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and fragmentation functions
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We perform a comprehensive new Monte Carlo analysis of high-energy lepton-lepton, lepton-hadron

and hadron-hadron scattering data to simultaneously determine parton distribution functions (PDFs) in the

proton and parton to hadron fragmentation functions (FFs). The analysis includes all available semi-

inclusive deep-inelastic scattering and single-inclusive eþe− annihilation data for pions, kaons and

unidentified charged hadrons, which allows the flavor dependence of the fragmentation functions to be

constrained. Employing a new multistep fitting strategy and more flexible parametrizations for both PDFs

and FFs, we assess the impact of different datasets on sea quark densities and confirm the previously

observed suppression of the strange quark distribution. The new fit, which we refer to as “JAM20-SIDIS,”

will allow for improved studies of universality of parton correlation functions, including transverse

momentum dependent (TMD) distributions, across a wide variety of process, and the matching of collinear

to TMD factorization descriptions.

DOI: 10.1103/PhysRevD.104.016015

I. INTRODUCTION

The standard parton correlation functions of QCD, such

as collinear parton distribution functions (PDFs) and

fragmentation functions (FFs), are being utilized in an

increasingly diverse range of phenomenological applica-

tions. Beyond their traditional role in predicting new high

energy phenomena, they also enter frequently into the study

of more complex and extended objects like transverse

momentum dependent (TMD) PDFs and FFs and gener-

alized parton distributions (GPDs), where they are needed

to understand the transition between different factorization

regions. Both TMDs and GPDs are central to the study of

the nonperturbative parton structure of hadrons, and under-

standing how they encapsulate their longitudinal and

transverse features will be critical to current experimental

programs at Jefferson Lab and elsewhere, as well as to the

future Electron-Ion Collider. These considerations provide

one of the main motivations for the study of collinear PDFs

and FFs in this paper.

The great value of PDFs and FFs extracted from global

QCD data analysis lies with their predictive power, or

“universality.” However, the translation from experimental

data to quark and gluon operator structures is a challenging

inverse problem. It is not possible to exactly constrain

parton correlations from data alone since this connection

involves nontrivial convolution integrals in a factorization

formalism (whose accuracy itself is difficult to quantify in

any given instance) and because of the limited quantity of

available data. The complexity of the inverse problem is

also magnified by the number of flavor degrees of freedom

involved.

Nevertheless, assessing and maximizing the universality

of collinear PDFs and FFs is crucial given the increasingly

broad scenarios where they are used. A major focus in the

current effort by the Jefferson Lab Angular Momentum

(JAM) Collaboration is therefore to both test and broaden

the predictive power of parton correlation functions. This

is achieved through a Bayesian inference procedure in

which PDFs and FFs are extracted simultaneously, and the

uncertainty quantification associated with particular para-

metrizations of parton correlation functions is given in

terms of a Bayesian posterior distribution. To test univer-

sality, the system of equations relating observables to

*
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parton correlation functions must of course exceed the

total number of correlation functions involved—a mini-

mum requirement is that the parton correlation functions

be overconstrained by the data in the fit. Of course,

realizing this in practical analyses requires that all parton

correlation functions be truly fitted simultaneously.

This is a major numerical and technological challenge,

and traditionally PDFs and FFs have thus been extracted

in separate procedures. However, simultaneous fits

can be achieved with the Bayesian Monte Carlo approach

and have been implemented recently in the JAM17 [1]

analysis of helicity PDFs, and in the JAM19 [2] analysis

of unpolarized PDFs and FFs. The same basic method-

ology was also applied in the three-dimensional

JAM3D20 [3] study, in the first combined analysis of

TMD observables that satisfies the overconstraining

criterion.

In this paper, we extend the previous work by perform-

ing the first simultaneous and overconstrained fit of

unpolarized PDFs and FFs that utilizes both charged

hadron production in semi-inclusive deep-inelastic scat-

tering (SIDIS) and single-inclusive eþe− annihilation

(SIA). This is partly motivated by a number of recent

observations associated with the study of TMD PDFs. For

example, significant tension has recently been found

between fits performed with standard sets of PDFs and

FFs and fixed order perturbative QCD calculations in

processes including SIDIS [4,5], Drell-Yan (DY) [6], and

SIA into wide-angle hadron pairs [7]. A number of

suggested solutions and explanations have been proposed

to account for this, including a possible need for power

suppressed corrections [8] at the moderate scales of most

SIDIS experiments. However, more tests of the limits of

applicability of standard collinear factorization are needed

before it is possible to draw firm conclusions. Given that

the majority of data used to constrain collinear correlation

functions (both PDFs and FFs) are either highly inclusive

or exist are at very high scales, or both, it is perhaps not

surprising that tension arises when these are evolved

downward and used to make predictions at lower scales

and for highly differential observables. Indeed, there have

been few tests that Q2-scaling, a hallmark of the collinear

perturbative regime, actually holds to a reasonable

approximation in SIDIS measurements at moderate Q2.

Our hope is that the new combined fit, which we refer to as

“JAM20-SIDIS,” will help to shed light on this and similar

issues in the future.

In Sec. II we begin the discussion by summarizing the

methodology used in our simultaneous Monte Carlo

analysis, including the parametrizations used for the

distributions and the multistep Bayesian inference algo-

rithm. Details of the datasets included in the fit are

summarized in Sec. III, while in Sec. IV we discuss the

criteria for universality and how these are met in this

analysis. A detailed discussion of the numerical results is

given in Sec. V, where we present the fitted PDFs and FFs,

as well as detailed comparisons of data to theory. Finally,

in Sec. VI we summarize our conclusions and discuss the

implications of our analysis. Some formulas for SIDIS

cross sections and structure functions are collected in the

Appendix.

II. THEORETICAL FRAMEWORK

In this section we give an overview of the theoretical

framework on which our analysis is based, including the

observables to be fitted, the parametrizations used for the

PDFs and FFs, details of the perturbative QCD setup, and

Bayesian inference strategy employed.

A. Observables and factorization

In this analysis we work in standard collinear factori-

zation [9–11], in which QCD cross sections are separated

into perturbatively calculable partonic hard factors con-

voluted with nonperturbative PDFs and/or FFs. We

perform calculations of all observables consistently to

order αs in the QCD coupling. Details of the basic

theoretical setups for the inclusive DIS, inclusive Drell-

Yan lepton-pair production and SIA reactions are pro-

vided in the literature [10,12] and will not be repeated

here. However, since SIDIS is a comparatively novel

addition to global QCD analyses, we review it in more

detail in the Appendix.

The processes considered in the present analysis can be

summarized as follows:

lþN→lþX; inclusiveDIS;

lþN→lþh�þX; semi-inclusiveDIS;

N1þN2→l
þþl

−þX; Drell-Yan lepton-pair production;

l
þþl

−
→h�þX; single-inclusive annihilation;

where h� represent charged pions, kaons, or unidentified

hadrons, and the nucleon N (or N1;2) in the initial state can

be either a proton or a neutron (in practice, deuteron).

