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Abstract—In image-guided robotic surgery, labeling and seg-
menting the endoscopic video stream into meaningful parts
provides important contextual information that surgeons can
exploit to enhance their perception of the surgical scene. This
information can provide surgeons with real-time decision-making
guidance before initiating critical tasks such as tissue cutting.
Segmenting endoscopic video is a very challenging problem
due to a variety of complications including significant noise
and clutter attributed to bleeding and smoke from cutting,
poor color and texture contrast between different tissue types,
occluding surgical tools, and limited (surface) visibility of the
objects’ geometries on the projected camera views. In this paper,
we propose a multi-modal approach to segmentation where
preoperative 3D computed tomography scans and intraoperative
stereo-endoscopic video data are jointly analyzed. The idea is
to segment multiple poorly visible structures in the stereo/multi-
channel endoscopic videos by fusing reliable prior knowledge
captured from the preoperative 3D scans. More specifically,
we estimate and track the pose of the preoperative models in
3D and consider the models’ non-rigid deformations to match
with corresponding visual cues in multi-channel endoscopic
video and segment the objects of interest. Further, contrary to
most augmented reality frameworks in endoscopic surgery that
assume known camera parameters, an assumption that is often
violated during surgery due to non-optimal camera calibration
and changes in camera focus/zoom, our method embeds these
parameters into the optimization hence correcting the calibration
parameters within the segmentation process. We evaluate our
technique in several scenarios: synthetic data, ex vivo lamb kidney
datasets, and in vivo clinical partial nephrectomy surgery with
results demonstrating high accuracy and robustness.

I. INTRODUCTION

M INIMALLY invasive surgery (MIS) is prized for its

many advantages over traditional open operations in-

cluding decreased risk of infection due to minimal incisions

and faster recovery times resulting in quicker patient return

to normal life [11]. The disadvantages of MIS are mostly

associated with the loss of direct 3D view of the surgical scene

as well as cumbersome and non-intuitive tool manipulation.
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Minimally invasive robotic surgery (MIRS), which deploys a

sophisticated robotic arm remotely controlled from a surgeons

console, has undergone rapid development in recent years. In

2012 about 200,000 operations were conducted worldwide us-

ing the da Vinci robots (Intuitive Surgical Inc., Sunnyvale, CA)

[30]. By July 2013, more than 2,500 da Vinci systems have

been installed worldwide [32], which signals the fast growth in

demand for such systems. MIRS systems offer several advan-

tages over traditional laparoscopic surgery including greater

surgical precision due to finer scaling of movement, improved

dexterity with more degrees of freedom (DoF), stereo vision,

and enhanced comfort for the surgeon who works in a sitting

position [33]. One of the crucial steps during a typical surgery

(including open surgeries, MIS and image guided MIRS),

is for the surgeons to distinguish between different tissues

in the intraopertative view and carefully localize pathology,

e.g. delineate the tumour and identify the resection margins.

For example during a partial nephrectomy, tumour delineation

is particularly critical to ensure the entire cancer has been

removed while sparing as much healthy tissue as possible is

highly desired to preserve kidney function. However, identify-

ing tissues in intraoperative images is difficult due to many

complications including noise associated with clutter such

as bleeding or smoke from cutting, poor endoscopic image

color/texture contrast between different structures, occluding

surgical tools, and limited 3D visibility of the structures of

interest where only surfaces are observable from the camera

feed.

Typically, surgeons rely on previously viewed preopera-

tive 3D scans, e.g. computed tomography (CT) or magnetic

resonance imaging (MRI), to try to mentally reconstruct

locations of various structures during surgery. Advances in

intraoperative imaging have introduced some other modalities

into the operating room, e.g. ultrasound (US) and X-ray

fluoroscopy. However, the pre- and intraoperative modalities

remain in separate spatial frames of reference. To fuse both

modalities and assist the surgeon, numerous approaches have

been proposed for augmenting the intraoperative view with

3D data obtained from preoperative scans, e.g. fusing 3D

preoperative volume with 2D intraoperative US [3], [6], [7],

[16], intraoperative MR [12], and 2D X-ray [24], [40] (Table

I). Pose estimation (position, orientation and scale) is one of

the main challenges in 2D slice to 3D volume registration. One

way to overcome this challenge is to use external intraoperative

markers and track them [15], [16]. However, the feasibility,
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TABLE I: Categorization and comparison of certain features (handling multiple 2D views, multiple objects segmentation,

tissues occlusion, non-rigid tissues deformation, manual vs. automatic pose estimation, and camera parameter correction)

between state-of-the-art methods and our proposed method. The symbol “-” indicates that the corresponding methods align

the whole 2D image to a 3D volume and do not deal with object segmentation and/or camera information. MR: magnetic

resonance; US: ultrasound; FL: fluoroscopy; NMP: Non-medical photos, EN: endoscopy.

Methods Type of 2D multi. 2D views Multi. objects seg. Occlusion Non-rigid deformation Auto. pose est. Cam. correction

Osechinskiy et al. [23] MR ✗ - ✗ X X -

Gill et al. [12] MR ✗ - ✗ ✗ X -

Dalvi et al. [3] US ✗ - ✗ ✗ ✗ -

Zikic et al. [40] FL X - ✗ ✗ X -

Pickering et al. [24] FL ✗ - X ✗ X -

Estepar et al. [6] US ✗ X ✗ ✗ ✗ -

Hernes et al. [15] US ✗ X ✗ X X -

Yim et al. [39] EN ✗ X ✗ ✗ X ✗

Su et al. [31] EN ✗ X X ✗ ✗ ✗

Merritt et al. [18] EN ✗ ✗ X ✗ X ✗

Prisacariu et al. [27] NMP ✗ ✗ X X X ✗

Sandhu et al. [29] NMP ✗ ✗ X X X ✗

Dambreville et al. [4] NMP ✗ ✗ X X X ✗

Prisacariu et al. [26] NMP X X X ✗ X ✗

Nosrati et al. [22] EN X X X X ✗ ✗

Proposed method EN X X X X X X

quality, or information content of intraoperative X-ray and US

still markedly lags behind the typically high resolution 3D

preoperative data, and endoscopic imaging remains the staple

modality in MIS. The current approach used in the operating

room of mentally reconstructing locations of various structures

during surgery by transferring the mental abstraction from

3D to 2D data, is an error-prone procedure especially if the

surgeon’s level of experience is limited. Many efforts have

been made towards addressing this issue and augmenting the

endoscopic views. These method vary from directly segment-

ing the endoscopic scene (e.g. using level sets) to registering

the preoperative data onto the intraoperative endoscopic scene

as discussed in the following section.

