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ABSTRACT

This paper discusses a unified method for handling the mixed differential
and algebraic equations of the type that commonly occur in th;a transient analysis -
of large networks or in continuous system sifrmlation. The first part of the
paper is a brief review of existing techniques of handling initial value problems
for stiff ordinary differential equations written in the standard form y'=f(y, t).

- In the second part one of these techniques is applied to the problem F(y,y', t)=0.
This may be either a differential or an algebré.ic eqﬁation as 8F/8y" is non-
zero or zero. It will represent a mixed system when vectors F and y represent
components of a system. The method lends itself to the use of sparse matrix

techniques when the problem is sparse.




I. INTRODUCTION

Many problems in transient network analysis and continuous system simu-
lation lead to systems of ordinary differential equations which require the solu-
tion of a simultaneous set of algebraic ‘equations each time that the derivatives
are to be evaluated. The "text book" form of a system of ordinary differential
equations is

w' = £(w, 1) (1)
where w is a vector of dependent variables, f is a vector of functions of w and
time t, of the same dimension as w andw'is the time derlvatlve of w. Most methods
dlscussed in the hterature require the equatmns to be expressed in this form.
The "text book" extension toa simultaneous system of differential and algebram

equatlons (henceforth D—A E's) could be

=g(w, 1, t) (2)
where u is a vector of the same dimension as g (but not necessarily the same as
w).

A simple method for injtial value problems such as Euler's method has the

form
W, =W, f( - l’tn—l) (3)
where h = tn - tn-l is the time increment. Since only ﬁn— 1 is known from the
previbus time step or the initial values, the algebraic equations
0= g(ﬂn-l’l—ln—l’ tn—l) ‘ ' (4)

must be solved for uo1 before each time step.
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The properties of the D-A E's typically encountered are:

Differential Equations

Large
Sparse
Stiff

Algebraic Equations

‘ Large

Sparse

Mildly Nonlinear
By sparse we mean that only a few of the variables w and u appear in any one of
the functions f or g. Stiff means that there are greatly differing time consfants
present, or in other words that the eigenvalues of dw'/dw with u= ww) are widely
spread over the negative half plane. They are niildly nonlinear_ in that many of the
algebraic variables only appear linearly and that the nonlinearities cause the
Jacobians of the system 8(f, g)/8(w, u) to change by only a small amount for small
changes in the dependent variable. In regions where the dependent variables are
changing rapidly, it is typically necessary to use small integration time steps to
follow the solution, so only small changes in the Jacobians occur over each time
step.

A further complication that can occur in some p,roblems_ is that the derivatives’

w' occur implicitly in equations of the form F(w, w',u,t) = 0. (This complication
does not occur in network analysis since techniques have been developed to generate
equations in which the derivatives are explicit, although the fact that explicitness
is no longer necessary does rgise the question of whether the manipulation neces-

sary to put them in this form is worth the effort.)




In order to portray the characteristics of the general problem, we represent

it by the set of s equations

0=HEy, 0Py | ®

rather than the set (2). In Eq. (5) the s depéndent variables _v_v_ plus u have been
replaced by the s variables y plus v. . v represents the set of 89 variables that -
only appear linearly without derivé.tives. P is an s by Sy matrix of constants,
while y is the remaining set of sl' = 8 - 8, variables. It is not always convenient
to solve (5) for y' to get form (2) for several reasons. Among these are:
(i) The y' rﬁay appear noniinearly, and hence a numerical solution may’
require considerable computer time at each step,
(ii) The solution may be ill—-conditibnéd for y' (indeed,.: for stiff equations
'it frequently is),
(iii) Writing the equations in form (2) may‘destroy the sparseness and hence
increase solution time. |
Suppose that we can partition P by row inter'change‘s into an S by Sy matrix

P1 and an Sy by Sg matrix P, which is nonsingular, and that the matching partition
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of H is H, and H, where

(This is possible if the system (5) has a unique solution.) We can then solve for

v and write the reduced System as
v= -P2tH ( ' t) (6)
y 2 2 Y. ¥

| -1 |
0=H .y 0~ PPy Hy(r,¥',0) = K, ¥, 1) . (7)
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in general, so the system is no longer sparse. Sincé methods that are effective

Equation (7) is a smaller system of D-A E's for y. However P~ is a full matrix
for stiff equations involve the use of the Jacobians of the system, we do not normally
want to make this transformation unless 8y is small.

