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Abstract

An event camera is a silicon retina which outputs not a sequence of video frames like

a standard camera, but a stream of asynchronous spikes, each with pixel location, sign

and precise timing, indicating when individual pixels record a threshold log intensity

change. By encoding only image change, it offers the potential to transmit the informa-

tion in a standard video but at vastly reduced bitrate, and with huge added advantages

of very high dynamic range and temporal resolution. However, event data calls for new

algorithms, and in particular we believe that algorithms which incrementally estimate

global scene models are best placed to take full advantages of its properties. Here, we

show for the first time that an event stream, with no additional sensing, can be used to

track accurate camera rotation while building a persistent and high quality mosaic of

a scene which is super-resolution accurate and has high dynamic range. Our method

involves parallel camera rotation tracking and template reconstruction from estimated

gradients, both operating on an event-by-event basis and based on probabilistic filtering.

1 Introduction

Real-time, real-world vision applications such as in robotics and wearable computing re-

quire rapid reaction to dynamic motion, and the ability to operate in scenes which contain

large intensity differences. Standard video cameras run into problems when trying to supply

this, either of huge bandwidth requirements at high frame-rates or diminishing image quality

with blur, noise or saturation [11]. To overcome these limitations, researchers in neuromor-

phics have built new visual sensors aiming to emulate some of the properties of the human

retina [5]. An event camera has no shutter and does not capture images in the traditional

sense. Instead, each pixel responds independently to discrete changes in log intensity by gen-

erating asynchronous events, each with microsecond-precise timing. The bandwidth of an
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event stream is much lower than for standard video, removing the redundancy in continually

repeated image values; but an event stream should in principle contain all of the information

of standard video and without the usual bounds on frame-rate and dynamic range.

However, the uses demonstrated of event cameras have been limited. We are interested

in scene understanding and SLAM applications where the camera itself moves and there has

been little work on building coherent scene models from event data. The clear difficulty is

that most methods and abstractions normally used in reconstruction and tracking, such as

feature detection and matching or iterative image alignment, are not available.

In this paper we show that the pure event stream from a hand-held event camera under-

going 3D rotations, with no additional sensing, can be used to generate high quality scene

mosaics. We use a SLAM-like method of parallel filters to jointly estimate the camera’s

rotation motion and a gradient map of a scene. This gradient map is then upgraded to a full

image-like mosaic with super-resolution and high dynamic range properties.

When an event camera moves, events are triggered at pixel locations where intensity

edges cross its field of view. However, an event camera does not directly measure image

gradients but only the locations, signs and times of brightness changes. The presence, orien-

tations and strengths of edges must be estimated together with the camera’s rotation trajec-

tory. As each new event is received, current tracking estimates of the camera’s position and

velocity relative to the mosaic mean that the event serves as a measurement of the component

of gradient parallel to the motion direction of that pixel. We refine estimates of gradients, as

well as the motion of the camera, using Bayesian filtering on an event-by-event basis.

Event cameras can be seen as the logical conclusion of devices such as rolling shutter

cameras which have some degree of non-global capture; but are a much more powerful

proposition since their output is purely data-driven and they do a lot of the hard things we

are used to doing in computer vision to determine which pixels are useful for tracking or

reconstruction in hardware, at no computational cost. We hope that our work, as well as

having a strong engineering interest, also shines some more light on why a biological retina

works as it does and suggests that it still has an awful lot to teach us in computer vision.

2 Event cameras

We use the first commercial event camera, the Dynamic Vision Sensor (DVS) [13] shown in

Figure 1(a). It has 128×128 resolution, 120 dB dynamic range and 15 microsecond latency,

and communicates with a host computer using USB 2.0. It outputs a stream of events, each

consisting of a pixel location, a polarity bit for positive or negative change in log intensity

and a timestamp in microseconds as depicted in Figure 1(b). We can visualise its output as

shown in Figure 1(c) by accumulating events within a time interval; in this figure, white and

black pixels represent positive and negative events respectively. We should note that there is

a newer version, the Asynchronous Time-based Image Sensor (ATIS) [17], which has higher

resolution (304×240), higher dynamic range (143 dB) and lower latency; and ATIS provides

an absolute intensity for each event. We can expect much more innovation in neuromorphic

cameras in the near future.