Within the framework of collinear factorization, the

cross sections for each of these processes can be written

schematically as convolutions of hard functions and the

nonperturbative parton distribution and fragmentation

functions,

dσDIS

dQ2dxBj
¼

X

i

HDIS
i ⊗ fi ð1Þ

dσSIDIS

dQ2dxBjdzh
¼

X

ij

HSIDIS
ij ⊗ fi ⊗ Dh

j ð2Þ

dσDY

dQ2dxF
¼

X

ij

HDY
ij ⊗ fi ⊗ fj ð3Þ
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dσSIA

dQ2dzh
¼

X

j

HSIA
j ⊗ Dh

j ð4Þ

where the symbols⊗ represent the convolution integrals in

longitudinal momentum fractions of the hard scattering

functions Hij and the PDFs fi and FFs Dh
j for parton

flavors i, j (see the Appendix). In each process, Q

represents the hard scale given by the photon virtuality,

Q ≫ hadron masses, which allows the observables to be

factorized into the short-distance perturbative and long-

distance nonperturbative parts.

For the inclusive DIS and SIDIS processes,

xBj ¼
Q2

2p · q
ð5Þ

is the usual Bjorken scaling variable, while for the DY

process the analogous scaling variables are defined as

x1 ¼
Q2

2p1 · q
; x2 ¼

Q2

2p2 · q
; ð6Þ

where p1 and p2 denote the incoming hadron momenta,

with the Feynman scaling variable given by

xF ¼ x1 − x2: ð7Þ

In the DY center of mass frame, and in the limit of

negligible hadron masses (≪ Q), the virtual photon rap-

idity can be written in terms of x1 and x2 as

y ¼
1

2
ln
x1

x2
: ð8Þ

For the processes involving fragmentation to a hadron h in

the final state, we have

zh ¼
ph · p

q · p
½SIDIS� ð9Þ

for SIDIS in Eq. (2), while

zh ¼
2ph · q

Q2
½SIA� ð10Þ

for SIA in Eq. (4).

B. Perturbative QCD and numerical setups

For our numerical analysis we make use of

Mellin space techniques to enable fast evaluations of

observables needed for the Bayesian analysis. In particu-

lar, we solve the DGLAP evolution equations analytically

in Mellin space [13], which allows one to effectively

render high-dimensional momentum space convolutions

from process-specific factorization theorems, along with

the integrals in the DGLAP equations, in the form of

lower-dimensional inverse Mellin transforms. For exam-

ple, for the inclusive DIS observables one can write

schematically,

dσDIS

dQ2dxBj
¼

X

i

1

2πi

Z
dNx−NBj

eHDIS
i ðN; μÞ

×US
ijðN; μ; μ0Þf̃jðN; μ0Þ; ð11Þ

where N here is the conjugate variable to xBj, f̃jðN; μ0Þ is

the Mellin moment of the PDF fjðx; μ0Þ, defined by

f̃jðN; μ0Þ ¼

Z
1

0

dxxN−1fjðx; μ0Þ; ð12Þ

and eHDIS
i ðN; μÞ is the corresponding moment of the

partonic DIS cross section. The analytic solution for

the DGLAP evolution is entirely encoded in the evolution

matrix US
i;j that evolves the moments f̃jðN; μ0Þ of the

PDFs from a given input scale μ0 to the relevant DIS hard

scale μ ¼ Q. A similar expression can be written for the

SIA cross section,

dσSIA

dQ2dzh
¼

X

ij

1

2πi

Z
dMz−Mh

eHSIA
i ðM; μÞ

× UT
ijðM; μ; μ0ÞeDh

j ðM; μ0Þ; ð13Þ

where M is the Mellin conjugate variable for zh,

eDh
j ðM; μ0Þ is the moment of the FF, and eHSIA

i is the

moment of the partonic SIA cross section. The super-

scripts S and T in the evolution matrix distinguish between

the spacelike and timelike evolution for the PDFs and FFs,

respectively, which are encoded in the corresponding

DGLAP splitting kernels.

The same procedure can be extended for the case of

SIDIS, which gives

dσSIDIS

dQ2dxBjdzh
¼

X

ijkl

1

ð2πiÞ2

Z
dNx−NBj

×

Z
dMz−Mh

eHSIDIS
ik ðN;M; μÞ

×US
ijðN; μ; μ0Þf̃jðμ0ÞU

T
klðM; μ; μ0Þ

× D̃h
j ðM; μ0Þ: ð14Þ

For the case of the Drell-Yan process, a special treatment is

required since the Mellin moments for the partonic cross

sections are not known. For this we employ the strategy

developed by Stratmann and Vogelsang [14], where by the

Mellin moments are numerically precalculated and used as
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lookup tables during the analysis. The resulting expression

can be written schematically as

dσDY

dQ2dxF
¼

X

ijkl

1

ð2πiÞ2
Z

dN

Z
dM eHDY

ik ðN;M; μÞ

×US
ijðN; μ; μ0Þf̃jðμ0ÞUS

klðM; μ; μ0Þf̃lðμ0Þ;
ð15Þ

where the relevant inverse Mellin factors x−N1 and x−M2
arising from the scaling variables x1 and x2 for the incident
nucleons N1 and N2, respectively, in Eq. (3) are integrated

numerically with the hard scattering cross section and

contained inside H̃
DY
ik ðN;M; μÞ.

The analytic solutions for the evolution matrices are

computed at next-to-leading logarithmic accuracy using

splitting kernels up to Oðα2sÞ and the truncated solution for

the single evolution operators (see Ref. [13] for details). We

employ the zero-mass variable flavor scheme for solving

the DGLAP evolution equations, setting the input scale for

the PDFs and FFs at μ0 ¼ mc. The numerical values for the

mass thresholds are taken from the PDG values in the MS

scheme [15]: mc ¼ 1.28 GeV and mb ¼ 4.18 GeV. The

strong coupling is evolved numerically using the QCD beta

function up to Oðα2sÞ, using the boundary condition

αsðMZÞ ¼ 0.118 at the Z boson mass, MZ ¼ 91.18 GeV.

Finally, all the process specific hard coefficients are

computed at fixed next-to-leading order in pQCD, which

are available in the literature [14,16–18].

C. Parametrization of nonperturbative functions

For the nonperturbative parton distribution and fragmen-

tation functions we use standard parametrizations that have

been utilized in the literature. Namely, for the dependence

on the parton momentum fraction x of the PDF fðxÞ we use
the template function,

fðx;μ0Þ→Tðx;aÞ¼M
xαð1−xÞβð1þγ

ffiffiffi
x

p þδxÞR
1
0
dxxαþ1ð1−xÞβð1þγ

ffiffiffi
x

p þδxÞ ;

ð16Þ

where a ¼ fM; α; β; γ; δg is a vector containing the shape

parameters (α, β, γ, and δ) and a normalization coefficient

(M) to be fitted. The integral in the denominator ensures

that the value of the normalization coefficientM is equal to

the second moment (x-weighted integral) of the function

Tðx; aÞ. For fitting the PDFs, we assume isospin symmetry

to relate the PDFs in the neutron, fi=nðxÞ, to those in the

proton, fi=pðxÞ≡ fiðxÞ, switching the u↔ d and p↔ n

labels for the light quark flavors, and taking the PDFs for

other flavors equal for the proton and neutron.