Our goal is to develop a method that will handle (5) directly, exploit the

sparseness, and make use of the linearity of the variables v.
II. STIFF DIFFERENTIAL EQUATIONS

A natural desix_'e is that the numerical method should be stéble whepever the
differential system is also stable. Apart from the trapezoidal rule analyzed by
Dah'lquist1 little is known about the application of numerical methods to other than
the linear system |

w'=A(w - b(t)) + b'(t) = Aw + ¢(t) (8)

where A is a constant square matrix and b(t) is a vector function of time. The
stability of methods for (8) can be shown to be equivalent to studying the test
equations

w'=7\iw, i=1,2,...,n 9)

where the }‘i are the eigenvalues of the matrix A. Since the solution of (8) lS
given by
- At
w(t) = € (w(0) - b + b(t)
we are concerned about restricting the growth of spurious components in the
numerical solution compared to the largest growth rate of either b(t) or any of
At .
the e ' . Such stability restrictions are dependent on the problem being solved
and are hence not useful ones for picking methods suitable for large classes of

problems. Dahlquist1 defined a method to be A-stable if the numei'ical approximation




W it gave to Eq. (9) convergéd to 0 as n tended to infinity whenever Re(hi) <0
and the time increment h was fixed and‘ strictly positive. He proved that the
maximum order of an A-stable multistep‘ method was 2, and that the A-stable
method of order 2 with smallest error coefficient was the trapezoidal rule. For
many problems, second order accuracy is not adeguate, so we must relax thé
Dahlquist A-stability criteria if multistep methods are to be used.

For the remainder of this section we will only discuss w' = f(w,t).
All comments are applicable to systems. The nature of the problem that arises
and the way in which it can be solved is illustrated in Figs. 1 and 2. Figure 1
shows the application of the Euler method wﬁ = W1 +h f(wn__l, tn— l) to the |
equation

w'= Mw - F(t))+F'(t) (10)

where A is a very negative constant and F(t) is a slowly varying function. Some
of the members of the family of solutions are shown in Fig. 1. The Euler method
projects the tangent at time tn-l to ﬁ.ime tn' Because A is so negative, small per-
turbations from the solutions which tend rapidly to F(t) are amplified rapidly unless
h is very small. In fact, the error amplification is a factor of (1 + hA) at each
step so that hA must be greater than -2. Figure 2 shows the backward Euler
method which is given by ' |

woswo .t h‘f(yn, tn) (11)
In this method the implicit Eq. (11) must be soélved for W at each step. It is
equivalent to finding the member of the family of solutions for which the tangent

at t passes through (w_ The error is amplified by 1/(1 - hA) at each

1t
step, and so it is stable when hX is in the negative half plane; Any method that
is to be stable for arbitrarily negative A must be implicit, or equivalently, make

ex_plicit use of the Jacobian. Methods that are A-stable include the Implicit
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Runge Kutta (Ehle), 2 the methods due to Rosenbrock, 3 Ca.la,han4 and Allen5 which
are exfensions of the Runge-Kutta methods that make direct use of the Jacobian,
and the methods of the form .

W =W
n n-1

+ alh(w;1 + w;l_l) + azhz(wg - wg_l) o+ a.qhq(wggl)iL wg_l_)l) (12)
which are of order 2q. The application of these méthodsis a rnajo;r computing task
for large systems and is not generally practical. |

An alternative to requiring A—étability was proposed in Gear. 6 It was sug-
gested that stability was not necessary for values of hi close to the imaginary
axis but not close to the origin. These corréspond to oscillating components that
will continue to be excited in nonlinear probiems. If will thereforé be necessary
to reduce h such that successive values of tn occur at least about 10 times per
cycle. Methods that were stable for all values of hi to the left of Re(h\) = -D
where D was some positive constant, and accurate close to the origin as shown in
Fig. 3 were said to be stiffly stable. The multistep methods of order k given by

