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Abstract. We present a novel Object Recognition approach based on affine invariant regions. It actively counters

the problems related to the limited repeatability of the region detectors, and the difficulty of matching, in the

presence of large amounts of background clutter and particularly challenging viewing conditions. After producing

an initial set of matches, the method gradually explores the surrounding image areas, recursively constructing more

and more matching regions, increasingly farther from the initial ones. This process covers the object with matches,

and simultaneously separates the correct matches from the wrong ones. Hence, recognition and segmentation are

achieved at the same time. The approach includes a mechanism for capturing the relationships between multiple

model views and exploiting these for integrating the contributions of the views at recognition time. This is based on

an efficient algorithm for partitioning a set of region matches into groups lying on smooth surfaces. Integration is

achieved by measuring the consistency of configurations of groups arising from different model views. Experimen-

tal results demonstrate the stronger power of the approach in dealing with extensive clutter, dominant occlusion,

and large scale and viewpoint changes. Non-rigid deformations are explicitly taken into account, and the approx-

imative contours of the object are produced. All presented techniques can extend any view-point invariant feature

extractor.

1. Introduction

The modern trend in Object Recognition has aban-

doned model-based approaches (e.g. Bebis et al.,

∗This research was supported by EC project VIBES, the Fund for

Scientific Research Flanders, and the IST Network of Excellence

PASCAL.

1995), which require a 3D model of the object as in-

put, in favor of appearance-based ones, where some

example images suffice. Two kinds of appearance-

based methods exist: global and local. Global methods

build an object representation by integrating informa-

tion over an entire image (e.g. Cyr and Kimia, 2001;

Murase and Nayar, 1995; Swain and Ballard, 1991),

and are therefore very sensitive to background clutter
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and partial occlusion. Hence, global methods only con-

sider test images without background, or necessitate a

prior segmentation, a task which has proven extremely

difficult. Additionally, robustness to large viewpoint

changes is hard to achieve, because the global object

appearance varies in a complex and unpredictable way

(the object’s geometry is unknown). Local methods

counter problems due to clutter and occlusion by rep-

resenting images as a collection of features extracted

based on local information only (e.g. Selinger and

Nelson, 1999). After the influential work of Schmid

(1996), who proposed the use of rotation-invariant fea-

tures, there has been important evolution. Feature ex-

tractors have appeared (Lowe, 2004; Mikolajczyk and

Schmid, 2001) which are invariant also under scale

changes, and more recently recognition under gen-

eral viewpoint changes has become possible, thanks

to extractors adapting the complete affine shape of the

feature to the viewing conditions (Baumberg, 2000;

Matas et al., 2002; Mikolajczyk and Schmid, 2002;

Schaffalitzky and Zisserman, 2002; Tuytelaars et al.,

1999; Tuytelaars and Van-Gool, 2000). These affine

invariant features are particularly significant: even

though the global appearance variation of 3D objects

is very complex under viewpoint changes, it can be

approximated by simple affine transformations on a

local scale, where each feature is approximately planar

(a region). Local invariant features are used in many

recent works, and provide the currently most success-

ful paradigm for Object Recognition (e.g. Lowe, 2004;

Mikolajczyk and Schmid, 2002; Obrdzalek and Matas,

2002; Rothganger et al., 2005; Tuytelaars and Van-

Gool, 2000). In the basic common scheme a number

of features are extracted independently from both a

model and a test image, then characterized by invari-

ant descriptors and finally matched.

In spite of their success, the robustness and general-

ity of these approaches are limited by the repeatability

of the feature extraction, and the difficulty of matching

correctly, in the presence of large amounts of clutter

and challenging viewing conditions. Indeed, large scale

or viewpoint changes considerably lower the proba-

bility that any given model feature is re-extracted in

the test image. Simultaneously, occlusion reduces the

number of visible model features. The combined effect

is that only a small fraction of model features has a cor-

respondence in the test image. This fraction represents

the maximal number of features that can be correctly

matched. Unfortunately, at the same time extensive

clutter gives rise to a large number of non-object fea-

tures, which disturb the matching process. As a final

outcome of these combined difficulties, only a few, if

any, correct matches are produced. Because these of-

ten come together with many mismatches, recognition

tends to fail.