In practice, we parametrize the valence u and d quark

distributions, uv ≡ fu − fū and dv ≡ fd − fd̄, directly

using the template function [Eq. (16)]. The gluon distribu-

tion, g≡ fg, is also directly parametrized per Eq. (16). For

the sea quark and antiquark distributions, we use five

functions parametrized as in Eq. (16). These are a flavor

symmetric sea function (S) that dominates at very low x and

flavor specific functions [q0ðq̄0Þ] for the s, ū, d̄, and s̄ that
take into account the possible nonperturbative origin of the

sea. The distributions for s, ū, d̄, and s̄ are constructed from

these according to: qðq̄Þ≡ fqðq̄Þ ¼ Sþ q0ðq̄0Þ. Note that s
and s̄ are parametrized separately because their contributions

to the Kþ and K− SIDIS cross sections differ. We do not fit

the charm and bottom PDFs, and their contributions are

generated purely from the DGLAP evolution. In total there

are eight parametrized PDF functions being fitted. For the

valence quark PDFs uv and dv and the nonperturbative sea

components ū0 and d̄0, we use the four shape parameters as

in Eq. (16); for all other distributions we set the γ and δ

parameters to zero. This gives 24 free shape parameters and

8 free normalization parameters. The number of free

parameters is further reduced by valence number sum rules,

which constrain the normalization parametersM for the uv,
dv, and s − s̄ distributions, whose lowest moments are

required to be 2, 1, and zero, respectively. The normalization

for the gluon PDF is determined using the momentum sum

rule. With these constraints, there is a total of 28 free

parameters for the PDFs.

For the z dependence of FFs, the functional form follows

a similar template,

Dðz;μ0Þ→ Tðz;aÞ ¼M
zαð1− zÞβð1þ γ

ffiffiffi
z

p þ δzÞR
1
0
dzzαþ1ð1− zÞβð1þ γ

ffiffiffi
z

p þ δzÞ ;

ð17Þ

where again the integral in the denominator ensures that

the coefficient M corresponds to the second moment

(z-weighted integral) of the function. In addition to the

fragmentation to pions and kaons studied in earlier JAM

analyses of SIA and SIDIS data [2,19], here we consider

also the inclusive production of unidentified charged

hadrons, h�. Accounting for unidentified hadrons can be

implemented in two ways. First, the hadron FFs can be fit

independently from those for pions and kaons, as preferred

by the NNPDF Collaboration [20]. Alternatively, one can

take advantage of existing knowledge of specified hadron

FFs and add a fitted residual correction to their sum. Such

an approach was adopted by de Florian et al. (DSS) [21],

for example, in which a residual correction was fitted to the

sum of previously obtained pion, kaon, and proton frag-

mentation functions.

In our analysis we follow the latter approach, but include

only the pion and kaon FFs, so that the residual term Dresþ
i

parametrizes the difference between the total hadron FF

Dhþ
i and the Dπþ

i and DKþ
i functions,
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Dhþ

i ¼ Dπþ

i þDKþ

i þDresþ

i : ð18Þ

To reduce the total number of residual FFs being fit, we

assume SU(3) flavor symmetry for light quarks and

antiquarks,

Dresþ

q ¼ Dresþ

u ¼ Dresþ

d ¼ Dresþ

s ; ð19aÞ

Dresþ

q̄ ¼ Dresþ

ū ¼ Dresþ

d̄
¼ Dresþ

s̄ ; ð19bÞ

where Dresþ

q and Dresþ

q̄ are parametrized per the template

[Eq. (17)]. To allow for differentiation between the residual

FFs for light quarks and antiquarks, we leave M and β

for Dresþ

q̄ as free parameters but fix α, γ, and δ to be the

same as for Dresþ

q . This achieves a similar constraint

on the parameters as the condition used by DSS [21],

2Dresþ

q̄ ¼ ð1 − zÞβ
0
Dresþ

qþq̄.

For the pion FFs, Dπþ

i , we reduce the number of fitted

functions by grouping the light quarks into “favored”

(valence) and “unfavored” (nonvalence) flavors,

Dπþ

fav ¼ Dπþ

u ¼ Dπþ

d̄
; ð20aÞ

Dπþ

unf ¼ Dπþ

d ¼ Dπþ

s ¼ Dπþ

ū ¼ Dπþ

s̄ ; ð20bÞ

where Dπþ

fav and Dπþ

unf are parametrized as in Eq. (17). For

the parameters of the kaon FFs, DKþ

i , we equate the

“unfavored” flavors,

DKþ

unf ¼ Dπþ

d ¼ Dπþ

s ¼ Dπþ

ū ¼ Dπþ

d̄
; ð21Þ

but leave the favored FFs DKþ

u and DKþ

s̄ independent. Here

DKþ

unf , D
Kþ

u , and DKþ

s̄ are parametrized per Eq. (17). For the

heavier flavors, we assume the charm and bottom quark and

antiquark FFs to be equivalent,Dhþ
c ¼ Dhþ

c̄ andDhþ

b ¼ Dhþ

b̄

for h ¼ π; K; res, with Dhþ
c and Dhþ

b parametrized per

Eq. (17). Finally, the gluon FFs Dhþ
g for h ¼ π; K; res

are also parametrized according to Eq. (17). We use charge

conjugation symmetry to relate FFs for opposite charges by

Dhþ
q ¼ Dh−

q̄ ; ð22Þ

where h ¼ π; K; res. This results in five fitted functions for

pions and residual hadrons, and six for kaons.

At this point, there are 17 shape parameters and 5

normalization parameters for residual hadrons, 20 shape

parameters, and 5 normalization parameters for pions, and

24 shape parameters and 6 normalization parameters for

kaons. The number of shape parameters is reduced further

because throughout the fitting procedure, the parameters γ

and δ for the gluon, charm, and bottom FFs are fixed at

zero. In the end there are 16 free parameters to be fitted for

residual charged hadron FFs, 19 free FF pion parameters,

and 24 free parameters for the kaon FFs. Together with the

28 PDF parameters, we have a total of 87 free parameters

for the fitted functions. In addition, there are also 42 free

parameters associated with normalization of various data

sets, making for a total of 129 free parameters to be fitted in

the analysis.

D. Bayesian inference

Our methodology for extracting nonperturbative PDFs

and FFs is based on the general premise of Bayesian

inference. Namely, we use Bayes’ theorem to define a

multivariate probability distribution P for the shape param-

eters characterizing the PDFs and FFs (the posterior) at a

given input scale μ0,

PðajdataÞ ∼ Lða; dataÞπðaÞ; ð23Þ

where L is a standard Gaussian likelihood function,

Lða; dataÞ ¼ exp

�

−

1

2
χ2ða; dataÞ

�

; ð24Þ

with the χ2 function defined by

χ2ðaÞ ¼
X

i;e

�

di;e −
P

kr
k
eβ

k
i;e − Ti;eðaÞ=Ne

αi;e

�

2

þ
X

k

ðrkeÞ
2 þ

�

1 − Ne

δNe

�

2

: ð25Þ

Here, di;e is the value of the ith data point for the

experimental dataset e, with Ti;e the theoretical prediction

for the data point; αi;e is the uncorrelated systematic and

statistical uncertainty for each data point added in quad-

rature; βki;e is the kth source of point-to-point correlated

systematic uncertainties for the ith bin of dataset e, with rke
the related weight; and Ne and δNe are the normalization

and normalization uncertainty for each data set, respec-

tively. In Eq. (23), πðaÞ is the prior distribution for the set

of parameters a, which is used as input for a given fit to

the data.