WSV g +... +akw¥1_k+h,80w;1 ‘ (13)

were shown to be stiffly stable for k < 6 in Ref. 6. The o and g8 o are uniqueiy
determined by the requirement that the order be k. |

Unfortunately Eq. (13) is an implicit equation for w_ since w}l = f(wn, tn). In
the case that 8f/6w is large the conventional corrector iteration will not converge.
However a Newton iteration can be used. If the first iterate is obtained from an
explicit predictor formula, few iterations are needed. Furthermore, the first

iterate can be made arbitrarily accurate by choosing h small enough. Since Newton's

method is locally convergent, we are guaranteed that we will get convergence for

small enough h.




In Ref. 7 conventional predictor corrector schemes are re-expressed in a

matrix notation that will allow us to equate the methods for differential and alge-

braic equations. We can develop a similar formulation when Newton's method is

used as follows: Let the predicted value of W be Wn, and suppose it is obtained

from the formula

~— - Lenrd o~ iy '
WoSaWo +ooo akwn-_k.+ 5,1‘”11-1

Subtracting this from (13) we get

Wy =W+ ﬁo[h By ) = (N Wpog oo + Wy g * by 1)]

where
V= (@ - O‘i)/ﬁo
and | o
v 81 = El/ﬁo .
Let us use the symbql hW}l for ‘yl‘wn_l + ... LA Slhw;l_ 1" Thus we have

_Wn - Wn * ‘BO[hf,(wn’ tn)' - hw;l]

and, trivially,

hw! = hi§! + [hf(w ,t)-hW‘]
n vIl nn - n

T
. ' .
Define the vector Qn to be [Wn’ hwn, W Wk +1] where T is the transpose
~ ~  pe T '
' .
operator, and 2N to be [Wn’ hwn, Wn—l’ v, Wn—k+1] .. Then we can write
G Py o 4

(19)
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and b = [hf(wn, t)- hW;l] is a scalar such:that (15) satisfies hf(wn, t)- hw' = 0.
(Here hw;1 is the second component of @, given by (15).) We can subject (14) and
(15) to nonsingular linear transformations. In particular, if we note that the com-
ponents of w, represent a unique polynomial Wn(t) of degree k such that Wn(tn_ i) =
Wi 0<i<k, and W;l(tn) = w;l, we can find the transformation which gives the
components of a = [Wn’ h‘:”;l’ h2w;1’/2, cee, hkwgk)/k!]T representing the same

polynomial. If this transfdrmatién is Q we have

e -1
2,7Q@,=QBQ "3, ,=423 ,
_@_n=QQn=QQn+Q2b=En+_gb (16)

where A=Q B Q.—1 is shown to be the Pascal triangle matrix in Ref. 7, and the
values of £ = Q c are given in Ref. 6 for stiff methods of various orders.

We can determine b from

0=hfw_,t )~ hw'
n’ n n
= F(gn, tn) (by def1nitiop)

=F@, +Lb, t) (17)




If this is solved by a Newton iteration starting from b( 0) =0, we get
: . o -1 =
: =b, .- |dF(b,__.)/db b - 18
ety = Py~ [T/ 98] Py (9
where ’
F(b) = F@E, +4b, t;)
Writing
5n, (m) =8 i b(m)
we get
20,07 251
k -1
_ SF | |
24, (m+1) ~ 2n, (m) -4 [?::0 Ba, 2i]' F@,, (m)’tn) (19)

where a is the ith component of a, numbei'ing from 0. We now note that this
technigue is not dependent on the differential equations being written in the explicit
form (1). It cé.n be applied directly to F(a,t) = K(w, w',t) = 0 provided that approxi-
mations to the Jacobians can be found. Errors in these approximations do not

affect the error in the numerical solution, they only effect the rate of convergence

of (19).
III. ALGEBRAIC EQUATIONS

If Egs. (2) are to be solved by the implicit algorithm (13), we must solve the

simultaneous algebraic system

k—W-n-k *h§ 0 f(Ev-n’-l-ln’ tn)

™ %1%n1

+ .00t
0= -g:(_vy_n,gn,.ztn) :

for W and u at each step. Calahang‘ and Hachtel et al., 10 do this by a simultaneous

Newton iteration. The interesting and useful point to be brought out in this section

is that it is not necessary to distinguish between the algebraic and differential

variables, so that system (5) can be handled directly.