Even in easier cases, to suit the needs for repeata-

bility in spite of viewpoint changes, only a sparse set

of distinguished features (Matas et al., 2002) are ex-

tracted. As a result, only a small portion of the object

is typically covered with matches. Densely covering

the visible part of the object is desirable, as it increases

the evidence for its presence, which results in higher

detection power. Moreover, it would allow to find the

contours of the object, rather than just its location.

Simultaneous recognition and segmentation. In the

first part of the paper we tackle these problems with a

new, powerful technique to match a model view to the

test image which no longer relies solely on matching

viewpoint invariant features. We start by producing an

initial large set of unreliable region correspondences,

so as to maximize the number of correct matches, at

the cost of introducing many mismatches. Addition-

ally, we generate a grid of regions densely covering the

model image. The core of the method then iteratively

alternates between expansion phases and contraction

phases. Each expansion phase tries to construct re-

gions corresponding to the coverage ones, based on the

geometric transformation of nearby existing matches.

Contraction phases try to remove incorrect matches,

using filters that tolerate non-rigid deformations.

This scheme anchors on the initial matches and then

looks around them trying to construct more. As new

matches arise, they are exploited to construct even

more, in a process which gradually explores the test im-

age, recursively constructing more and more matches,

increasingly farther from the initial ones. At each iter-

ation, the presence of the new matches helps the filter

taking better removal decisions. In turn, the cleaner

set of matches makes the next expansion more effec-

tive. As a result, the number, percentage and extent

of correct matches grow with every iteration. The two

closely cooperating processes of expansion and con-

traction gather more evidence about the presence of

the object and separate correct matches from wrong

ones at the same time. Hence, they achieve simultane-

ous recognition and segmentation of the object.

By constructing matches for the coverage regions,

the system succeeds in covering also image areas which

are not interesting for the feature extractor or not
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discriminative enough to be correctly matched by tra-

ditional techniques. During the expansion phases, the

shape of each new region is adapted to the local sur-

face orientation, allowing the exploration process to

follow curved surfaces and deformations (e.g. a folded

magazine).

The basic advantage of our approach is that each sin-

gle correct initial match can expand to cover a smooth

surface with many correct matches, even when start-

ing from a large number of mismatches. This leads to

filling the visible portion of the object with matches.

Some interesting direct advantages derive from it. First,

robustness to scale, viewpoint, occlusion and clutter

are greatly enhanced, because most cases where tradi-

tional approaches generate only a few correct matches

are now solvable. Secondly, discriminative power is in-

creased, because decisions about the object’s identity

are based on information densely distributed over the

entire portion of the object visible in the test image.

Thirdly, the approximate boundary of the object in the

test image is suggested by the final set of matches.

Fourthly, non-rigid deformations are explicitly taken

into account.

Integrating multiple model views. When multiple

model views are available, there usually are signifi-

cant overlaps between the object parts seen by different

views. In the second part of the paper, we extend our

method to capture the relationships between the model

views, and to exploit these for integrating the contri-

butions of the views during recognition. The main in-

gredient is the novel concept of a group of aggregated

matches (GAM). A GAM is a set of region matches be-

tween two images, which are distributed over a smooth

surface of the object. A set of matches, including an

arbitrary amount of mismatches, can be partitioned

into GAMs. The more matches there are in a GAM,

the more likely it is that they are correct. Moreover,

the matches in a GAM are most often all correct, or all

incorrect. When evaluating the correctness and inter-

relations of sets of matches, it is convenient to reason at

the higher perceptual grouping level that GAMs offer:

no longer consider unrelated region matches, but the

collection of GAMs instead. Hence, GAMs become

the atomic unit, with their size carrying precious infor-

mation. Moreover, the computational complexity of a

problem can be reduced, because there are consider-

ably fewer relevant GAMs than region matches.

Concretely, multiple-view integration is achieved as

follows. During modeling, the model views are con-

nected by a number of region-tracks. At recognition

time, each model view is matched to the test image,

and the resulting matches are partitioned into GAMs.

The coherence of a configuration of GAMs, possibly

originating from different model views, is evaluated

using the region tracks that span the model views. We

search for the most consistent configuration, covering

the object as completely as possible, and define a confi-

dence score which strongly increases in the presence of

compatible GAMs. In this fashion, the detection power

improves over the simple approach of considering the

contribution of each model view independently. More-

over, incorrect GAMs are discovered because they do

not belong to the best configuration, thus improving

the segmentation.

Paper structure. Sections 2 to 8 cover the first part:

the image-exploration technique to match a model view

to the test image. The integration of multiple model

views is described in the second part, Sections 9 to 12.