In principle, given the Bayesian posterior distribution,

one can estimate confidence regions for a generic observ-

able O (such as a PDF or a function of PDFs or FFs) by

integrating over an d-dimensional parameter space,

E½O� ¼

Z

ddaPðajdataÞOðaÞ; ð26aÞ

V½O� ¼

Z

ddaPðajdataÞðOðaÞ − E½O�Þ2; ð26bÞ

where E and Vare the expectation value and variance of the

observableO, respectively. Due to the significant numerical

expense of evaluating the likelihood function, the explicit
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usage of Eqs. (26) is often not practical. Instead, a more

efficient option is to build Monte Carlo parameter samples

fak; k ¼ 1;…; ng, which contain all parameters, including

the Ne from Eq. (25), that are faithfully distributed

according to the posterior distribution. These can in turn

be used to evaluate the integrals in Eqs. (26) as Monte Carlo

sums,

E½O� ¼
1

n

Xn

k¼1

OðakÞ; ð27aÞ

V½O� ¼
1

n

Xn

k¼1

ðOðakÞ − E½O�Þ2: ð27bÞ

Our Monte Carlo sampling strategy is based on data

resampling methodology, whereby multiple maximum

likelihood optimizations are carried out. Each optimization

consists of taking a random point in parameter space and

fitting the parameters to data that have been distorted away

from the central values by Gaussian shifts within the quoted

uncertainties. To build the Monte Carlo samples, we use the

multistep strategy developed in Ref. [2], where the PDF and

FF parameters are preoptimized to minimize evaluating the

likelihood in parameter regions that are strongly disfavored.

To that end we start by first considering PDF and FF

parameters separately using flat priors, with the resulting

samples from each type of hadron structure combined at a

later stage to build new prior samples for the final runs. The

workflow is illustrated in Fig. 1, where each step is

represented as vertical arrows that accumulate additional

experimental data from the previous step, with the posterior

samples at each step becoming the priors for the subsequent

step. This strategy allows the samples to become more

optimized and avoids unnecessary likelihood evaluations in

regions of parameters space by disfavoring those regions in

earlier stages of the multistep chain.

III. DATA SETS

The data sets used in the present analysis include the

primary electromagnetic processes that traditionally have

been used in global QCD analyses, namely, inclusive DIS,

Drell-Yan lepton-pair production (which constrain PDFs),

SIA (which constrains FFs), and SIDIS (which constrains

both PDFs and FFs). The inclusive DIS data are measure-

ments of the F2ðxBj; Q
2Þ structure function performed by

the BCDMS [22,23] and New Muon Collaborations

[24,25] at CERN, and from experiments at SLAC [26],

as well as from reduced electron and positron cross

sections from the H1 and ZEUS Collaborations [27] at

DESY. These include both proton [22,24,26] and deuteron

[23,25,26] targets, and with both neutral and charged

current probes [27]. For the kinematics we implement

cuts of W2 > 10 GeV2 and Q2 > m2
c, where W2 ¼ M2þ

Q2ð1 − xBjÞ=xBj, in order to select DIS data that can be

fitted within leading power factorization.

For Drell-Yan lepton-pair production data we use differ-

ential cross section measurements d2σDY=dQdxF by the

E866/NuSea Collaboration [28–30] at Fermilab, which

include proton scattering from proton and deuteron targets.

We include data in the range Q2 > 36 GeV2. Excluding

lower Q2 data is recommended by Ref. [31], which

demonstrated that inclusion of the lower Q2 data results

in deteriorated prediction quality with no reduction in

uncertainty when compared with fits to DIS data alone.

All SIA measurements are of the normalized differential

cross sections ðdσSIA=dzhÞ=σtot for the reaction

FDP

snoip FF

snoak FF

snordah FF

SID YD+

FDP FDP

snoip FF

snoak FF

snordah FF
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pions
+ SIDIS
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FIG. 1. Schematic illustration of the multistep workflow employed in our simultaneous Monte Carlo analysis. Each box represents a

collection of Monte Carlo samples associated with a specific nonperturbative hadronic structure (PDFs, FFs). The vertical arrows

indicate the inclusion of additional datasets from which new optimized Monte Carlo samples (posteriors) are generated as input (priors)

for the next step.
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eþe− → ðπ�; K�; h�ÞX. The data are from experiments

performed by the TASSO [32–34] and ARGUS [35]

Collaborations at DESY, by the TPC [36–39], HRS [40],

SLD [41] and BABAR [42] Collaborations at SLAC,

by the OPAL [43,44], ALEPH [45] and DELPHI [46]

Collaborations at CERN, and by the TOPAZ [47] and

Belle [48,49] Collaborations at KEK. As shown in Fig. 2,

the SIA data cover the large-Q2 region where a leading

power description in terms of FFs should be accurate.

Approximately half of the SIA data points have Q ≈MZ,

while the Belle and BABAR B factories have lower

Q ≈ 10.5 GeV. To ensure applicability of the leading

power formalism, the SIA data in our fits are restricted

to the range 0.2 < zh < 0.9.

Identification of heavy quark flavors for some of the SIA

datasets is achieved through measurement of the total

energy and momentum in secondary vertices. The flavor

tagged cross sections for a specific flavor q ¼ c or b are

particularly sensitive to the Dh
q, D

h
q̄ and Dh

g fragmentation

functions into the observed hadron h. In general, however,

care needs to be taken with the precise method for

separating primary quark flavors, and there are ongoing

discussions regarding the optimal approach to this. For

more in-depth discussion see, for example, Ref. [19].

Finally, the critical addition in this work compared with

the previous JAM19 analysis [2] is the inclusion of

unidentified charged hadron data, along with charged pions

and kaons, in the SIDIS off deuterium targets from the

COMPASS Collaboration [50,51] at CERN. Since the

SIDIS data dσh
�

SIDIS=dQ
2dxBjdzh are differential in xBj

and zh, they combine information on both PDFs and

FFs, which appear in the description of SIA, Drell-Yan,

and DIS data. Furthermore, as illustrated in Fig. 2, the

SIDIS data have significant overlap in xBj and zh with

the xBj and xF range of inclusive DIS and Drell-Yan data,

respectively, and the zh range of SIA data, so that the

combined analysis constitutes a genuine test of their

universality. For the COMPASS SIDIS data we use the

same kinematic cuts onW2 andQ2 as for inclusive DIS and

restrict the fragmentation variable to 0.2 < zh < 0.8 in

order to exclude data from the target fragmentation region

and avoid large-z threshold corrections.

IV. ASSESSING UNIVERSALITY

Before proceeding to the results of our numerical

analysis, we briefly discuss the criteria for universality

of the PDFs and FFs and how these are implemented in our

analysis. Extracting parton correlation functions, and using

the extractions to test models of parton structure, is a

nontrivial inverse problem, the detailed examination of

which is beyond the scope of the present paper. However, a

claim that the success of a fit is a measure of the predictive

power of the PDFs and FFs requires a number of basic

minimal conditions to be met:

1. The system of unknown correlation functions must

be overconstrained, by which we mean that the

constraints on unknown correlations imposed by

data (or other theoretical constraints such as sum

rules) must be greater than the total number of

functions involved.