2.1 Related Work

Since the emergence of the event cameras, most vision work using them has focused on

tracking moving targets from a fixed point of view, where almost all events are generated by
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(a) (b) (c)

Figure 1: The first commercial event camera: (a) DVS128; (b) a stream of events (upward

and downward spikes: positive and negative events); (c) image-like visualisation of accumu-

lated events within a time interval (white and black: positive and negative events).

the dynamic object motion. For instance, a robot goalkeeper application blocks balls detected

by a DVS camera [8], and a pencil balancing application maintains a pencil balanced on its

tip by controlling an actuated table underneath using two DVS cameras [7]. This application

requires very fast feedback control, successfully proving the remarkable high measurement

rate and low latency capabilities of the event camera. More recently, Benosman et al. [4]

proposed an optical flow estimation algorithm using an event camera which precisely esti-

mates visual flow orientation and amplitude based on a local differential approach on the

surface defined by events with microsecond accuracy and at very low computational cost.

Work on reconstructing, understanding and tracking of more general, previously un-

known scenes where the event camera itself is moving is at an early stage. The first attempt

to use this type of camera for a SLAM problem was made by Weikersdorfer et al. [19]. They

used a wheeled robot equipped with an upward looking DVS camera to estimate 2D motion

and construct a planar ceiling map. Most recently, Mueggler et al. [15] presented an onboard

6 DoF localisation quadrotor system using a DVS camera which is able to track high-speed

maneuvers, such as flips. Their system starts by integrating events until a known pattern is

detected, and then it tracks the borders of the pattern, by updating both the line segments and

the pose of the flying robot on an event-by-event basis.

As a DVS camera does not provide absolute brightness values, a few attempts to combine

an event camera with an extra full frame camera were made. Weikersdorfer et al. [20] devel-

oped an event-based 3D sensor combining a DVS with an RGB-D camera which generates

a sparse stream of depth-augmented 3D points. In a similar way, Censi and Scaramuzza [6]

presented a low-latency event-based visual odometry algorithm combining a DVS with a nor-

mal CMOS camera which uses events from the DVS to estimate the relative displacement

since the previous frame from the conventional camera. Although these are both certainly

possible practical ways to use an event camera for localisation and mapping, in our view this

type of approach is sub-optimal; returning to the need for a frame-based camera alongside

the event camera reduces many of the advantages of working purely with events.

After the submission of our work, we came across a similar idea to our scene reconstruc-

tion from an event stream [3], but in a much more constrained and hardware-dependent setup.

They developed a special 360◦ high dynamic range camera consists of a pair of dynamic vi-

sion line sensors, a high-speed rotating mechanical device with encoders and a processing

unit, and created a panoramic with greyscale values from event data.
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Figure 2: Event time intervals τ and τc: (a) A simplified 2×2 event-based camera moving

over a scene, with colours to identify the pixels. (b) A stream of events generated by the

camera. Upward and downward spikes represent positive and negative events, and their

colours indicate the pixel each event came from. τ is the time elapsed since the previous

event at any pixel, and τc is the time since the previous event at the same pixel.

3 Method

Our approach relies on two parallel probabilistic filters to jointly track the global rotational

motion of a camera and estimate the gradients of the scene around it; the gradient map is

then upgraded to a full image-like mosaic with super-resolution and high dynamic range

properties. Each of these components essentially believes that the current estimate from the

other is correct, following the approach of most recent successful data-rich SLAM systems

such as PTAM [12] and DTAM [16], or in pure rotation mosaicing [14]. Note that we do

not currently explicitly address bootstrapping in our method. We have found that simple al-

ternation of the tracking and mapping components, starting from a blank template, will very

often lead to rapid convergence of joint tracking and mapping, though there are sometimes

currently gross failures and this is an important issue for future research.