A. Related Works

Many minimally invasive operations benefit from endo-

scopic cameras for visual examination of the interior of a body

cavity or hollow organs. Endoscopic cameras are equipped

by a visible light source that enables surgeons to see the

internal organs via light reflection. As such, many efforts

have been made towards augmenting endoscopic intraoperative

scenes by segmenting them into meaningful parts. Some recent

works proposed active contour-based methods for endoscopic

video segmentation [8], [9] while other methods focused on

parameter-sensitive morphological operations and threshold-

ing techniques [5], [19]. However, such approaches rely on

color/intensity image information and thus often fail due to

noise and clutter from bleeding and smoke. In addition, these

methods focus on segmenting one object only in an endoscopic

scene.

Other works have incorporated preoperative data such as

CT. Some excellent reviews on augmented reality in laparo-

scopic surgery and image-guided interventions have been

provided by [2], [20], [21]. Among methods that utilized

preoperative information, some works focused on manually

registering 3D preoperative data on 3D surfaces reconstructed

from stereo endoscopic video [25], [31] or on reconstructed

transparent 3D intraoperative cone-beam image [34]. Other

works focused on feature tracking in which corresponding

points on endoscopic video and preoperative data are assumed

to be known [28]. While the registration in [25], [28], [34] is

performed manually, the methods proposed in Yim et al. [39]

and Merritt et al. [18] are able to automatically find the 3D

pose of the objects and rigidly register 3D CT data to a 2D

endoscopy image. None of the aforementioned methods can

handle free-form deformation of tissues that usually happens

due to respiratory motion and/or surgical intervention.

Recently, we proposed an efficient segmentation and 3D

pose tracking technique and presented a closed-form solution

for our formulation [22]. We also demonstrated how our

framework allows for the inclusion of laparoscopic camera

motion model to stabilize the segmentation/pose tracking in

the presence of a large occlusion. However, our method in

[22] requires manual pose estimation and 3D to 2D alignment

for the first frame of the video.

In the (non-medical) computer vision area, Prisacariu et al.

[26] proposed a variational method for object segmentation

by optimizing a Chan-Vese energy functional with respect to

six pose parameters of the object model in 3D. However, in

MIS six degrees of freedom are not enough as tissues typically

deform non-rigidly. Unlike [26], Sandhu et al. [29] derived a

gradient flow for the task of non-rigid pose estimation for a

single object and used kernel PCA to capture the variance in

the shape space. Similar to [29], the method proposed later

by Prisacariu et al. [27] allowed for non-rigid pose estimation

in a single 2D view. In [27], the authors captured 3D shape

variance by learning non-linear probabilistic low dimensional

latent spaces using the Gaussian process latent variable di-

mensionality reduction technique. All three aforementioned

works ([26], [27], [29]) assumed that the camera parameters

are known, which is not always the case in robotic surgery

as surgeons often change the zoom and focus. In addition,

applying these methods to robotic surgery problems is not

straightforward as images in endoscopic videos are highly
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cluttered and noisy.

B. Contributions

Inspired by [26], we propose a unified level set-based

framework that allows for segmenting multiple structures in

multi-view endoscopic video that integrates prior knowledge

from preoperative data. Our framework estimates the pose

of the preoperative models in 3D as well as considers their

non-rigid deformation to match them with their corresponding

visual cues in multi-channel endoscopic video and segment

the objects of interest. Furthermore, our method corrects

the camera calibration parameters (when needed during the

surgery) to compensate for the error in calibration parameters

caused by changes in zoom and/or focus. Deploying a region-

based formulation (in contrast to local feature-based methods),

prior information from the preoperative data, and a random

decision forest used to estimate the probability of different

organs in each frame of the endoscopic video, enables our

framework to handle occlusions (e.g. by surgical tools) as

well as noise and clutter in the endoscopic environment. In

contrast to our previous work [22] where manual 3D to 2D

aligning was necessary for the first frame of the video, in

this work we estimate the 3D preoperative pose automatically

through an optimization framework. In fact, this work can be

seen as the (complementary) first step for [22]. In addition,

[22] is unable to handle changes in focus/zoom, while in

this work, we incorporate the camera parameters into our

optimization framework to handle the focus/zoom changes

during the surgery.

Our surgical application of interest is robotic partial

nephrectomy where the goal is to remove a cancerous tumour

while preserving as much healthy kidney tissue as possible.

Our proposed fusion of preoperative data with the intraoper-

ative stereo endoscopic view can thus guide the surgeon in

localizing the tumour and identifying the resection margins.

Table I compares certain features of our work with state-of-

the-art methods.

The remainder of this paper is organized as follows: in Sec-

tion II, we present the details of our optimization-based algo-

rithm for multi-structure segmentation in multiple endoscopic

views and introduce our objective function and optimization

strategy. We provide the implementation details in Section III

followed by several experiments on synthetic, ex vivo and in

vivo data in Section IV.