2. Each unknown correlation function must appear at

least twice within the set of factorization formulas

relating the correlation functions to physical ob-

servables.

3. There must be reasonable kinematical overlap be-

tween the observables so that correlation functions

can be compared within similar ranges of parton

momentum fractions.

Using isospin invariance to relate the PDFs in the proton

to those in the neutron, we have seven independent PDFs:

fu, fd, fs, fū, fd̄, fs̄ and fg, with PDFs for heavy flavors

generated perturbatively. For the FFs, there are five

functions for π
þ production: Dπ

þ

u , Dπ
þ

ū , Dπ
þ

c , Dπ
þ

b and

Dπ
þ

g , assuming that for equal u and d quark masses we can

equate Dπ
þ

d̄
¼ Dπ

þ

u . Charge symmetry allows all the FFs

for π− production to be related to those for πþ production.

For Kþ production, there are six independent FFs: DKþ

u ,

FIG. 2. Kinematic coverage of data used in this analysis, withQ2 versus the Bjorken scaling variable xBj for inclusive DIS [22–27] and

SIDIS data [50,51] (left panel), fragmentation variable z for SIDIS and SIA data [32–43,45–49] (central panel), and momentum fractions

x1; x2; xF for Drell-Yan data [28–30] (right panel).
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DKþ

s̄ , DKþ

ū , DKþ

c , DKþ

b and DKþ

g , where we differentiate

between the u and s̄ functions. Again, using charge

symmetry the FFs for K− can be obtained from these

six Kþ FFs. Finally, for the unidentified charged hadrons

h� or residual FFs, we identify five independent functions:

Dresþ

u , Dresþ

ū , Dresþ

c , Dresþ

b and Dresþ

g . This makes then a total

of 23 functions to be determined.

The quark and gluon PDFs are constrained by their

appearance in several sum rules; in particular, the number

sum rules,

Z

1

0

dxðfqðxÞ − fq̄ðxÞÞ ¼ nq; ð28Þ

where nu ¼ 2, nd ¼ 1 and ns ¼ 0, and the momentum

sum rule,

X

i¼q;q̄;g

Z

1

0

dxxfiðxÞ ¼ 1: ð29Þ

Note that in Sec. II C these constraints were specifically

used to fix the values of the normalization parameters

for several fitted functions. However, for the purpose of

assessing universality, they are simply counted as addi-

tional independent equations which include and thus

constrain the PDFs.

The data sets discussed in Sec. III also constrain the light

quark and gluon PDFs since they appear in expressions for

multiple independent observables. Counting these and also

the four sum rules (28) and (29),

fiðxÞ →
i≠c;b

8

>

>

>

<

>

>

>

:

6 DIS

2 Drell-Yan

6 SIDIS

4 sum rules

; ð30Þ

there is a total of 18 relations between the light quark PDFs.

The heavy quarks appear in an even greater number of

observables. The light quark fragmentation functions

appear in at least one SIA observable and, because of

charge conjugation invariance, in two SIDIS observables,

Dπþ

i ðzÞ →
i≠c;b;g

�

1 SIA

2 SIDIS
; ð31Þ

and similarly for the kaon and charged hadron fragmenta-

tion functions.

For a robust stress-test of universality, there should be

reasonable overlap of the ranges in parton momentum

fraction for both the PDFs and the FFs. An indication for

how well this is achieved in the current fit can be be gleaned

from the kinematical coverage plots shown in Fig. 2. To

lowest order in αs, the kinematical variables xBj, x1, x2 and

zh approximate the parton momentum fractions x and z,

respectively, while QCD evolution relates all values of Q2.

Figure 2 confirms that PDFs and FFs are both constrained

by multiple processes in overlapping regions of momentum

fractions.

In summary, our analysis does indeed fulfill the basic

criterion for qualifying as a test of universality and

retaining predictive power for the PDFs and FFs more

generally. Note, however, that the momentum sum rule for

FFs has not been imposed in the analysis. Instead, this will

be used as a consistency check for the final fit in Sec. V.

V. NUMERICAL ANALYSIS

In this section we present the results of our simultaneous

Monte Carlo analysis of PDFs and FFs. We begin with a

survey of the fitted cross sections for the various global

datasets used in this study, focusing especially on the

quality of agreement with the SIDIS and SIA data on π�

and K�, as well as unidentified h� production. We then

present our final fitted PDFs and FFs, and discuss the vital

role played by the SIDIS and SIA datasets in particular in

constraining the strange quark distribution in the proton.

A. Data and theory agreement

To assess the agreement of the fitted results with the

various datasets, in Fig. 3 we show the reduced χ2 for each

individual experiment, which is defined by

χ2red ¼
1

N

X

i;e

1

α2i;e

�

di;e − E

�

X

k

rkeβ
k
i;e þ Ti;e=Ne

��

2

:

ð32Þ

Here, the expectation value E½…�, as defined in Eq. (27a),

represents the mean theory, including optimized multipli-

cative and additive corrections to match the data, with N
the total number of data points. In Fig. 3 we show the mean

and standard deviation of the Monte Carlo residuals for

each experiment e, where the residual per data point is

defined as

residualðe; iÞ ¼
1

αi;e

�

di;e − E

�

X

k

rkeβ
k
i;e þ Ti;e=Ne

��

:

ð33Þ

For the inclusive DIS, Drell-Yan and SIDIS datasets we

find excellent overall agreement between data and theory,

with χ2red values close to 1. The χ
2

red for the SIA datasets are

slightly higher, but nonetheless the overall fit is very good,

giving a total reduced χ2red ¼ 1.26 for almost 5000 data

points. The values of χ2red for each type of dataset and for

each specific hadron in the final state are summarized in

Table I, along with the number of data points for each

dataset.

MOFFAT, MELNITCHOUK, ROGERS, and SATO PHYS. REV. D 104, 016015 (2021)

016015-8



FIG. 3. Reduced χ
2

red values for each DIS (red), DY (green), SIDIS (orange) and SIA (blue) experiment considered in this analysis (left

column), along with the corresponding mean and standard deviation of the residuals for each experiment, E (right column).
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The residuals profile for the DIS, Drell-Yan and SIDIS

datasets is well centered around zero, with variances ∼1,

indicating an average Gaussian behavior of their associated

likelihood function. The variance for the SIDIS h− data

from COMPASS, however, is found to be up to ≈50%

below unity, suggesting a deviation from a Gaussian

likelihood. This may be due to the fact that these data

are dominated by systematic uncertainties, which is also

reflected by the relatively small reduced χ
2

red values,

especially for the COMPASS h− data relative to the rest

of DIS and SIDIS datasets.

A more detailed comparison with the COMPASS SIDIS

is made in Figs. 4–6, where we show the zh dependence of

the π
�, K� and h� multiplicities, respectively, which are

defined as ratios of SIDIS to inclusive DIS cross sections at

the same xBj and Q2,

dMh

dzh
¼

dσhSIDIS=dQ
2dxBjdzh

dσDIS=dQ
2dxBj

: ð34Þ

The agreement between theory and the experimental zh
spectrum is quite remarkable, given that it spans some 2

orders of magnitude, which suggests that at these kinematics

a leading power perturbative QCD factorization at next-to-

leading order provides sufficient accuracy to describe the

data. Interestingly, the differences between the multiplicities

for positively and negatively chargedhadron species increase

with xBj, especially for kaons, and in the valence region these

can differ by an order of magnitude for low values of Q2.