We use the notation e(u,v) = (u,v, p, t)⊤ to denote an event with pixel location u and

v, polarity p and timestamp t. The rotational mosaic or template we aim to reconstruct is

denoted M(pm) and has its own fixed 2D coordinate frame with pixel position vector pm. We

define two important time intervals τ and τc which are used in our algorithm. For clarity,

let us consider a simplified 2×2 event camera moving over a simple scene as shown in

Figure 2(a). We receive a stream of positive and negative spikes from the camera; those

spike events are depicted along the time axis in Figure 2(b) and can be associated with a

specific pixel by its colour. When a new event arrives from a certain pixel, we define τ as the

time elapsed since the most recent previous event from any pixel and; and τc as the time since

the most previous event at the same pixel. Here, τ is significant as the ‘blind time’ since any

previous visual information was received and is used in the motion prediction component of

our tracker; while τc is important since its inverse serves as a local measurement of the rate

of events at a particular location in image space.

3.1 Event-based camera tracking

We have chosen a particle filter as a straightforward sequential Bayesian way to estimate the

rotation motion of our camera over time with the multi-hypothesis capability to cope with

the sometimes noisy event stream. In our event-based particle filter, the posterior density

function at time t is represented by N particles, {p
(t)
1 ,p

(t)
2 , ...,p

(t)
N }. Each particle p

(t)
i is a set

consisting of a hypothesis of the current state R
(t)
i ∈ SO(3) and a normalised weight w

(t)
i .
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Initially, all particles are set to the origin with the same weight.

3.1.1 Motion prediction

We first explain the tracking component of our algorithm, whose job is to provide an event

by event updated estimate of the rotational location of the camera with respect to the scene

mosaic. We use a constant position (random walk) motion model for our particle filter where

the predicted mean rotation of a particle at any given time remains constant while the vari-

ance of the prediction expands linearly with time. We perturb the current so(3) vector on

the tangent plane with Gaussian noise independently in all three axes and reproject it onto

the SO(3) unit sphere to obtain the corresponding predicted mean rotation. The noise is the

predicted change the current rotation might have undergone since the previous event was

generated. This is further simplified by the composition property of rotation matrices and

yields the final update at the current time t as:

R
(t)
i = R

(t−τ)
i exp

(

3

∑
k=1

nkGk

)

, (1)

where Ri is the rotation matrix for the ith particle and Gk are the Lie group generators for

SO(3). The noise vector n = (n1,n2,n3)
⊤ is obtained by generating random numbers sam-

pled from Gaussian distributions independently in all three directions i.e. ni ∼N (0,σ2
i τ).

Note that the high average frequency of events (at least 10kHz typically) relative to the

dynamics of a hand-held camera strongly motivates the use of a stronger motion model (e.g.

constant velocity or acceleration) [10], and we aim to test such a model soon.

3.1.2 Measurement update

The weights of these perturbed particles are now updated through the measurement update

step which applies Bayes rule to each particle (the weights are subsequently normalised):

w
(t)
i = P(z|R

(t)
i )w

(t−τ)
i . (2)

We calculate the value of a ‘measurement’ z given an event e(u,v), the current state R
(t)
i

and the previous state R
(t−τc)
i by taking a log intensity difference between the corresponding

intensity map positions:

z = log(M(p
(t)
m ))− log(M(p

(t−τc)
m )) , (3)

where p
(t)
m = π

(

R
(t)
i K−1ṗc

)

. (4)

Here ṗc = (u,v,1)⊤ is a camera pixel position in homogeneous coordinates, K is the camera

intrinsics, and π(p) = 1
p2
(p0, p1)

⊤ is the homogeneous projection function. The measure-

ment z is now used to calculate the likelihood P(z|R
(t)
i ) for each particle, essentially asking

‘how likely was this event relative to our mosaic given a particular hypothesis of camera

pose?’. We first compare the sign of the log intensity difference with the polarity of the

event, and we give a particle a fixed low likelihood if the signs do not agree. Otherwise,

we look up a likelihood of this absolute log intensity difference (contrast) in the Mexican
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Figure 3: (a) Event likelihood function. (b) Camera and map reference frames.

hat shaped curve shown in Figure 3(a), with mean aligned to a known contrast which highly

likely generates an event [13].