II. METHODS

A. Problem setup and notation

Let Spre = {S1, · · · , SN} be the set of N segmented struc-

tures of interest in the preoperative spatial domain, Ωpre ⊂ R
3,

where Si represents the surface of the ith structure. Also, let

P
pre,i
ℓ = (Xpre,i

ℓ , Y pre,i
ℓ , Zpre,i

ℓ ) ∈ Si be the coordinates of

the ℓth point on Si. During the surgery, due to tools’ pressure,

abdominal insufflation and organs’ physiological motions,

tissues deform non-rigidly and the segmented structures do not

appear in the intraoperative scene as they do in the preoperative

data. To handle this non-rigid deformation, we first generate a

catalog of possible 3D deformed shapes for each structure of

interest, using the DeformIt software [13]. Having the catalog

of 3D shapes for each structure, we model the variability in

the ith structure’s shape through principal component analysis

(PCA). We then estimate a novel 3D shape of ith structure by

P pre,i = P pre,i +U iwi , (1)

where U i = {ui
1, · · · , u

i
Ki

} are the modes of variation, wi =
{wi

1, · · · , w
i
Ki

} are the shape weights and Ki is the number

of ith structure’s principal modes of variation.

In our clinical application, the number of camera views is

limited to the two channels of the stereo endoscopic camera.

Nevertheless, here we present a more general formulation for

an arbitrary number of camera views. Assuming we have M
camera views, we represent the 3-channel RGB image of the

mth camera by Im : Ωm
2D ⊂ R

2 → R
3 where Ωm

2D is the

domain of mth camera view.

Our objective is to find an optimal global transformation,

T , an affine mapping transform described in the next section

in (2), that brings the deformed preoperative models P pre

into the cameras’ domain. In addition, we find the optimal

shape parameters wi for each structure of interest in the

3D preoperative domain such that the projection of each

transformed and deformed 3D model, using the endoscopic

camera parameters, align with the corresponding structures in

the 2D images I1, · · · , IM and label each structure.

We set the first camera (m = 1) domain to be the

reference surgical spatial domain (Ωsrg ⊂ R
3). Let P

srg
ℓ =

(Xsrg
ℓ , Y srg

ℓ , Zsrg
ℓ ) be a point in the 3D surgical scene and

pm
ℓ = (xm

ℓ , ymℓ ) be its corresponding projected point on Im.

Projecting a point from the camera domain to Ωm
2D re-

quires the camera parameters. The mth camera parameters

are the camera’s focal point (fx
m, fy

m), camera’s principal

point (cxm, cym), radial distortion parameters (km, k′m) and

decentering distortion coefficients (pm, p′m). In addition, in our

notation, the rotation matrix Rm and the translation vector tm
denote the extrinsic parameters between the mth and the 1st

cameras.

Accurate projection of the preoperative models onto the

intraoperative images requires calibration of the cameras prior

to the operation. The calibration remains valid until the focus

and/or zoom of the cameras are altered. Since some of the

camera parameters change during the operation, we treat

the camera parameters as unknowns to be estimated, along

with T and w. By finding the correct T , w, and camera

parameters (for 3D to 2D projection), we are able to delineate

the structures of interest in M intraoperative images. We find

these parameters by optimizing an energy functional that is

defined in the next section. The surgical setup along with our

notations are summarized in Figure 1.

B. Energy minimization formulation

1) Unknowns: In this section we introduce the unknowns

of our problem: global transformation, shape and camera

parameters, and the segmentation boundaries.

a) Segmentation boundaries: We define cim to be the

boundary of the projection of the ith segmented structure

in 3D onto Im (Figure 1). Each boundary cim partitions the
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Fig. 1: Surgical setup and notation. From left to right: Segmented 3D preoperative CT, left endoscopic channel, right endoscopic

channel, da Vinci surgical robot console.

domain of Im into foreground, Ωm,fi
2D , and background, Ωm,bi

2D .

Assuming N structure types may appear in I1, · · · , IM , we

aim to find the contour cim for all N structures and in all M
2D images such that it delineates the ith object of interest in

Im.

b) Shape parameters and transformation: The transfor-

mation T maps the points from Ωpre to Ωsrg . Neglecting for

the moment the non-rigid deformation of organs, having the

correct transformation T , the projection of the transformed

segmented preoperative model onto I1, · · · , IM , would seg-

ment these images properly. However, due to difference in pa-

tient position during the operation1, abdominal insufflation and

pressure from other organs and/or laparoscopic surgical tools,

different structures will be deformed non-rigidly. Hence, a

rigid transformation alone is not sufficient to estimate the pose

and to correctly segment the structures in the endoscopic view.

Therefore, we include shape parameters w in our optimization

problem using (1). To keep our framework general, we choose

T to be an affine mapping that transforms P pre from Ωpre to

the surgical coordinate frame Ωsrg while accounting for linear

deformations (e.g. stretching or shearing):
[

P srg

1

]

= T (P pre) = R

[

P pre

1

]

+ t
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q11
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, (2)

where q1 · · · q12 are the 12 degrees of freedom of an affine

transformation.

c) Camera parameters: In Section II-A we mentioned

the importance of correcting the camera parameters during

the surgery. It has been observed that the effect of zoom is

negligible on three out of eight camera parameters: k′, p, and

p′ [10], [38]. Therefore, we aim to correct the remaining five

camera parameters by finding πm = (fx
m, fy

m, cxm, cym, km)
for all M cameras.

1During the preoperative scan, patients are in the supine position while
during surgery they are lying sideways (lateral recumbent position).

2) Objective function: We define the energy functional E
which is used to segment I1, · · · , IM according to the preop-

erative shape models obtained from (1). In our formulation,

we represent the contour cim implicitly by its corresponding

level set function, φi
m, where











φi
m(x) > 0, ∀x ∈ Ωm,fi

2D

φi
m(x) < 0, ∀x ∈ Ωm,bi

2D

φi
m(x) = 0, ∀x ∈ ∂Ωm,fi

2D

. (3)

The contour cim is represented by the zero level sets of φi
m,

i.e. cim = {x ∈ Ωm
2D|φi

m(x) = 0}.