A discussion of related work can be found in Section

14, while experimental results are given in Section 13.

Finally, Section 15 closes the paper with conclusions

and possible directions for future research. Preliminary

versions of this work have appeared in Ferrari et al.

(2004a, b).

2. Overview of Part I: Simultaneous Recognition

and Segmentation

Figure 2(a) shows a challenging example, which is

used as case-study throughout the first part of the paper.

There is a large scale change (factor 3.3), out-of-plane

rotation, extensive clutter and partial occlusion. All

these factors make the life of the feature extraction and

matching algorithms hard.

A scheme of the approach is illustrated in Fig. 1.

We build upon a multi-scale extension of the extrac-

tor of Tuytelaars and Van-Gool (2000). However, the

method works in conjunction with any affine invariant

region extractor (Baumberg, 2000; Matas et al., 2002;

Mikolajczyk and Schmid, 2002). In the first phase (soft

matching), we form a large set of initial region corre-

spondences. The goal is to obtain some correct matches

Figure 1. Phases of the image-exploration technique.
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also in difficult cases, even at the price of including a

large majority of mismatches. Next, a grid of circular

regions covering the model image is generated (coined

coverage regions). The early expansion phase tries to

propagate these coverage regions based on the geomet-

ric transformation of nearby initial matches. By propa-

gating a region, we mean constructing the correspond-

ing one in the test image. The propagated matches and

the initial ones are then passed through a novel local fil-

ter, during the early contraction phase, which removes

some of the mismatches. The processing continues by

alternating faster expansion phases (main expansion),

where coverage regions are propagated over a larger

area, with contraction phases based on a global filter

(main contraction). This filter exploits both topological

arrangements and appearance information, and toler-

ates non-rigid deformations.

The ‘early’ phases differ from the ‘main’ phases in

that they are specialized to deal with the extremely

low percentage of correct matches given by the initial

matcher in particularly difficult cases.

3. Soft Matching

The first stage is to compute an initial set of region

matches between a model image Im and a test image It.

The region extraction algorithm (Tuytelaars and

Van-Gool, 2000) is applied to both images indepen-

dently, producing two sets of regions �m, �t, and a

vector of invariants describing each region (Tuytelaars

and Van-Gool, 2000). Test regions �t are matched

to model regions �m in two steps, explained in the

next two subsections. The matching procedure allows

for soft matches, i.e. more than one model region is

matched to the same test region, or vice versa.

3.1. Tentative Matches

For each test region T ∈ �t we first compute the Maha-

lanobis distance of the descriptors to all model regions

M ∈ �m. Next, the following appearance similarity

measure is computed between T and each of the 10

closest model regions:

sim(M, T ) = NCC(M, T ) +
(

1 −
dRGB(M, T )

100

)

(1)

where NCC is the normalized cross-correlation be-

tween the regions’ greylevel patterns, while dRGB

is the average pixel-wise Euclidean distance in RGB

color-space after independent normalization of the

3 colorbands (necessary to achieve photometric in-

variance). Before computation, the two regions are

aligned by the affine transformation mapping T to

M. This mixed measure is more discriminative than

NCC alone, which is the most common choice in the

literature (Obrdzalek and Matas, 2002; Mikolajczyk

and Schmid, 2002; Tuytelaars and Van-Gool, 2000).

NCC mostly looks at the pattern structure, and dis-

cards valuable color information. A green disc on a

red background, and a bright blue disc on a dark blue

background would be very similar under NCC. dRGB

captures complementary properties. As it focuses on

color correspondence, it would correctly score low the

previous disc example. However, it would confuse a

green disc on a bright green background with a green

cross on a bright green background, a difference which

NCC would spot. By summing these two measures, we

obtain a more robust one which alleviates their com-

plementary shortcomings.

Each of the 3 test regions most similar to T above

a low threshold t1 are considered tentatively matched

to T. Repeating this operation for all regions T ∈ �t,

yields a first set of tentative matches. At this point,

every test region could be matched to either none, 1, 2

or 3 model regions.

3.2. Refinement and Re-Thresholding

Since all regions are independently extracted from the

two images, the geometric registration of a correct

match is often not optimal. Two matching regions often

do not cover exactly the same physical surface, which

lowers their similarity. The registration of the tentative

matches is now refined using our algorithm (Ferrari

et al., 2003), that efficiently looks for the affine trans-

formation that maximizes the similarity. This results

in adjusting the region’s location and shape in one of

the images. Besides raising the similarity of correct

matches, this improves the quality of the forthcoming

expansion stage, where new matches are constructed

based on the affine transformation of the initial ones.