For the next measurement update step and the reconstruction block, a particle mean pose

is saved for each pixel whenever an event occurs at a specific pixel location. To calculate the

mean of particles, we apply the matrix logarithm to all particles’ SO(3) components to map

them to the tangent space, calculate the arithmetic mean, and re-map to the SO(3) group’s

manifold by applying the matrix exponential. Because of the random walk nature of our

motion model which generates noisy motion estimates, a new mean pose is saved in a form

of a weighted average with the previous mean pose.

Finally, after giving each particle a likelihood and normalising the distribution we resam-

ple the distribution in the standard way, making a new particle set which copies old particles

with probability according to their weights. However, due to the very high frequency of

events, we do not resample on every step to avoid unnecessarily deleting good particles in

cases where all weights are similar. We follow [9] to determine whether the resampling

should be carried out depending on the so-called effective number of particles Neff:

Neff =
1

∑
N
i=1(w

(t)
i )2

. (5)

We resample the set of particles whenever Neff is less than N/2.

3.2 Mosaic reconstruction

We now turn to the other main part of our algorithm, which having received an updated cam-

era pose estimate from tracking must incrementally improving our estimate of the intensity

mosaic. This takes two steps; pixel-wise incremental Extended Kalman Filter (EKF) esti-

mation of the log gradient at each template pixel, and interleaved Poisson reconstruction to

recover absolute log intensity.

3.2.1 Pixel-wise EKF based gradient estimation

We receive an event at a pixel location pc = (u,v)⊤ in the camera reference frame and,

using our tracking algorithm as described in Section 3.1, we find the corresponding location

pm = (x,y)⊤ in the map reference frame as shown in Figure 3(b). Each pixel of the gradient
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map has an independent gradient estimate g(t) = (gx,gy)
⊤ and 2×2 covariance matrix P

(t)
g .

At initialisation, all estimated gradients are initialised to zero vectors with large covariances.

Now, we want to improve an estimate g(t) based on a new incoming event and a tracking

result using the pixel-wise EKF. We know τc at pc and the velocity of the camera at a pixel

pm is calculated as below:

v(t) =

(

vx

vy

)

=
p
(t)
m −p

(t−τc)
m

τc

. (6)

Assuming, based on the rapidity of events, that the gradient g in the template and the camera

velocity v can be considered locally constant, we now say (g ·v)τc is the amount of log grey

level change that has happened since the last event. Therefore, if we have an event camera

where log intensity change C should trigger an event, the brightness constancy tells us that:

(

g(t) ·v(t)
)

τc =±C , (7)

where the sign of C depends on the polarity of an event. We now define z, a measurement of

the instantaneous event rate at this pixel, and its measurement model h as below:

z(t) =
1

τc

, (8)

h(t) =
g(t) ·v(t)

C
. (9)

In the EKF framework, the gradient estimate and the uncertainty covariance matrix are up-

dated using the standard equations at every event:

g(t) = g(t−τc)+Wν , (10)

P
(t)
g = P

(t−τc)
g −WSW⊤ , (11)

where the Kalman gain W is:

W = P
(t−τc)
g

∂h

∂g

⊤

S−1 , (12)

the innovation ν is:

ν = z(t)−h(t) , (13)

and the innovation covariance S is:

S=
∂h

∂g
P
(t−τc)
g

∂h

∂g

⊤

+R , (14)

where R is the measurement noise, in our case scalar σ2
m. Finally, Jacobian ∂h

∂g
is derived as:

∂h
∂g

= ∂
∂g

(

g·v
C

)

=
(

∂
∂gx

(

gxvx+gyvy

C

)

∂
∂gy

(

gxvx+gyvy

C

))

=
(

vx
C

vy

C

)

.

(15)
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(a) (b) (c) (d)

Figure 4: Proposed algorithm: (a) scene and DVS camera; (b) event stream; (c) esti-

mated gradient map (the colours and intensities of this figure represent the orientations and

strengths of the gradients of the scene respectively); (d) reconstructed intensity map.