Having N structure types appear in M camera images,

we define the following energy functional E to segment the

images:

E(Φ,T ,W ,π;P pre, I1, · · · IM ) =
N
∑

n=1

M
∑

m=1

∫

Ωm
2D

(

gf (n,m,x) H(φn
m(x))

+ gb(n,m,x) (1−H(φn
m(x)))

)

dx , (4)

where H(.) is the heaviside function and

Φ = {φ1

1, · · · , φ
N
1 , · · · , φ1

M , · · · , φN
M} , (5)

φn
m(x) = SDM

(

∂
(

Pm

(

T (P pre,n)
)

)

)

, (6)

W = {w1, · · · ,wN} , (7)

π = {π1, · · · , πM} . (8)

SDM(.) in (6) is the signed distance map and Pm : Ωsrg →
Ωm

2D is the projection from the surgical-scene frame of refer-

ence to Ωm
2D. π are the cameras parameters and gf (n,m,x)

and gb(n,m,x) are the regional terms that measure the

agreement of the image pixels x with the inside and outside

statistical models of the nth structure in the mth image (Im).

gf (n,m,x) and gb(n,m,x) are calculated as follows

gf (n,m,x) = − log pnf (x|Im(x))

gb(n,m,x) = − log pnb (x|Im(x))

n = {1, · · · , N} (9)

m = {1, · · · ,M} ,
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where pnf (x|Im(x)) and pnb (x|Im(x)) = 1−pnf (x|Im(x)) are

the probabilities of a given pixel x belonging respectively to

the inside and to the outside the nth object in Im (for more

details refer to Section III).

Given the first camera (reference camera) parameters, the

projection from 3D space Ωsrg to the first 2D image I1 (i.e.

P1) is calculated as follows:

(x1, y1) = P1(X
srg, Y srg, Zsrg)

x′

1 = Xsrg/Zsrg , y′1 = Y srg/Zsrg ,

r21 =x′2

1 + y′
2

1 ,

x′′

1 = x′

1(1 + k1r
2

1 + k′lr
4

1) + 2p1x
′

1y
′

1 + p′1(r
2

1 + 2x′2

1) ,

y′′1 = y′1(1 + k1r
2

1 + k′1r
4

1) + p1(r
2

1 + 2y′
2

1) + 2p′1x
′

1y
′

1 ,

x1 = fx
1 x′′

1 + cx1 , y1 = fy
1
y′′1 + cy

1
, (10)

where k1 and k′1 are the radial distortion and p1 and p′1 are the

decentering distortion parameters of the first camera. Also (fx
1 ,

fy
1

) and (cx1 , c
y
1
) are first camera’s focal and principal points,

respectively. To calculate Pm for m 6= 1, we first need to bring

the points in Ωsrg to the mth camera’s frame of reference

using the camera’s extrinsic parameters, Rm and tm,






Xm

Y m

Zm






=Rm







Xsrg

Y srg

Zsrg






+ tm . (11)

Then, Pm is calculated similar to (10) by using

(Xm, Y m, Zm) instead of (Xsrg, Y srg, Zsrg).

C. Optimization

Given the objective function E, our optimization task is:

T ∗,W ∗,π∗ = argmin
T ,W ,π

E . (12)

Note that the boundary of structures in each image (cim) are

obtained by calculating the zero level of their corresponding

level set functions φi
m. The level set functions are calculated

from (6) after finding the optimal T , W and π.

For computational efficiency, for each frame, we optimize

(12) with respect to each set of variables T , W and π

successively and repeat this process until convergence, i.e the

change in the unknowns of all three smaller optimizations is

small enough.

In the first stage, we optimize (12) for T and find the

transformation parameters q1, · · · , q12. To find the proper pose

of the preoperative model with respect to the first frame of

the video efficiently, we use a hierarchical multi-resolution

approach in which the resolution of the preoperative data and

2D images are increased in a coarse to fine fashion. In the

second stage, we optimize (12) for the shape parameters, W ,

followed by optimizing (12) for the cameras’ parameters, π,

in the third stage. Note that it is not necessary to update the

camera parameters continuously and this third stage of our op-

timization framework is turned on as soon as surgeons change

the focus/zoom of the cameras. These three optimization steps

are repeated until convergence.

To find the pose and shape parameters, we compute the

derivative of E with respect to the finite set of optimization

variables ξ = {ξ1, · · · , ξℓ}, where ξℓ can be the transformation

parameters qℓ or shape parameters wℓ:

∂E

∂ξℓ
=

N
∑

n=1

M
∑

m=1

(

∫

Ωm
2D

(

gf (n,m,x)− gb(n,m,x)
)∂H(φn

m(x))

∂ξℓ

)

, (13)

where

∂H(φn
m(x))

∂ξℓ
=

∂H(φn
m(x))

∂φn
m

(

∂φn
m

∂x

∂x

∂ξℓ
+

∂φn
m

∂y

∂y

∂ξℓ

)

= δ(φn
m)

[

∂φn
m

∂x

∂φn
m

∂y

]

[

∂x
∂ξℓ
∂y
∂ξℓ

]

. (14)

In (14), δ(.) is the Dirac delta function. We use the centered

finite difference to calculate ∂φ
∂x

and ∂φ
∂y

. Every 2D point

pm = (xm, ym) in Im has at least one corresponding 3D

point P srg = (Xsrg, Y srg, Zsrg) in the surgical domain Ωsrg .

Each 2D point pm = (xm, ym), is related to P srg by the

mth camera parameters (cf. (10) and (11)). From (10) and for

m = 1 we have

∂x1

∂ξℓ
=fx

1

∂x′′

1

∂ξℓ
, (15)

∂y1
∂ξℓ

=fy
1

∂y′′1
∂ξℓ

. (16)

∂xm

∂ξℓ
and ∂ym

∂ξℓ
are calculated in a similar way.

Considering (10), to calculate (15) and (16), we need to

calculate ∂Xsrg

∂ξℓ
, ∂Y srg

∂ξℓ
and ∂Zsrg

∂ξℓ
. Every point in the surgical

frame of reference P srg is related to a point in the preop-

erative domain, P pre ∈ Ωpre by (2). For the transformation

parameters, ξ = {q1, · · · , q12}, the derivative of a 3D point

P srg in the surgical domain with respect to qi is summarized

in Table II.