After refinement, the similarity is re-evaluated and

only matches scoring above a second, higher threshold

t2 are kept.1 Refinement tends to raise the similarity of

correct matches much more than that of mismatches.

The increased separation between the similarity distri-

butions makes the second thresholding more effective.

At this point, about 1/3 to 1/2 of the tentative matches

are left.
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3.3. Motivation

The obtained set of matches usually still contains soft

matches, i.e. more than one region in �m is matched

to the same region in �t, or vice versa. This contrasts

with previous works (Baumberg, 2000; Lowe, 2004;

Mikolajczyk and Schmid, 2002; Obrdzalek and Matas,

2002; Tuytelaars and Van-Gool, 2000), but there are

two good reasons for it. First, the scene might contain

repeated, or visually similar elements. Secondly, large

viewpoint and scale changes cause loss of resolution

which results in a less accurate geometric correspon-

dence and a lower similarity. When there is also ex-

tensive clutter, it might be impossible, based purely on

local appearance (Schaffalitzky and Zisserman, 2002),

to decide which of the best 3 matches is correct, as sev-

eral competing regions might appear very similar, and

score higher than the correct match. A classic 1-to-1

approach may easily be distracted and fail to produce

the correct match.

The proposed process outputs a large set of plausi-

ble matches, all with a reasonably high similarity. The

goal is to maximize the number of correct matches,

even at the cost of accepting a substantial fraction

of mismatches. This is important in difficult cases,

when only a few model regions are re-extracted in

the test image, because each correct match can start

an expansion which will cover significant parts of the

object.

Figure 2(a) shows the case-study, for which 3 correct

matches out of 217 are found (a correct-ratio of 3/217).

The large scale change, combined with the modest

resolution (720×576), causes heavy image degradation

which corrupts edges and texture. In such conditions

only a few model regions are re-extracted in the test

image and many mismatches are inevitable. In the rest

of the paper, we refer to the current set of matches as

the configuration Ŵ.

How to proceed? Global, robust geometry filtering

methods, like detecting outliers to the epipolar geom-

etry through RANSAC (Torr and Murray, 1997) fail,

as they need a minimal portion of inliers of about 1/3

(Chum et al., 2003; Lowe, 2004). Initially, this may

very well not be the case. Even if we could separate

out the few correct matches, they would probably not

be sufficient to draw reliable conclusions about the

presence of the object. In the following sections, we

explain how to gradually increment the number of cor-

rect matches and simultaneously decrease the number

of mismatches.

Figure 2. (a) Case-study, with model image (top), and test image

(bottom). (b) A close-up with 3 initial matches. The two model

regions on the left are both matched to the same region in the test

image. Note the small occluding rubber on the spoon.

Figure 3. (a) The homogeneous coverage �. (b) A support region

(dark), associated sectors (lines) and candidates (bright).

4. Early Expansion

4.1. Coverage of the Model Image

We generate a grid � of overlapping circular regions

densely covering the model image Im (Fig. 3(a)). In our

implementation the grid is composed of a first layer of

regions of radius 25 pixels, spaced 25 pixels, and a sec-

ond layer with radius 13 pixels and spaced 25 pixels.2

No regions are generated on the black background.

According to various experiments, this choice of the

parameters is not crucial for the overall recognition

performance. The choice of the exact grid pattern, and

consequently the number of regions in �, trades seg-

mentation quality for computational cost, and could be

selected based on the user’s desires.

At this point, none of the regions in � is matched

to the test image It. The expansion phases will try to
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construct in It as many regions corresponding to them

as possible.

4.2. Propagation Attempt

We now define the concept of propagation attempt

which is the basic building-block of the expansion

phases and will be used later. Consider a region Cm

in model image Im without match in the test image

It and a nearby region Sm, matched to St. If Cm and

Sm lie on the same physical facet of the object, they

will be mapped to It by similar affine transformations.

The support match (Sm, St) attempts to propagate the

candidate region Cm to It as follows:

1. Compute the affine transformation A mapping Sm to

St.

2. Project Cm to It via A: Ct = ACm.

The benefits of exploiting previously estab-

lished geometric transformations was also noted by

Schaffalitzky and Zisserman (2002).