-.10 -




For the remainder of this section we discuss the single equation g(u, t) = 0.
All comments apply to systems. If the values of u(t) are known at a number of
previous time steps tn—-i’ 1<i<k + 1 we can approximate ﬁn = u(tn) by extrapola-
tion, that is by evaluating. the uniqﬁe kth degree polynomial that passes through
these Wi Calling this approximation u, we have

- T
= MY e Ty Ykl

We write

T

-

- T ~ _
By = [un’ oS LARRE un‘—k+1] and Bp= [un’ T un--k-l-l]

We then have

BE,=Ep, 4 : " (20)
where
[y M Mk
1 0 0 0
E = 0 1 0 0
0 0 1 0

Let b be such that w, the solution of g(un, tn) = 0, satisfies

a =u_+b
n n

If we define e = [1, 0,..., O]T, we can writé
b, =E,*eb (21)
b is such that by satisfies
g(un,tn)‘= G(H-n’ tn) (by definition)
=G, +eb t)=0 (22)

kth

We can represent the degree polynomial that was used to extrapo.late from

u _; to ﬁn by the values of its derivatives at t _,, that is by the components of
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a 4= [un-l’ hu;l—l’ .. (k) /k!] . When we apply the appropriate linear trans-

formation S to obtaina: . =Spu we have from (20)
. T =n~1 n-1 o , v

=sg =SES'a
and from (21) | v

a =Z +Seb o (23)
The matrix SE 8™ is the paécal triangle matrix A é.nd th:evv;ec.:tc;r S e is identiéal
to the vector ¢ .(_s.,ee Ref. 11) so_fhese equations are identical to\Eq; (16) derived
for :differéntial equations. Thereforé, iteraﬁ_ion (19) can be use.d to solve Eqs .. (22)
and (23) for b if we identify G with F. (They are both functionsléf .t and the first “

component of a only, namely u, or wn respectively.)
IVv. MIXED SYSTEMS

The equation F(a, ‘f) l= K(w, w', f) =0isa différént.iai equatidn ifaK/aw' # 0,
otherwise it is an algebraic equétion. Because the ébove techniques for différential
and algebraic équations are identical, it is not necessary to distinguish in the cases.
The fact that the Jacobian K/w' = hc’>’F/6>a1 appears in (19) causes the method
to adjust appropriately. If the system .(7) is to be solved, we handle it as follows.
Let the ith components of y and y' be carried along with higher order derivatives

as gl, 1<i<s. We write the jth equation from (7) 'as

F( {a {a hon=0
The prediction step is
i i
2,7 A 2r1

- 12 -




and the Newton corrector iteration (19) is

s k J i i i .
gl [qgo Sfi_ Eq](gn’(m) ~ (m+1>) - ?]Gﬁn, (m)}’ tn) &
We know that by choosing sufficiently small h, the predictor can be made arbitrarily
accurate for both algebraic and differential variables, so, for small enough h, we |
will be within the region of convergence of Newton's method.

The linear system (24) must be solved for each correction iteration. If the
Jacobians are sparse, appropriate techniques can be used (see Hachtel et al., 10).
If, as is common, they are slowly varying, they need not be re-evaluated at each ‘
iteration, although Calaha.n9 suggests ﬁhat it is valuable to evaluate them immediately
after eaéh prediction step. .