Such differences can enhance our ability to extract flavor

dependent effects in nonperturbative PDFs and parton to

kaon FFs from the data. The new dataset included for the first

time in the present JAM analysis, namely the unidentified

charged hadron data shown in Fig. 6, are also well described

by our nonperturbative ansatz for the corresponding FFs. In

contrast to the excellent agreementwith the zh dependence of
the data in Figs. 4–6, we note that analysis of the same data

differential in the hadron transverse momentum using

existing PDFs and FFs within TMD factorization results

in poor agreement between predictions and data [4,5],

indicating that further work is needed to understand the

SIDIS transverse momentum spectra.

For the SIA data sets, there is a somewhat wider

spread in the data versus theory comparisons, as seen in

Figs. 7–9 for the π�, K� and unidentified charged hadron

h� final states, respectively. Generally, the π� data have the

best agreement among the SIA datasets, with a reduced

χ
2

red ¼ 1.09, followed by the hadron data with χ
2

red ¼ 1.15,

and lastly the kaon data, which have an overall reduced

FIG. 4. Comparison of the multiplicities dMh=dzh for h ¼ π
þ (dashed lines) and π− (dotted lines) production with the COMPASS data

[50,51] in various bins of xBj and y (offset by a factor 2i).

TABLE I. Reduced χ
2

red values for each type of dataset (DIS,

Drell-Yan, SIDIS, SIA) considered in this analysis, together with

the number of data points Ndat for each dataset.

Reaction χ
2

red Ndat

DIS 1.29 2680

DY 1.52 250

SIDIS π
� 1.39 498

K� 1.38 494

h� 0.85 498

SIA π
� 1.09 231

K� 1.37 213

h� 1.15 120

Total 1.26 4984
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χ
2

red ¼ 1.37. For about 3=4 of the ≈40 SIA datasets, we find

very good agreement with the global fit, with χ
2

red ≈ 1 or

below. For the remaining datasets that have larger χ
2

red

values, to better understand the reasons for some of the

tensions between data and theorywe discuss in the following

some individual cases ranked by the reduced χ
2

red values.

Starting with the datasets that have the largest χ2red values,

namely, χ2red ≳ 3, we identify the OPAL (π� and c→ K�),

TPC (K�), SLD (π� and c → K�), DELPHI (K�), and

TASSO (π� and h� at 35 GeV) datasets. For the inclusive

OPAL (π�) data, we observe in Fig. 7 that for zh < 0.5 the

data are indeed in tension with the corresponding inclusive

ALEPH and SLD results, and the overall trend of the data/

theory ratio suggests a possible normalization issue with

this dataset. This can also be said for the DELPHI (K�)

which appears to have some tension with the corresponding

inclusive OPAL and ALEPH results. Similarly, from Fig. 8

we find that the TPC (K�) spectrum lies below the theory,

suggesting again a normalization problem with these data.

The situation for the TASSO (π�) data is less clear, as only

the Q ¼ 14 GeV dataset seems to give a bad fit, while data

FIG. 5. As in Fig. 4, but for K� COMPASS SIDIS data [50,51].

FIG. 6. As in Fig. 4, but for unidentified hadron h� COMPASS SIDIS data [50,51].
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at other energies can be described fairly well. This again

hints at a problem with the overall normalization for this

dataset. The same behavior appears also in the TASSO (h�)

data in Fig. 9, where both the Q ¼ 35 and 45 GeV datasets

are above the theoretical cross sections. The case of

SLD and OPAL (c → K�) data in Fig. 8 shows a clear

overestimation of the zh spectra. While one can argue that

this problem could be a reflection of the need for a more

FIG. 7. Data to theory ratios for SIA π
� production cross sections versus zh, with the bands indicating the uncertainty on the

fitted result.

FIG. 8. As in Fig. 7, but for SIA K� production.
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sophisticated heavy quark treatment in our theory, the

description of b-tagged data from SLD, DELPHI and

OPAL is relatively good, so that an explanation in terms

of a normalization uncertainty in the SLD and OPAL

(c → K�) data may be more relevant.

For SIA datasets that have smaller, but still large, χ2red
values, 2≲ χ

2

red ≲ 3, we identify the b-tagged TPC

(b → π
�), OPAL (b→π

�), and TASSO (h� at 44 GeV).

For the case of the TPC (b→ π
�) data, we see from Fig. 7

that for the largest zh bin the theory overestimates the data.

On the other hand, good agreement is found for the SLD

(b → π
�) data at the same kinematics. It is possible that at

the smallerQ values of TPC relative to SLD, the range in zh
where leading power factorization is applicable is narrower,

in particular for the b-tagged data. The zh dependence of

the OPAL (b→ π
�) data appear to be clearly different from

the theory, even within the large uncertainties. We note here

that the OPAL data are presented as truncated moments as a

function of the lower limit of the integration, zmin
h , and the

inclusion of the very high zh bins may be problematic for

the validity of factorization theorems at zh → 1. Lastly,

as with TASSO (h� at 35 GeV), the somewhat large χ
2

red

values for the 44 GeV data is likely attributable to a

problem with overall normalization.

For datasets that have χ
2

red ≲ 2, we consider the agree-

ment to be generally acceptable. Indeed, the vast majority

of datasets in this category have χ
2

red ≈ 1 or below. These

include all of the recent high-statistics B-factory data from

BABAR (π�, K�) and Belle (π�, K�), most of the TASSO

(π�, K�), TPC (π�, c → π
�) and SLD (h�, b → π

�,

b→ h�) datasets, all of the ALEPH (π�, K�, h�) and

most of the DELPHI (π�, K�, b→ K�, h�, b→ h�) data,

along with the older ARGUS (K�), TOPAZ (π�, K�) and

OPAL (K�, h�, c → h�, b → h�) data. Slightly higher, but

still reasonable, χ2red values are obtained for the ARGUS

(π�), TPC (h�), DELPHI (b→ π
�), and SLD (K�,

c → π
�, c → h�) datasets.

Finally, we note that most of the large χ2red values found

in this analysis were absent in the previous JAM

Monte Carlo analysis of fragmentation functions [19].

The main reason is the restriction of the SIA datasets

here to the range 0.2 < zh < 0.8, chosen to coincide with

the range over which the SIDIS data in this work are able

to be described within collinear factorization. For the

LEP data in particular there are many data points at

zh < 0.2 which can be well fitted within the current

framework, and which would reduce the overall χ2red. A

careful point by point comparison of the individual χ2red
values for the various datasets indeed confirms that

similar discrepancies also occurred in Ref. [19].

However, for consistency in our joint analysis of PDFs

and FFs, we restrict the kinematic range to the region

where both SIA and SIDIS can be simultaneously

described. The same choice for the zh range was made

in the recent JAM19 analysis, which required SIDIS data

to be restricted to zh ≳ 0.2 to ensure separation of the

target and current fragmentation regions.