4.3. Early Expansion

Propagation attempts are used as a basis for the first

expansion phase as follows. Consider as supports

{Si = (Si
m, Si

t )} the soft-matches configuration Ŵ, and

as candidates � the coverage regions �. For each sup-

port region Si
m we partition Im into 6 circular sectors

centered on the center of Si
m (Fig. 3(b)).

Each Si
m attempts to propagate the closest candidate

region in each sector. As a consequence, each candidate

Cm has an associated subset ŴCm
⊂ Ŵ of supports that

will compete to propagate it. For a candidate Cm and

each support Si in ŴCm
do:

1. Generate C i
t by attempting to propagate Cm via Si.

2. Refine C i
t . If C i

t correctly matches Cm, this adapts

it to the local surface orientation (handles curved

and deformable objects) and perspective effects (the

affine approximation is only valid on a local scale).

3. Compute the color transformation T i
RG B =

{sR, sG, sB} between Si
m and Si

t . This is specified by

the scale factors on the three colorbands.

4. Evaluate the quality of the refined propagation at-

tempt, after applying the color transformation T i
RGB

simi = sim
(

Cm, C i
t , T i

RGB

)

=

NCC
(

T i
RGBCm, C i

t

)

+
(

1 −
dRGB(T i

RGBCm, C i
t )

100

)

Applying T i
RG B allows to use the unnormalized sim-

ilarity measure sim, because color changes are now

compensated for. This provides more discriminative

power over using sim.

We retain Cbest
t , with best = arg maxi simi, the best

refined propagation attempt. Cm is considered success-

fully propagated to Cbest
t if simbest > t2 (the matching

threshold). This procedure is applied for all candidates

Cm ∈ �.

Most support matches may actually be mismatches,

and many of them typically lie around each of the

few correct ones (e.g. several matches in a single soft-

match, Fig. 2(b)). In order to cope with this situation,

each support concentrates its efforts on the nearest can-

didate in each direction, as it has the highest chance to

undergo a similar geometric transformation. Addition-

ally, every propagation attempt is refined before eval-

uation. Refinement raises the similarity of correctly

propagated matches much more than the similarity of

mispropagated ones, thereby helping correct supports

to win. This results in a limited, but controlled growth,

maximizing the chance that each correct match prop-

agates, and limiting the proliferation of mispropaga-

tions. The process also restricts the number of refine-

ments to at most 6 per support (contains computational

cost).

For the case-study, 113 new matches are generated

and added to the configuration Ŵ. 17 of them are correct

and located around the initial 3 (Fig. 4(a)). The correct-

ratio of Ŵ improves to 20/330 (Fig. 4(b)), but it is still

very low.

5. Early Contraction

The early expansion guarantees good chances that

each initial correct match propagates. As initial fil-

ter, we discard all matches that did not succeed

in propagating any region. The correct-ratio of the

case-study improves to 20/175 (no correct match

is lost), but it is still too low for applying a

global filter. Hence, we developed the following local

filter.
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Figure 4. (a) Early propagation generates 17 correct matches

(bright) out of 113. These are located around the initial 3 correct

matches (dark). (b) The configuration after early expansion has 20

correct matches (bright) and 310 mismatches (dark).

A local group of regions in the model image have

uniform shape, are arranged on a grid and intersect

each other with a specific pattern. If all these regions

are correctly matched, the same regularities also appear

in the test image, because the surface is contiguous

and smooth (regions at depth discontinuities cannot be

correctly matched anyway). This holds for curved or

deformed objects as well, because the affine transfor-

mation varies slowly and smoothly across neighboring

regions (Fig. 5(a)). On the other hand, mismatches tend

to be randomly located over the image and to have dif-

ferent shapes.

We propose a novel local filter based on this obser-

vation. Let {N i
m} be the neighbors of a region Rm in the

model image. Two regions A, B are considered neigh-

bors if they intersect, i.e. if Area(A ∩ B) > 0. Only

neighbors which are actually matched to the test image

are considered. Any match (Rm, Rt) is removed from Ŵ

if

∑

{N i
m }

∣

∣

∣

∣

Area(Rm ∩ N i
m)

Area(Rm)
−

Area(Rt ∩ N i
t )

Area(Rt )

∣

∣

∣

∣

> ts (2)

with ts some threshold.3 The filter, illustrated in

Fig. 5(b), tests the preservation of the pattern of in-

tersections between R and its neighbors (the ratio of

areas is affine invariant). Hence, a removal decision is

based solely on local information. As a consequence,

Figure 5. Surface contiguity filter. (a) The pattern of intersection

between neighboring correct region matches is preserved by transfor-

mations between the model and the test images, because the surface

is contiguous and smooth. (b) The filter evaluates this property by

testing the conservation of the area ratios.

this filter is unaffected by the current, low overall ratio

of correct matches.