It is possible to avoid the work of predicting the first approximation of the
linear variables v in (5). Initial errors in Y, (0) do not affect the corrector itera-

tion for the nonlinear algebraic or differential equations. This can be seen by

considering the partition used to get (6) and (7). Iteration (24) will take the form

[ 6, 8H, 1, 7 T ] i )
e e, : t
oy vty B Pib Ay Hy(y,¥'\t) + Py
= -'QO
8_112 6_112 !Zl : : .
e — t
& QO + 5y h PZIZO Av L»EZ(X,X 0 + sz_ |
(29)
where AXn = Xn, (m+1) *Y-n, (m) and Av is similar. Premultiply this by
-1
I Ple
0 I
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po 2 - - - - -
2 M -1 i} -1
(20 3y "L 8y') (-—1 P1Ps Hz) e H-P Pty
) "
8. 1.8
_( 03y Th 82') H PzﬂoJ A L-I-{-z

The first rows of this iteration are those that would arise if (7) were solved by
the same technique, and are independent of v. Therefore the errors in X do not
affect the iteration, so only the cu’rrent-valueA v, beed bg saved from step n.
"Prediction"” can consist of the step -Yn, (0) =¥, 1 which requires' no computation

for the linear variables.
V. PROGRAM ORGANIZATION

In this section we give an outline of the-orga’iaizatibn of a subroutine which
generates the values of the vectors gil from the values of 3;—-1' {This subroutine
is available from the author, although it is currently "experimental, ' that is,
inadequately documented. It is an extension of the subroutine for stiff ordinary
differential equations given in Ref. 8.)

The subroutine calls on a lower level user supplied subroutine which must
evaluate the components of H(y,y', t) + Pv when values of y, y', vand t are given.
It chooses the order of the method and the step siz.e automaticé.lly. Starting is
accomplished by setting the order of the method to one so that the only components
of 2 are Yo which is given and hy‘o which is set to zei‘o. The program flow is
outlined in Fig. 4. The main inner loop is a correction loop which may be tra-
versed up to three times. If corrections are not sméil by then the Jacobian is
re-evaluated. If this has already been tried, the step size is reduced by a factor

of 4 to try and get into the region of convergence for Newton's method. When
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small corrections are obtained, the differences between the predictor and corrector
are used as estimates of the single step truncation error. If this is larger than a
user supplied parameter, the step is reduced by an amount dependent on the order, '
and the step is repeated. If the error is ackceptable, the step sizes that could be
used for this order, one order higher, and one order lower are estimated. The
largest of these is chosen for the next step, and the appropriate order is selected.
Details of this and many other minor problems that must be handled in a practical
integration algorithm are similar to those in the package given in Ref. 8 for dif-

ferential equati‘ons', and described in Ref. 12.
VI. A NUMERICAL EXAMPLE

The following exé.mple is "artificial" in that it is not derived from a network.
Rather it consists of a set of stiff differential equations coupled to a set of dif-
ferentival and algebraic equations. These have been chosen because enough of the
solution is known to permit checking of the answers, and because they illustrate

the features of the method.
A system of four differential equafions has been proposed by Krogh (private

communication) to test stiff equations. They are given by:

4
0=y!—s+(r—y.)2+2b..y. fori=1to4 (26)
i i [ R A

where

r=(y1+y2+y3+y4)/2

4 2
S=Z (r‘yi) /2
i=1




and bij is a symmetric matrix with

bll}.—; b22= byg= by, = 447.50025
| byy = ~by, = by = =byo = ~452.49975
byg=-by, = by, =-by, =~ 47.49975
biy = “byg =byy =-byy =~ 52.50025

Their solution is given by Yi=P- 2% where
p= (Z.l + 2y + Zg + z4)/2
and .
(reos)
zi—ﬁi/ 1+ce
(This is the solution of z! = z.2 - [3‘.2.,.) The starting conditons are y; = -1, so that
=-(1+8. ) (The values of[3 used are ,B1 = 1000, Bz = 800 33 = -10, and
ﬁ’ = 0.001.) Ast tends to infinity the eigenvalues of the system approach - ﬁ
4
To this system we add the four equations

0=y + 3y 1Y

_ 3 -t _
0-2y6+y6 y1_+v1—1—e —-F6
0=vy-Vy+y96=Fy

0= vyt Y, + 5y1y2 = F8_ (27)

with the initial conditions Y5 =Yg = 1, V= -2, and Vo = -3. It is not immediately
evident whether these represent differential equations for Y5: Ygo OT both! In facl;
they were chosen so that the first of these equations can be integrated to give

0= yg + Y1Yg = F5 4 (28)
The system of 8 Egs. (26) and (27) have been integrated by the technique described.

