

examples include a system with two LPGs, where one is etched, enabling the simultaneous

measurement of temperature and salinity [11]. Moreover, the coating of LPGs with thin

films to increase sensitivity to environmental parameters has also been the subject of

study [12]. Other types of refractometric fiber-optic sensors that have been used for the

measurement of salinity, such as surface plasmon resonance (SPR) techniques, offer very

high sensitivity [13, 14]. Nevertheless, these configurations are read-out in transmission

or require etching processes that introduce fragility in the fiber sensor.

In this article, an alternative configuration is demonstrated for simultaneous mea-

surement of the RI (n) and temperature based on a hybrid system with one LPG for RI

sensing and two FBGs for dynamic interrogation system and temperature compensation.

Experimental

The hybrid FBG/LPG sensor and detection system are shown in Figure 1. This setup was

used for simultaneous measurement of temperature and strain [15]. The sensing head

consists of three gratings, one LPG with period ƒ D 395 �m (written by the electric-

arc technique) and center wavelength �LPG D 1,545 nm, and two FBGs (written by

the UV-phase mask technique) with center wavelengths �FBG1 D 1,540 nm and �FBG2 D

1,550 nm, respectively. The gratings are arranged as depicted in Figure 1; the first grating

is the LPG, and next are the two FBGs, where the relative spectral position of each

grating was chosen in order to have one reflection peak on each side of the LPG resonance.

The relative distances of all the gratings, much larger than the coherence length of

the optical source, and their relative spectral positions eliminate the possibility of any

interferometric induced noise. The inset in Figure 1 also shows the relative spectral

position of the gratings and their behavior for two different refractive indices.

With the proposed configuration, the resonant peak of the LPG shifts in wavelength

in accordance with the variations of the n of the surrounding medium. This perturbation

thus changes the intensity of light reflected by the two FBGs. The n measurement can be

obtained in reflection by a simple calculation of the ratio between the intensities reflected

by the two FBGs. This ratio is proportional to the wavelength shift, and thus to the external

RI, but is independent of any other optical power fluctuations. Temperature, on the other

hand, can be obtained by monitoring the shifts of the center wavelength of either one
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of the FBGs. The temperature and RI response of the LPGs were previously measured and

were approximately 98 pm/ıC and 95 pm/0.001 RIU, respectively. The sensing scheme

shown in Figure 1 was implemented to test and characterize the hybrid configuration. An

erbium-doped fiber broadband source that emits in the 1,550-nm range was used. The

power spectrum was measured with an optical spectrum analyzer (maximum resolution

of 10 pm). In the distal end of the sensing head, index matching gel was used in order

to avoid Fresnel reflection. For calibration, the sensing head was immersed in samples

of water mixed with different percentages of ethylene glycol at a constant temperature

(20ıC) to provide for the RI standards. The liquid samples were previously characterized

by an Abbe refractometer using the sodium D line (589 nm). Due to dispersion, the

actual RI of the solutions at 1,550 nm should be different. Nevertheless, in a previous

work, it was verified that although the absolute values of the RI are indeed distinct, the

small incremental RI change �n of the different solutions remain relatively constant

as a function wavelength. Therefore, the values obtained with the sodium line actually

provide a reasonable estimate of the system sensitivity [6].

Results and Discussion

Figure 2a presents the modulation of the optical power reflected by FBG1, which was

caused by the shift of the LPG resonance as a consequence of the changes in the n of

the surrounding medium. As the RI increases, the LPG resonance starts to overlap the

FBG1 resonance, and the power reflected by FBG1 is attenuated. As expected, the central

wavelength of the FBG spectrum is independent of the RI changes. Figure 2b illustrates

the spectrum behavior of the FBG2 spectrum when the sensing head is subjected to an

increase of temperature. In this case, not only do the wavelengths shift toward longer

wavelengths, but they are also attenuated due to the interaction with the LPG resonance.

In order to analyze the RI variation, a normalized power ratio of the two FBGs was

defined (R D I1 � I2=I1 C I2), where I1 and I2 are the reflected intensities of FBG1 and

FBG2, respectively. In Figure 3, the responses of the R parameter as a function of the RI

variation is shown together with the measurement of the center wavelength of FBG2. A

linear variation of the R parameter against the n variation (4%/0.001 RIU) is observable.

On the other hand, the wavelength shift of FBG2 is negligible and is probably due to

minute temperature fluctuations.

To obtain the resolution in the measurement of the RI, the sensing head was subjected

to a step change of n (Figure 4). From this approach, an RI resolution of �2 � 10�5 was

obtained by considering a minimum detectable signal of two times the standard deviation.

For temperature characterization, the sensing head was immersed in distilled water.

Figure 5 shows the optical spectra of FBG2 in response to temperature changes in the

range of 5ıC to 31ıC, where a variation of 9.30 pm/ıC was observable. The expected

variation of the RI with temperature is very low and approximately 0:2 � 10�5/ıC [16].

Nevertheless, due to the wavelength shifts of both the FBGs and the LPG, the R parameter

is affected by temperature (3.6%/ıC). The responses of the R parameter and of the

��FBG2 to temperature variations are shown in Figure 5.

The dual response of the FBGs power ratio (R parameter) and the FBG2 wavelength

allows for the writing of a conditioned system of two equations for �n and �T , given

in matrix form as

"

�T

�n

#

D
1

�KnRKT �

"

0 �KnR

�KT � KTR

# "

R

��

#

;
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(a)

(b)

Figure 2. (a) Modulation of the reflected FBG1 optical power caused by the shift of the LPG

wavelength in response to the surrounding RI. (b) FBG2 optical spectra in response to temperature

changes.
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Figure 3. R parameter and FBG2 wavelength shift responses with RI variation.

where KnR and KT �, the matrix coefficients, are the slopes of the lines represented in

Figures 3 and 5, respectively [17].

"

�T

�n

#

D
1

�0:37

"

0 �39:87

�0:0093 0:2 � 10�5

# "

R

��

#

I

from the R parameter and the FBG2 wavelength responses, this equation allows recov-

ering the RI and the temperature without ambiguity. To test this concept, simultaneous

Figure 4. RI resolution.
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Figure 5. R parameter and FBG2 wavelength shift responses with temperature variation.

changes in temperature and RI were induced in the sensing head. Figure 6 presents the

results of the simultaneous measurement of the temperature and RI using the matrix

method. For the RI, the results were also compared with the measured ones by the Abbe

refractometer. As it can be seen, they are in good agreement.

In this study, the possibility of absorptive external media was not addressed. However,

in a practical application, the imaginary part of the RI can be a concern, and a detailed

study should be performed. Nevertheless, the use of the ratiometric scheme can provide

some immunity for absorption as long as both the FBGs are attenuated in the same way.

For fluids with more complex absorption spectra, a careful choice of the gratings and the

use of protective/filtrating membranes should be investigated.

Conclusion

A compact sensing head based on the LPG/FBG hybrid system has been described. Its

capability of the simultaneous measurement of the RI and temperature has also been

demonstrated. The sensing configuration exhibited n linear response with sensibility of

4%/0.001 RIU and resolution of 2 � 10�5. The sensing configuration has the ability to be

read-out in reflection. Therefore, measurements can be performed using standard FBG

interrogation units while having the advantage of the evanescent sensitivity of LPGs.

Therefore, it has good characteristics for application in salinity measurements or for

detection of pollutants and other chemical substance, provided the sensitive region is

coated with adequate chemically sensitive membranes.
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Figure 6. Simultaneous measurement of temperature and RI.
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