B. Parton distributions and fragmentation functions

The proton PDFs from our simultaneous fit are displayed

in Fig. 10 at a scale μ2 ¼ 10 GeV2, where we focus on the

kinematic region of parton momentum fractions x≳ 0.01

that is constrained by the SIDIS data. For comparison,

we contrast our results with other next-to-leading order

PDF parametrizations, namely, from the CJ15 [52] and

NNPDF3.1 [53] global analyses. Compared with the other

fits, our valence u and d quark distributions have slightly

larger magnitude in the intermediate-x region, x ∼ 0.1,

FIG. 9. As in Fig. 7, but for SIA unidentified charged hadron h� production.
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with a compensating stronger suppression at small x
needed to ensure that the valence number sum rules are

respected. The ratio d=u is quite compatible with the

results from the other groups, on the other hand, but has a

significantly larger uncertainty at large x compared with

the CJ15 result, reflecting the Monte Carlo nature of our

analysis.

The intermediate-x enhancement in the valence PDFs in

our fit is correlated with the slightly smaller d̄þ ū light

antiquark sea compared with the CJ15 and NNPDF3.1

parametrizations. This in turn is correlated with the

behavior of the strange quark sea, as seen in the ratio,

Rs ¼
sþ s̄

d̄þ ū
ð35Þ

of the strange to nonstrange sea quark PDFs. In Fig. 10 this

ratio is generally larger in our analysis than for the other

parametrizations, with a somewhat bigger uncertainty.

This is understood from the fact that in the CJ15 fit Rs

is fixed to be 0.4 at the input scale, with deviations from the

constant value arising only from DGLAP evolution. For the

NNPDF3.1 fit the uncertainties are smaller because of their

inclusion of the neutrino DIS data, which we do not include

in our analysis because of unknown nuclear corrections in

neutrino scattering [54–56]. Our light antiquark asymmetry

d̄ − ū is also compatible with the other groups, but again

with a larger uncertainty, which may be related to the

absence of collider W and lepton asymmetry data in our

fit. Finally, for the gluon distribution, the magnitude and

uncertainties are very similar across all the analyses, even

though our fit does not include jet production data from

hadron colliders. This reflects the fact that the HERA DIS

data, which are included here, provide strong constraints on

the shape of the gluon PDF via scaling violations.

For the parton to hadron FFs, we show in Fig. 11 the z

dependence of the FFs at a scale μ2 ¼ 100 GeV2 for the

positively charged πþ, Kþ and unidentified hadrons hþ,

as well as for the residual hadrons δhþ, defined as the

difference between hþ and the sum of πþ and Kþ (so that

the total is given by hþ ¼ πþ þ Kþ þ δhþ). For most of

the flavors we find that the quark→ πþ fragmentation

dominates, as expected from the pion being the lightest

hadron in the QCD spectrum. Exceptions to this are for

s̄ → Kþ and c → Kþ at intermediate z values and for b

quark fragmentation into residual hadrons δhþ.
For gluon fragmentation, pion production dominates for z

up to ∼0.5–0.6, above which kaon fragmentation becomes

as sizeable as the pion. This is consistent with the findings of

previous FF analyses [19,57], which observed that the

production of heavier particles such as kaons requires larger

momentum fractions from the fragmenting gluon compared

to the production of lighter particles.

The production of hadrons heavier than kaons, as indi-

cated in Fig. 11 by the residual hadrons δhþ, can be sizable

and comparable to that of kaons, especially for the d and s

quarks and at large values of z. The relatively large d→ δhþ

FF can be understood in terms of the fragmentation into

protons. Note that we have imposed flavor symmetry for

the residual hadron fragmentation, so that Dδhþ

d ¼ Dδhþ
s .

In principle, the presence of hyperons such as Σþ should

brake this relation, but we leave analysis of such effects for

future work. As the case for the g → Kþ, the fragmentation

of gluons into heavier particles peaks at large z, where larger
momentum fractions from the fragmenting gluons are

needed for the production of heavier particles.

For production of hadrons initiated by heavy quarks, we

find similar fragmentation of charm quarks into pions and

kaons, but a rather different pattern for the fragmentation of

bottom quarks. Some of this difference can be explained by

the flavor-changing properties of u-type quarks decaying

into d-type quarks. While the charm quark can decay into

strange quarks and hence enhance Kþ production, the same

does not occur for bottom quarks, which suppresses kaon

FIG. 10. Proton PDFs from the present JAM20-SIDIS analysis (red bands) versus x at a scale μ ¼ 10 GeV2, compared with the

CJ15 [52] (blue bands) and NNPDF3.1 [53] (green bands) parametrizations. The bands shown represent the mean �1σ.
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production relative to pion production due to the mass

difference. Interestingly, the production of other species of

charged hadrons is much larger for b quarks than for c
quarks, which may be understood from the greater phase

space available for b quarks to decay into heavier hadrons

to which charm quarks cannot transition.

In Fig. 12 we present truncated moments,

hzihi ¼

Z
1

zmin

dzzDh
i ðzÞ; ð36Þ

for each flavor i and final state hadron h, where we take

the lower limits on the z integration zmin ¼ 0.2 to restrict

the moment to the region of SIDIS kinematics. The

truncated moment indicate how energetic is the produc-

tion different a hadron species h relative to the parent

parton i. In general, we find that the production of hadron

species heavier than pions and kaons is typically produced

with lower energies, which is consistent with the physical

picture whereby more energy is required to produce

heavier hadrons than lighter hadrons.

As expected, the favored fragmentation of d̄ quarks is

predominantly into highly energetic pions, while for the

antistrange s̄ the production rate of energetic kaons is

slightly higher than that of pions. The unfavored fragmen-

tation of d, s and ū quarks follows a similar pattern, with

the lightest (pion) state produced at the highest energies

followed by kaons and other heavier charged hadrons.

An exception to this behavior is for charm and bottom

quark fragmentation: for c quarks kaons are produced with

energies comparable to those of pions, while for b quarks

kaon production is suppressed with heavier mass hadrons

produced at similar energies as pions.

Interestingly, the production of hadrons from gluons

follows the same pattern as for u-quark fragmentation.

While the latter can be explained in terms of mass

differences between the produced hadron species, the fact

that u quarks and gluons give a similar average energy

profile across hadron species is intriguing. On perturbative

grounds one can argue that gluon fragmentation is

enhanced because of the CA ¼ 3 factor in the gluon

splitting function, Pgg, relative to quark splitting functions,

Pqq and Pgq, which are proportional to CF ¼ 4=3. The

absence of direct constraints on the gluon FF beyond

scaling violations, however, anything drawing more than

speculative conclusions at present.

We conclude the discussion of our numerical results by

focusing on the correlation between the strange to non-

strange PDF ratio Rs and the strange to kaon fragmentation

function DKþ

s̄ . In Fig. 13 we show Rs and the s̄ → Kþ FF,

with individual Monte Carlo samples color coded by the

scaled χ2red intensity (with darker replicas indicating higher

likelihoods) computed for the specific cases of SIA (K�)

and SIDIS (Kþ,K−) datasets. The SIA datasets have a clear

FIG. 11. Parton to hadron FFs versus z at μ2 ¼ 100 GeV2 from the JAM20-SIDIS analysis for various parton flavors fragmenting

to πþ (red bands), Kþ (blue bands), unidentified hadrons hþ (green bands), and residual hadrons δhþ (yellow bands), defined as the

difference between hþ and the sum of πþ and Kþ. The bands shown are mean �1σ.
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preference for a smaller Rs and enhanced DKþ

s̄ , as was

found in the previous JAM19 analysis [2]. Interestingly, the

SIDIS (Kþ, K−) data, which have smaller χ2red, have a slight

tendency to favor solutions with a larger Rs and smaller

DKþ

s̄ , however, this preference is much weaker than the

preference of the SIA data for smaller Rs values.