TABLE II: Partial derivatives of 3D points in the surgical

frame P srg with respect to the transformation parameters, qi
in (2).

qi
∂Xsrg

∂qi

∂Y srg

∂qi

∂Zsrg

∂qi
q1 Xpre 0 0

q2 Y pre 0 0

q3 Zpre 0 0

q4 0 Xpre 0

q5 0 Y pre 0

q6 0 Zpre 0

q7 0 0 Xpre

q8 0 0 Y pre

q9 0 0 Zpre

q10 1 0 0

q11 0 1 0

q12 0 0 1

For the shape parameters ξ = {w1, · · · , wℓ}, recalling (1),

the derivative of a 3D point P srg in the surgical domain (Ωsrg)

with respect to wℓ is

∂P srg

∂wℓ

=
∂R

∂wℓ

P pre +R
∂P pre

∂wℓ

= R
∂P pre

∂wℓ

= R · uℓ, (17)



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. X, MONTH 20XX 6

where uℓ is the ℓth mode of variation in U . Considering the

extrinsic parameters between cameras, P
m

∂wℓ
is calculated in a

similar way, i.e. ∂Pm

∂wℓ
= RmR · uℓ.

In the last stage of our optimization, we optimize (12) with

respect to the camera parameters, πm, mentioned in Section

II-B1c. The derivative of E with respect to πm is computed

similar to (13) and (14). Table III summarizes the derivatives

of 2D points pm = (xm, ym) in Im with respect to the camera

parameters.

TABLE III: Partial derivatives of 2D points pm in Im with

respect to camera parameters πm (cf. (10)).

πm fx
m f

y
m cxm c

y
m km

∂xm

∂πm
x′′

m 0 1 0 fx
mx′

mr2m
∂ym

∂πm
0 y′′m 0 1 f

y
my′mr2m

The boundary of the segmented structures are the zero level

set of their corresponding level sets function φ that is obtained

by (6) after finding the optimal T , W and π.

III. IMPLEMENTATION DETAILS

To make our method as robust as possible, we leverage

a variety of image features to calculate the regional terms,

gf (n,m,x) and gb(n,m,x) in (4), for different structures

which may have different discriminative color and texture

features.

We concatenate the three normalized RGB channels, the

three YCbCr channels and their local color histogram features

as regional cues into the regional appearance vector Am for

2D images (i.e. left and right channels of stereoscopic video,

M = 2). pnf (x|Im(x)) and pnb (x|Im(x)) = 1− pnf (x|Im(x))
in (9) are estimated by training a random forest (RF) consisting

of Nb binary decision trees (here Nb = 20). To train the RF,

we select several patches in I1 and I2 from different structures

(i.e. supervised training) in the first 2% of all frames, i.e.

the first ∼10 frames out of ∼600 frames. Figure 2(a) shows

a sample seeding on a sample video frame of real clinical

data. In practice, surgeons may select these patches with the

help of surgical tools. After training, for each pixel x, the

feature channels, Am(x), are propagated through each RF

tree resulting in the probability pj(x ∈ Structurei|Am(x)),
for the jth tree. These probabilities are combined into a

forest’s joint probability pif (x|Im(x)) = 1

Nb

∑Nb

j=1
pj(x ∈

Structurei|Am(x)) to determine the probability of x be-

longing to ith structure. Figure 2(b-d) illustrates examples of

regions probability for the frame shown in Figure 2(a). A lower

intensity in Figures 2(b-d) corresponds to higher probability.

We emphasize that unlike feature-based methods (e.g. [28],

our method does not require any correspondence between

3D CT and the 2D intraoperative data. The surgeon only

needs to provide a few clicks on the object of interest

(e.g. kidney/tumour) and background without knowing their

corresponding points in the preoperative CT.

IV. EXPERIMENTS

In this section, we provide several experimental results over

synthetic, ex vivo and in vivo datasets to demonstrate the per-

(a) (b)

(c) (d)

Fig. 2: Examples of regions probability. (a) Seed selection

from a random in vivo frame (blue: background/tools, green:

kidney, red: tumour). (b-d) Probability of background, kidney

and tumour for the frame shown in (a). A lower intensity in

(b-d) corresponds to higher probability.

formance of our framework applied to partial nephrectomy. We

also evaluate the robustness of our framework to initialization,

noise, non-rigid deformation and occlusion.

A. Synthetic data

For our first set of synthetic experiments, we created a

virtual kidney with 14 2D images by rotating a virtual camera

around the synthetic kidney and calculating the projection of

the kidney on the 2D planes (Figure 3(a)). Each 2D plane was

polluted with additive white Gaussian noise with a standard

deviation of σ = 0.75. These 2D images have been created by

projecting the 3D object onto each 2D plane using eq. (10).

Our first synthetic test evaluates the pose recovery capabil-

ities (robustness to initial pose) of our method. We perturbed

the correct pose of our model in θx, θy , θz , tx, ty , tz , sx and

sy , which are the rotations around x, y and z axes, translations

in x, y and z directions and scaling in x and y directions,

respectively. With regard to translation, our framework is able

to recover tx, ty and tz as long as the projection of the 3D

model intersects the object in the 2D images. Table IV shows

the range of perturbation for θx, θy , θz , sx and sy over which

our method is able to recover the correct pose. To show the

benefit of multi-view feature of our method over other methods

with a single view (e.g. monocular camera), we performed the

pose recovery test using 1 up to 14 camera views. As evident

from Table IV, as the number of camera views increases, our

method is able to handle a wider range of disturbance. Figure

3(b) illustrates the simultaneous segmentation of multiple

views.

Our second synthetic experiment demonstrates the robust-

ness of our framework to noise. We polluted the 2D images

with additive white Gaussian noise with different standard

deviations, σ. Figure 3(c) shows qualitative results of suc-

cessful segmentation of 2D images with different noise levels.

We compared our framework with active contour without
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(a)

(b)

(c)

Fig. 3: Pose recovery and robustness to noise in the synthetic experiment set-up. (a) Multiple views of a synthetic kidney.