The maximum error iny, toy 4 and the residuals Fy to Fg are shown in Table I




at times t = .01 and t = 1000, along with the number of steps, evaluations

of equations, and evaluations of the Jacbbian and subsequent matrix inversion.

The single step error control parémeter was varied from 10_%L to 10-8. The
integration was started att=0. Byt= .01 th_e most rapidly changing component
was down by a factor of about e'lo, by t = 1000, the system was approaching
equilibrium. (The slowest component was causing changes in the fourth significant
digit.) A conventional integration scheme would faii because of the stiffness of

the differential equations. (Adam's method takes from 3 to 10 million equation

evaluations for this problem depending on the error control parameter.)
VI. SUMMARY

If the mathematical mode1 has a unique solution, the numerical method pre-
sented will compute it, although for badly conditioned problems the step size may
be small. Even if the algebraic equations permit more than one solution, the
ﬁlethod will follow the one smoothly connected to the initial values as long as the
multiple solutions remain distinct to within the error criteria. In some cases
the method will extrapolate through a multiple foot of the algebraic equations
providing that the solution is sufficiently smooth, but usually, near a multiple
root, the corrector iteration will fail to converge although the step size will have
been reduced to the minimum allowed. (This is a user parameter to the program.)

A current problem, common to' other methods, is that the initial values of
the variables y.and v must be provided. This means that a partial solution of
the algebraic equations is necessary initially. Currently an investigation of
techniques for solving algebraic equations by means of differential equations is
underway. It is expected that this will make it possible to use the same program

to generate those initial conditions not supplied by the user.
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The method is similar to that used in Refs. 9 and 10, iﬁ fact the method for
differential equations is identical. However this method has the advantage that
the same technique is applied to both algebraic and differential variables, making
it unnecessary to distinguish between them. This has important consequences
for continuous system simulation, and can have cogsequences for ‘network analysis
since it will né longer be necessary to mahipulate the equations into a "text book”

form.
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That the matrices Q B Q—l and S E S © are both the Pascal triangle matrix

A follows from the fact that B and E represent the highest possible order (k)
extrapolation process possible in their respective representations, as does A,

They must, therefore, be equivalent.

. For small € the differential equation ew' = f(w, t) is stiff. The limit of this as

€ tends to 0 is the algebraic equation 0 = f(w,t). If we take the limit of the
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numerical method (13) as € tends to 0 for this f)roblem we find ourselves
solving hﬁof(wn, tn) = 0. Thus the limit of iteration (19) as € tend}s to 0 will
give a technique for solving algebraic equations. Its matrix will be A and
its vector £. The error amplification matrix for both p‘roblems'(the relation
between the errors in a, and zerrors in E-n—l) will have all zero eigenvalues
since the error at tn is independent of earlier errors when the corrector is
iterated to convergence for an algebraic equation. In Ref. 7 it is shown that
the eigenvalues ﬁniquely deterfnine the vector £ fo_r this problem, hence {
and S e are idenfical.

C. W. Gear, "The automatic integration of ordinary differential equations, "

(to appear in C.A.C.M.)
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_Diff. Eq.
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Fig. 1

Euler solution of (10).
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1552A2

Backward Euler solution of (10).
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Is this ﬁy

No

- Yes

Set Order to |

100

Set hyg

]

Predict ap

Compute D=
Hiy,y, 1) +Pv

Numerically

1o get Jacobions Invert®

Difference

Set EVAL to-1

1

Premultiply * by
inverse of Jacobions
and correct,

Are correc'w

Yes

Set EVAL to O

Estimate Ecror by
Predictor Corrector

Difference

No

Third Correction ?

No

Reduce H by 4

Reduce H

Error less then E ?

Choose Qrder
ond Step Size
for Next Step

EXIT

#~In practice we neither invert the Jacobion

nor multiply by the inverse. Gaussian

efimination is used, with sparse techniques

if appropriote.

Fig. 4

Program organization.:

738