Shape information is integrated in the filter, making

it capable of spotting insidious mismatches which are

roughly correctly located, yet have a wrong shape. This

is an advantage over the (semi-) local filter proposed

by (Schmid, 1996), and later also used by others

(Schaffalitzky and Zisserman, 2002; Sivic and

Zisserman, 2003), which verifies if a minimal amount

of regions in an area around Rm in the model image

also match near Rt in the test image.

The input regions need not be arranged in a regular

grid, the filter applies to a general set of (intersecting)

regions. Note that isolated mismatches, which have no

neighbors in the model image, will not be detected. The

algorithm can be implemented to run in O((|Ŵ|+x)log

(|Ŵ|)), with x ≪ |Ŵ|2 the number of region intersections

(Ferrari, 2004, pp. 202–203).

Applying this filter to the case-study brings the

correct-ratio of Ŵ to 13/58, thereby greatly reducing

the number of mismatches.

6. Main Expansion

The first early expansion and contraction phases

brought several additional correct matches and

removed many mismatches, especially those that
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Figure 6. Left: a candidate (thin) and 2 of 20 supports within

the large circular area. Right: the candidate is propagated to the

test image using the affine transformation A of the support on the

right (thick). Refinement adapts the shape to the perspective effects

(brighter). The other support is mismatched to a region not visible

in this close-up.

concentrated around the correct ones. Since Ŵ is

cleaner, we can now try a faster expansion.

All matches in the current configuration Ŵ are re-

moved from the candidate set � ← �\Ŵ, and are used

as supports. All support regions Si
m in a circular area4

around a candidate Cm compete to propagate it:

1. Generate C i
t by attempting to propagate Cm via Si.

2. Compute the color transformation T i
RG B of Si.

3. Evaluate simi = sim(Cm, C i
t , T i

RGB).

We retain Cbest
t , with best = arg maxi simi and refine it,

yielding C ref
t . Cm is considered successfully propagated

to C ref
t if sim(Cm, C ref

t ) > t2 (Fig. 6). This scheme is

applied for each candidate.

In contrast to the early expansion, many more sup-

ports compete for the same candidate, and no refine-

ment is applied before choosing the winner. However,

the presence of more correct supports, now tending to

be grouped, and fewer mismatches, typically spread

out, provides good chances that a correct support will

win a competition. In this process each support has

the chance to propagate many more candidates, spread

over a larger area, because it offers help to all can-

didates within a wide circular radius. This allows the

system to grow a mass of correct matches. Moreover,

the process can jump over small occlusions or degraded

areas, and costs only one refinement per candidate. For

the case-study, 185 new matches, 61 correct, are pro-

duced, thus lifting the correct-ratio of Ŵ up to 74/243

(31%, Fig. 9, second row).

7. Main Contraction

At this point the chances of having a sufficient num-

ber of correct matches for applying a global filter are

much better. We propose here a global filter based on

a topological constraint for triples of region matches.

In contrast to the local filter of Section 5, this filter is

capable of finding also isolated mismatches. The next

subsection introduces the property on which the filter

is based, while the following two subsections explain

the filter itself and discuss its qualities.

7.1. The Sidedness Constraint

Consider a triple (R1
m, R2

m, R3
m) of regions in the model

image and their matching regions (R1
t , R2

t , R3
t ) in the

test image. Let c
j
v be the center of region R

j
v (v ∈

{m, t}). The function

side
(

R1
v, R2

v , R3
v

)

= sign
((

c2
v × c3

v

)

c1
v

)

(3)

takes value −1 if c1
v is on the right side of the directed

line c2
v × c3

v, going from c2
v to c3

v , or value 1 if it’s on

the left side. The equation

side
(

R1
m, R2

m, R3
m

)

= side
(

R1
t , R2

t , R3
t

)

(4)

states that c1 should be on the same side of the line

in both views (Fig. 7). This sidedness constraint holds

for all correctly matched triples of coplanar regions,

because in this case property (3) is viewpoint invari-

ant. The constraint is valid also for most non-coplanar

triples. A triple violates the constraint if at least one

of the three regions is mismatched, or if they are not

coplanar and there is important camera translation in

the direction perpendicular to the 3D plane contain-

ing their centers (parallax-violation). This can create

a parallax effect strong enough to move c1 to the other

side of the line. Nevertheless, this phenomenon typ-

ically affects only a small minority of triples. Since

the camera can only translate in one direction between

two views, the resulting parallax can only corrupt few

triples, because those on planes oriented differently

will not be affected.