Essentially, each new event which lines up with a particular template pixel improves our

estimate of its gradient in the direction parallel to the motion of the camera over the scene at

that pixel while we learn nothing about the gradient in the direction perpendicular to camera

motion. We visualise an estimated gradient map in Figure 4(c); the colours and intensities of

the figure represent the orientations and strengths of the gradients of the scene respectively.

3.2.2 Reconstruction from gradients

Inspired by [18], we reconstruct the log intensity of the image whose gradients Mx, My across

the whole image domain are close to the estimated gradients gx, gy in a least squares sense:

J(M) =
∫ ∫

(Mx −gx)
2 +(My −gy)

2dxdy . (16)

The Euler-Lagrange equation to minimise J(M) is:

∂J

∂M
−

d

dx

∂J

∂Mx

−
d

dy

∂J

∂My

= 0 , (17)

which leads to the well known Poisson equation:

∇2M=
∂

∂x
gx +

∂

∂y
gy . (18)

Here ∇2M = ∂ 2M

∂x2 + ∂ 2M

∂y2 is the Laplacian. To solve Equation (18), we use a sine transform

based method [1, 2]. We show a reconstructed intensity map in Figure 4(d).

4 Experiments

We recommend readers to view our submitted video1 which illustrates all of the key results

below in a form better than still pictures. We have conducted spherical mosaicing in both

indoor and outdoor scenes. Also, we show the potential for reconstructing high resolution

and high dynamic range scenes from very small camera motion. Our algorithm runs in real-

time on a standard PC for low number of particles and template resolutions; the results we

show here were generated at higher resolution and are currently off-line but we believe it is

a simple matter of engineering to run at these settings in real-time in the near future.

1https://www.youtube.com/watch?v=l6qxeM1DbXU

https://www.youtube.com/watch?v=l6qxeM1DbXU
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Figure 5: Spherical mosaicing for indoor and outdoor scenes. The overlaid boxes represent

the field of view of the event camera.

4.1 Spherical mosaicing

As shown in Figure 5, our algorithm is able to reconstruct indoor and outdoor scenes. In

these mosaics, the overlaid box represents the tracked field of view of the event camera.

4.2 High resolution reconstruction

Even though the current event-based cameras have very low resolution (DVS has a 128×128

pixel array), as they provide very fast visual measurements, we can reconstruct high resolu-

tion scenes since our algorithm tracks rotation at sub-pixel accuracy. In Figure 6 we compare

(a) an image from a standard camera down-sampled to 128×128 resolution with (b) our DVS

reconstruction, showing sharper details.

4.3 High dynamic range reconstruction

Another key characteristic of the event camera is its sensitivity over a very high dynamic

range (e.g. 120dB for DVS). Our algorithm can build mosaics which make use of this range,

to deal with scenes where there are large intensity difference between the brightest and dark-

est parts. We created a scene with a very high range of light intensity by placing a row

of bright LED lights on top of a poorly lit sketch pad. A standard global shutter camera

generates an image which is partly saturated, partly very dark and also has smearing effects

(Figure 7(a)). However, the event camera and our algorithm are able to reconstruct the high

dynamic range log intensity image in Figure 7(c) where all elements are clear.
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(a) (b)

Figure 6: High resolution reconstruction: (a) a down sampled normal camera image for a

comparison; (b) a reconstructed high resolution scene.

(a) (b) (c)

Figure 7: High dynamic range reconstruction: (a) a saturated normal CCD camera image

with the smear effect for a comparison; (b) a visualisation of a stream of events from the

DVS camera; (c) a reconstructed high dynamic range scene.

5 Conclusion

We believe these are breakthrough results, showing how joint sequential and global estima-

tion permits the great benefits of an event camera to be applied to a real problem of mosaic-

ing, and hopefully opening the door to similar approaches in dense 3D reconstruction in the

style of [16] and many other vision problems. It is worth restating the comparison between

the data rate of an event camera — typically on the order of 40–180kB/s in our experiments

— and for instance a standard monochrome VGA video feed at 30Hz: 10MB/s. The only in-

formation that is important for tracking and reconstruction is how edges move, and the event

camera gives us directly that information and nothing else, while removing the problems of

blur, low dynamic range and limited resolution which standard cameras have.
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