FIG. 13. Monte Carlo samples for the Rs ratio (left) and zD
Kþ

s̄ FF (right) at μ2 ¼ 10 GeV2, color coded according to the scaled χ2red for

the SIA (K�) (top row) and SIDIS (Kþ, K−) (bottom row) datasets.

FIG. 12. Normalized yield of truncated moments hzihi of the i → h FFs zDh
i , for the favored πþ (red) and favored Kþ (blue),

unfavored πþ (light red) and unfavored Kþ (light blue), the total hadron hþ (green) and residual hadron δhþ (yellow) FFs, at a scale

of μ2 ¼ 100 GeV2.
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We also note that in the current analysis we have

extended the flexibility of the PDF and FF parametriza-

tions, which allowed us to obtain a more uniform

Monte Carlo distribution of Rs compared JAM19, where

a more restricted parametrization gave rise to multiple

solutions. Our new analysis confirms that the most prob-

able solutions found in JAM19 did not result from para-

metrization bias, and corroborates the need for a suppressed

strange quark PDF in the proton in order to simultaneously

describe both the SIA and SIDIS datasets within leading

power QCD factorization.

VI. CONCLUSION

In this paper we have presented the results of a

simultaneous Monte Carlo analysis of PDFs and FFs

constrained by a diverse array of data from inclusive and

semi-inclusive DIS, Drell-Yan lepton-pair production, and

SIA in eþe− collisions. The analysis extends the previous

JAM19 [2] simultaneous fit by including in addition

unidentified charged hadrons in the final states of SIDIS

and SIA, and increasing the flexibility of the PDF and FF

parametrizations.

The analysis—referred to as “JAM20-SIDIS”—represents

the most comprehensive determination of parton to hadron

(π�, K�, h�) FFs fitted concurrently with spin-averaged

parton distributions, broadening the test of universality of

parton correlation functions to more observables. The more

thorough exploration of the parameter space and reduced χ2red
values for each of the ≈70 datasets fitted in this study

confirmed the previous finding [2] that the combination of

SIA and SIDIS datasets have a strong preference for a

smaller strange to nonstrange PDF ratio, Rs, correlated with

an enhanced DKþ

s̄ FF. As further tests of this scenario, we

plan in future to extend the experimental datasets to include

weak-boson and jet production in hadronic collisions, from

both Tevatron and LHC data, as well as to relax theW2 cuts

for inclusive DIS to incorporate more fixed-target DIS data

at high xBj values [58].

An important application of the current results will be in

benchmark calculations of transverse momentum depen-

dent cross sections and in particular for the small transverse

momentum region where the transition from collinear

factorization to TMD factorization is expected to set in.

One motivation for the present project was to assess the

possible role of limitations in collinear PDF and FF fits in

explaining discrepancies between theory and data in the

range of intermediate and large transverse momentum

across a number of transversely differential processes

[4–7]. For this, a truly simultaneous analysis of parton

distribution and fragmentation functions across the stan-

dard set of electromagnetic processes, integrated over all

transverse momentum, is necessary. The general success of

the collinear fits for transverse momentum integrated cross

sections that we have examined here, and their evident

predictive power, suggests that factors unique to the

transverse momentum differential treatment are responsible

for the tension with data. We plan to address this also in

future work.
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APPENDIX: SEMI-INCLUSIVE DIS

In this Appendix we summarize the basic cross section

and structure function formulas relevant for our analysis

of the semi-inclusive leptoproduction of a hadron h (with

four-momentum ph) in the deep-inelastic scattering of a

lepton l (momentum l) from a nucleon N (momentum p)
via the exchange of a virtual photon (momentum q),

lþ N → l
0 þ hþ X; ðA1Þ

where the final state hadron is integrated over all transverse

momentum. The formal setup follows standard methods

described in Refs. [59–62], for example, and we closely

follow the specific techniques in Ref. [63] utilizing the

double Mellin moment method from Ref. [14].

The spin-averaged cross section is parametrized in terms

of the semi-inclusive structure functions Fh
1
and Fh

L,

dσ

dxBjdydzh
¼

4πα
2

Q2

�

1þ ð1 − yÞ2

y
Fh
1
ðxBj; zh; Q

2Þ

þ
ð1 − yÞ

xBjy
Fh
LðxBj; zh; Q

2Þ

�

; ðA2Þ

which are functions of the Bjorken scaling xBj, the hadron

fragmentation scaling variable zh, and the four-momentum

transfer squared Q2, defined in the standard way as

xBj ¼
Q2

2p · q
; zh ¼

ph · p

q · p
; Q2 ¼ −q2; ðA3Þ

with y ¼ q · p=l · p the inelasticity. Our conventions for the

semi-inclusive structure function definitions are directly

related to the conventions for the inclusive DIS structure

functions, with FT ¼ 2xF1 and FL ¼ F2 − 2xF1 the trans-

verse and longitudinal structure functions, respectively.

(Note that other conventions use instead F1 → 2F1 and

FL → FL=x [64].)
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In the current fragmentation region, the factorization

formulas for the semi-inclusive structure functions,

expanded to order αs in the hard part, are given by

2Fh
1
ðxBj;zh;Q

2Þ

¼
X

q;q̄

e2q

�

fqðxBj;Q
2ÞDh

qðzh;Q
2Þþ

αsðQ
2Þ

2π
½fq⊗C1

qq⊗Dh
q

þfq⊗C1
gq⊗Dh

gþfg⊗C1
qg⊗Dh

q�ðxBj;zh;Q
2Þ

�

; ðA4Þ

1

x
Fh
LðxBj;zh;Q

2Þ

¼
X

q;q̄

e2q
αsðQ

2Þ

2π
½fq⊗CL

qq⊗Dh
qþfq⊗CL

gq⊗Dh
g

þfg⊗CL
qg⊗Dh

q�ðxBj;zh;Q
2Þ; ðA5Þ

where fi and Dh
j label the PDF of flavor i in the

proton and parton j → hadron h FF, respectively. The

functions C1

ij (CL
ij) are the lowest-order hard scattering

coefficient functions for the F1 (FL) structure functions,

and the symbol ⊗ denotes the convolution integral

over longitudinal momentum fractions, ½A ⊗ B�ðxÞ≡
R

1

x ðdz=zÞAðzÞBðx=zÞ. Explicit expressions for C1

ij (CL
ij)

are given, for example, in the appendixes of Ref. [63].

In all of the expressions above, kinematical corrections

from a nonzero target and final state hadron mass are

neglected. To focus attention on the current fragmentation

region, in our analysis we impose the kinematic cuts zh > 0.2

andW2>10GeV2, and for the hard scalewe chooseQ2>m2
c.

Therefore, the kinematical corrections may not be entirely

negligible [65] at the energies of some of the experiments,

although for nowwe set aside a fuller account of their effect to

a future dedicated analysis of mass corrections in SIDIS.
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