(b) Simultaneous segmentations of multiple views polluted with additive white noise with σ = 0.25. (c) Robustness to noise.

Images from left to right are polluted by Gaussian noise with σ = {0.25, 0.75, 1.25, 1.75}. Note that all 14 views were polluted

by Gaussian noise and in (c) we only show a single view as an example. The advantage of multiple view compared to single

view in pose estimation is shown in Table IV.

TABLE IV: Pose recovery range (the amount of pose de-

viation in which our method can still recover the correct

pose) w.r.t. number of cameras/views. θx, θy , and θz are

rotation parameters (in degree) around x, y and z axes. sx
and sy are anisotropic scaling parameters along x and y axes,

respectively.

No. of cams. 1 4 7 14

θx −40 - +40 −40 - +40 −50 - +50 −90 - +90

θy −80 - +60 −80 - +80 −90 - +90 −90 - +90

θz −60 - +20 −90 - +90 −90 - +90 −90 - +90

sx 0.05 - 4 0.05 - 6 0.01 - 7 0.01 - 8

sy 0.01 - 9 0.01 - 10 0.01 - 12 0.01 - 12
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Our method

ACWOE

Fig. 4: Robustness to noise for our method and ACWOE. DSC

w.r.t. different standard deviation (σ) of the Gaussian noise.

edges (ACWOE) [37] in terms of robustness to noise. We

chose ACWOE since it uses the same energy functional we

use (cf. (4)), however, ACWOE optimizes (4) with respect

to φ instead of the pose and shape parameters. Figure 4

compares the robustness of our method and ACWOE with

respect to different noise levels. As seen in Figure 4, since

ACWOE only uses the intensity information to separate the

foreground from the background and does not use any prior

information, ACWOE fails in presence of high noise. We note

that with low levels of noise, ACWOE performed slightly

(a) (b)

Fig. 5: Shape recovery after randomly perturbing the principal

modes. (a) Perturbed and (b) recovered 3D shape and its

overlay on the corresponding 2D image.

better than our method as ACWOE only has a single parameter

to optimize for. Since our method has multiple parameters to

optimize, there is a higher chance of parameters getting stuck

in local minima. In fact, with low noise levels, visual cues

alone are enough to segment objects of interest. However, in

the presence of large noise, prior information (e.g. shape) is

necessary to obtain a feasible result.

In our third synthetic experiment, we randomly perturbed

the principal shape parameters of our model (w) and used our

optimization framework to recover the correct shape. During

this experiment, the pose parameters were fixed. Although the

perturbed shape was not in the training set (used in PCA), our

method was able to recover the shape even when the shape is

largely perturbed (Figure 5). Such an exaggerated deformation

is rare, nonetheless, our method was able to recover the proper

shape parameters. However, due to our local optimization

framework, we do not claim that our method is able to estimate

the correct shape parameters for all severely perturbed shapes.

Figure 6 illustrates further analysis of our shape recovery

technique in which the tolerable range of shape perturbation

(standard deviation from the mean shape) is computed as a

function of both noise level and number of views. The benefit
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Fig. 6: Tolerable range of shape perturbation (standard devia-

tion from the mean shape) in terms of noise level and number

of views.

of handling more camera views is obvious from Figure 6. More

views enable our method to tolerate more shape perturbation.

Our method is fairly robust to noise. However, in the presence

of severe noise and only one or two cameras, our method

cannot recover large shape perturbation.

To evaluate our camera parameters estimation module, we

simulated the change of zoom of the synthetic cameras by

changing the focal and principal points over time and with

additive noise. According to [1] and [17], the distortion

parameter can be approximated by a 2nd-order polynomial

function of 1/f where f is the camera’s focal point. To have a

ground truth for k, we followed [1] and approximated k using

the following polynomial equation: k = 0.226−0.0719(1/f)−
0.214(1/f)2.

Figure 7 illustrates the estimated focal and principal points

over time. According to Figure 7, our method is able to

estimate the focal and principal points fairly accurately and

does a reasonable job in estimating the distortion parameter.

We emphasize that the influence of the distortion parameter is

negligible compared to the camera’s focal and principal points.

B. Ex vivo lamb kidney data

In the second part of our experiments, we prepared a set

of 10 ex vivo phantoms using lamb kidneys and implanted

artificial tumours outside and inside each kidney to emulate

a partially exophytic and completely endophytic tumour, re-

spectively. To more closely simulate a real surgical environ-

ment, we print a snapshot from a real robot-assisted partial

nephrectomy and used it as the background for our ex vivo

lamb kidneys (Figures 8 and 10). A Siemens Somatom CT

scanner was used to acquire a high resolution CT volume of

our phantoms. We also recorded a stereo endoscopy video

of each phantom using da Vinci S system at full HD 1080i

resolution with 30 FPS. While capturing the stereo endoscopic

video, we changed the camera’s zoom repeatedly.
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Fig. 7: Estimation of cameras’ focal and principal points and

the first radial distortion parameter (k).

Fig. 8: Single endoscopic frame of four (out of 10) lamb

kidney phantoms with exophytic (top row) and endophytic

(bottom row) tumours.

We segmented the kidney and tumour in each CT using

TurtleSeg [35]. To create the 3D shape catalog, we deformed

the segmented kidneys and tumours using DeformIt [13]. We

created pseudo-realistic deformations by carefully simulating

external forces (pulling and pushing) on the surface of the
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Fig. 9: Examples of shape variations of a kidney and its two

tumours after deformations using DeformIt software [13]. Both

endophytic and exophytic tumours are in red and kidneys are

in green.

0 100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

Frame

D
S

C

 

 

R

L

LS

LSC

Zoom in Zoom out 

1x ~ 2x 1x

Zoom 

estimation 0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

R L LS LSC

D
S

C

(a) (b)

(c) (d)

(e) (f)
Fig. 10: Quantitative and qualitative result for an ex vivo

phantom. (a) DSC vs. frame (time) for different settings of

our framework: R: rigid; L: linear; LS: linear with shape

optimization; LSC: linear with shape optimization and camera

parameters correction. (b) Box plot representation of the Dice

score over time (frame) of our prior-based segmentation for

different settings. (c) Initial pose (before convergence). (d) Re-

covered pose and shape after convergence. (d-f) Corresponding

qualitative results on three (out of 480) frames (Green: kidney;

Red: tumour). Large and small red labels represent exophytic

and endophytic tumours, respectively.

segmented objects and then calculated the corresponding de-

formations [13]. Each kidney and tumour were deformed in

∼40 and ∼15 different ways, respectively. Figure 9 shows a

few samples of deformed objects in the catalog of a phantom

example. To obtain the segmentation ground truth for our

stereo video data, we used the “Rotobrush” tool of Adobe

After Effect CS6 (Adobe Systems Inc.) as a semi-automatic

video segmentation tool allowing for visual inspection and

correction. On average, the Rotobrush segmentation of each

stereo video took about 15 minutes.

We automatically segmented 10 phantom stereo videos

using the proposed framework with four different settings:

1) T is rigid, no shape optimization, no camera parameters

correction (R),

2) T is linear, no shape optimization, no camera parameters

correction (L),

3) T is linear, with shape optimization, no camera param-

eters correction (LS),

4) T is linear, with shape optimization, with camera pa-

rameters correction (LSC).

We then reported the Dice similarity coefficient (DSC) versus

time for all visible tissues (kidney and/or partially visible

tumours). Figure 10(a) shows a sample DSC vs. time for

one of our phantom cases with sample qualitative results on

three (out of 480) frames. The frames with zoom transition

as well as the zoom estimation for each frame have been

highlighted. As expected, as we increase the number of degrees

of freedom (rigid vs. linear vs. non-rigid) the results become

more accurate. Also, including the camera parameters in the

optimization procedure improves the accuracy, particularly

where the zoom starts to change. Figure 10(b) illustrates the

box plot results for each of the above mentioned settings

for the entire ex vivo phantom data. Since we do not have

the ground truth segmentation (and it is nontrivial how one

may obtain it) for endophytic tumours, the DSC includes

kidney and exophytic tumors only. Figure 10(c) shows the

initial pose, which despite being not well placed, results in

a reasonable pose as shown in Figure 10(d). We emphasize

that this phantom has both exophytic and endophytic tumours.

Since there is no visual cues for the endophytic tumour, we

did not consider this tumour in our optimization procedure.

However, we showed the endophytic tumour along with kidney

and exophytic tumour for visualization purposes. As it is seen

in Figure 10(d-f), preoperative based endoscopic segmentation,

enables surgeons to roughly locate the underlying tissues

(endophytic tumour in this example) even though they are not

visible with the naked eye, which can facilitate their decision

making.

C. In vivo clinical study

We also applied our framework on five different clinical

cases of robot assisted partial nephrectomy. For each patient,

we tested our method on 20 seconds of stereo endoscopic

videos from the tumour demarcation stage captured by a da

Vinci surgical system with a frame rate of 30 FPS where the

tumours and kidneys were segmented in the corresponding CT

data using the TurtleSeg software [35]. To obtain the ground

truth segmentation for each patient, we observed the tumour

demarcation and resection stages of each partial nephrectomy

video and localized the tumour and kidney boundaries with the

help of a urologist. After confirming the tumour and kidney

boundaries for several frames with the urologist, we segmented

the remaining frames semi-automatically, using Adobe After

Effects CS6 software. Each stereo video took ∼3.5 hours to

segment semi-automatically.
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Fig. 11: The Kruskal-Wallis test for all five clinical cases rejects the null hypothesis that the data in each category (background,

kidney, and tumour) comes from the same distribution. Every pairs of groups have mean ranks significantly different from the

third group.
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Fig. 12: Our framework evaluation on in vivo partial nephrec-

tomy surgery. (a) DSC over time (frame) of an in vivo partial

nephrectomy for different settings of our framework. (b) Box

plot representation of the DSC over time (frame) on three in

vivo cases for different setting. R: rigid; L: linear; LS: linear

with shape optimization; LSC: linear with shape optimization

and camera parameters correction.

We note that the motivation of our proposed technique

was to address the tumour demarcation stage of a partial

nephrectomy. This is a critical stage where surgeons mark

the boundaries of tumours before initiating any cutting. The

appearance of kidney/tumour remains the same during the

tumour demarcation stage. Therefore, training the structures’

appearance only once would be enough for our system.

To show that the kidney, tumour and the background have

different distribution (using our features explained in Section

III), we performed the Kruskal-Wallis test and reported the

p-value for the null hypothesis that the data in each category

comes from the same distribution. The p-value we obtained

for each of our five clinical in vivo cases was close to zero.

Our additional follow-up test to confirm that data samples of

different groups (background, kidney and tumour) come from

different distributions are shown in Figure 11).

The Dice similarity coefficient versus time (for one of the

patients) along with the box plot results (for all three patients)

are shown in Figure 12 for different experimental settings. The

frames with zoom transition as well as the zoom estimation for

each frame have been highlighted in Figure 12(a). The overall

DSC is lower than our ex vivo lamb kidney experiments which

is mainly due to the noise, lighting effects, tools crossing and

appearance similarity between different tissues. Nevertheless,

our method was able to achieve DSC close to 0.85 for real in

Fig. 13: Robustness to occlusion in in vivo real surgery cases.

1st column: segmentation results without prior information

from the preoperative data using multiphase active contour

without edges [37]. 2nd column: Our results with correspond-

ing 3D rendering in the 3rd column.

vivo clinical cases.

In our last experiment, we qualitatively compared our

method with the popular level sets method [37] using the same

energy functional as (4). Figure 13 shows how our prior-based

method is able to properly segment the endoscopic image even

with tissues occlusions (due to tools crossing), unlike the level

sets-based method in the first row.

During our experiments on in vivo cases, we chose to

optimize the camera parameters during the entire duration of

the videos (LSC setting). We observed that in the cases where

tools occlude most of the tissues, the weak data term (due

to the occlusion) mislead the camera optimization procedure

and results got worse in the consecutive frames due to the

wrong camera parameters. Therefore, as we suggested before,

the best time to turn on the camera correction module is when

surgeons change the focus/zoom. This information can easily

be obtained from the da Vinci surgical system’s API which

was not available in our experiments.
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V. DISCUSSION AND CONCLUSIONS

We proposed a novel technique to segment multiple struc-

tures in multiple views of endoscopic videos that leverages

both preoperative data, as a source of prior knowledge, as

well as endoscopic visual cues (by training a random decision

forest). Our method enables accurate segmentation in the

highly noisy and cluttered environment of an endoscopic

video including tissues occlusion. In our framework, surgeons

will be able to identify and locate deep/hidden structures

(e.g. endophytic tumours) which will guide in their decision

making. In addition, we incorporated a camera parameter cor-

rection module into our unified optimization-based framework

that can be used when the focus/zoom changes. Our results

on synthetic, ex vivo and in vivo clinical cases of partial

nephrectomy illustrate the great potential of the proposed

framework for augmented reality applications in MIS.

The strengths of our method can be summarized by that

it: (i) segments multiple structures; (ii) handles multi-view

endoscopic videos; (iii) estimates the 3D pose of the structures

in the 3D preoperative space; (iv) accounts for non-rigid defor-

mation of structures during the operation; (v) corrects camera

parameters (as needed) when zoom and/or focus changes; (vi)

does not require any point correspondence between preopera-

tive and intraoperative data for pose estimation (a few clicks on

the objects of interest, e.g. kidney/tumour, and background is

sufficient to guide the overlaying process); and (vii) is highly

parallelizable.

In addition, using a region-based formulation helps our

method handle occlusions better compared to methods that are

based on detecting and tracking few number of features/salient

points.

Note that although surgeons only see the visible part of

the kidney and tumour, overlaying the 3D preoperative data

onto the 2D scene has the potential to increase surgeons’

confidence and reduce operation time during the time-sensitive

portions of the surgery. More importantly, this 3D to 2D

alignment helps surgeons to appreciate where the invisible

structures hidden underneath of tissues lie. The small red

artificial tumour in Figure 10 and part of the boundaries of the

exophytic tumours in Figure 13 are in fact hidden structures

that cannot be seen with the naked eye in the endoscopic video.

We emphasize that, in this work we assumed that correct

segmentation and overlay of kidney and exophytic tumours

results in a reasonable alignment of internal structures (i.e.

structures inside the kidney). However, as we did not have the

ground truth for internal structures we could not evaluate them

quantitatively.

Our method has some notable limitations. Our method

relies on a local optimization framework, therefore the final

segmentation and pose recovery results will depend on the

initial pose. Obviously a poor pose initialization can result in

an incorrect solution. However, our experiments suggest that

even with rough initialization that is distant from the desired

solution we can obtain reasonable results (Figure 10(c)).

Another challenge was how to calculating the visual cues.

Due to the large variability among patients, training the RF on

other patients and testing on the current patient did not give

reasonable results. Therefore, we used the current patient data

and selected image patches from the first few frames of the

video sequence to train patient specific random forest models.

This is an important and perhaps the most challenging problem

in image-guided intervention problems that is worthy of future

exploration. One possible direction for future research to

address this issue is to leverage recent research in transfer

learning and domain adaptation [36], [14].

Although we limited the shape parameters to vary not

more than three times their standard deviation, the global

transformation and camera parameters are still unconstrained.

Constraining these variables in the optimization not only can

increase the convergence speed but also can improve the final

results. In future work, such constraints can be learned via

examining many number of surgical cases.

In this work, we tried to create realistic deformation of

structures; however, we believe that faithfully capturing such

complex shape spaces is a highly challenging area of research,

especially when there is limited number of sample structures

available. We foresee that a more elaborate approach (e.g.

based on elasticity properties or more relevant training sam-

ples) can lead to improved results.

Using non-optimized MATLAB code on a standard single

core 3.40 GHz CPU, training and testing the random forest

took about 52 and 2 seconds, respectively. Nonetheless, the

training task can be parallelized to speed up the procedure.

Also, it took less than 6 seconds for our algorithm to segment

each stereo frame of an endoscopic video. We emphasize

that the proposed method is highly parallelizable and GPU

implementation for real-time video segmentation is possible

in future work. In addition to GPU implementation, encoding

depth information into the energy functional as well as using

more advanced shape learning techniques (e.g. kernel PCA)

are two important directions for future work. Experimenting

on more clinical cases and in a more challenging situation

(e.g. during kidney bleeding) as well as setting up an exper-

iment to evaluate the correct alignment of internal structures

quantitatively are other two important direction for expanding

this work in future.
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[1] Luis Alvarez, Luis Gómez, and Pedro Henrı́quez. Zoom dependent lens
distortion mathematical models. Journal of Mathematical Imaging and

Vision, 44(3):480–490, 2012.

[2] Matthias Baumhauer, Marco Feuerstein, Hans-Peter Meinzer, and
J Rassweiler. Navigation in endoscopic soft tissue surgery: perspectives
and limitations. Journal of Endourology, 22(4):751–766, 2008.

[3] Rupin Dalvi and Rafeef Abugharbieh. Fast feature based multi slice to
volume registration using phase congruency. In IEEE Engineering in

Medicine and Biology Society (EMBS), pages 5390–5393. 2008.

[4] Samuel Dambreville, Romeil Sandhu, Anthony Yezzi, and Allen Tan-
nenbaum. Robust 3D pose estimation and efficient 2D region-based
segmentation from a 3D shape prior. In European Conference on

Computer Vision (ECCV), pages 169–182. 2008.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. X, MONTH 20XX 12

[5] Basanna V Dhandra, Ravindra Hegadi, Mallikarjun Hangarge, and
Virendra S Malemath. Analysis of abnormality in endoscopic images
using combined HSI color space and watershed segmentation. In
International Conference on Pattern Recognition (ICPR), volume 4,
pages 695–698, 2006.
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