Figure 7. Sidedness constraint. c1 should be on the same side of

the directed line from c2 to c3 in both images.
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The region matches violate or respect Eq. (4) in-

dependently of the order in which they appear in the

triple. The three points should be cyclically ordered in

the same orientation (clockwise or anti-clockwise) in

the two images in order to satisfy (4).

Topological configurations of points and lines were

also used by Tell and Carlsson (2002), in the wide-

baseline stereo context, as a mean for guiding the

matching process.

7.2. Topological Filter

A triple including a mismatched region has higher

chances to violate the sidedness constraint. When this

happens, it indicates that probably at least one of the

matches is incorrect, but it does not tell which one(s).

While one triple is not enough to decide, this informa-

tion can be recovered by considering all triples simul-

taneously. By integrating the weak information each

triple provides, it is possible to robustly discover mis-

matches. The key idea is that we expect incorrectly

located regions to be involved in a higher share of vi-

olations.

The constraint is checked for all unordered triples

(Ri, Rj, Rk), Ri, Rj, Rk ∈ Ŵ. The share of violations for

a region match Ri is errtopo(Ri) =

1

v

∑

R j ,Rk∈Ŵ\Ri , j>k

∣

∣side
(

Ri
m, R j

m, Rk
m

)

−side
(

Ri
t , R

j
t , Rk

t

)∣

∣

(5)

with v = (n−1) (n−2)/2, n = |Ŵ|. errtopo(Ri) ∈ [0, 1]

because it is normalized w.r.t. the maximum number

of violations v any region can be involved in.

The topological error share (5) is combined with an

appearance term, giving the total error

errtot(Ri ) = errtopo(Ri ) +
(

t2 − sim
(

Ri
m, Ri

t

))

The filtering algorithm starts from the current set of

matches Ŵ, and then iteratively removes one match at

a time as follows:

1. (Re-)compute errtot(R
i) for all Ri ∈ Ŵ.

2. Find the worst match Rw, with w =
arg maxi errIFtot(Ri )

3. If errtot(Rw) > 0, remove Rw from Ŵ. Rw will not

be used for the computation of errtopo in the next

iteration. Iterate to 1.

If errtot(Rw) ≤ 0, or if all matches have been re-

moved, then stop.

At each iteration the most probable mismatch Rw is re-

moved. During the first iterations several mismatches

are still present. Therefore, even correct matches might

have a moderately large error, as they take part in triples

including mismatches. However, mismatches are likely

to have an even larger error, because they are involved

in the very same triples, plus other violating ones.

Hence, the worst mismatch Rw, the region located in It

farthest from where it should be, is expected to have the

largest error. After removing Rw all errors decrease, in-

cluding the errors of correct matches, because they are

involved in less triples containing a mismatch. After

several iterations, ideally only correct matches are left.

Since these have only a low error, due to occasional

parallax-violations, the algorithm stops.

The second term of errtot decreases with increas-

ing appearance similarity, and it vanishes when

sim(Ri
m, Ri

t ) = t2, the matches acceptance threshold.

The removal criterion errtot > 0 expresses the idea that

topological violations are accepted up to the degree to

which they are compensated by high similarity. This

helps finding mismatches which can hardly be judged

by only one cue. A typical mismatch with similarity

just above t2, will be removed unless it is perfectly topo-

logically located. Conversely, correct matches with

errtopo > 0 due to parallax-violations are in little danger,

because they typically have good similarity. Including

appearance makes the filter more robust to low correct-

ratios, and remedies the potential drawback (parallax-

violations) of a purely topological filter.

In order to achieve good computational perfor-

mance, we store the terms of the sum in function (5)

during the first iteration. In the following iterations, the

sum is quickly recomputed by retrieving and adding up

the necessary terms. This makes the computational cost

almost independent of the number of iterations. The

algorithm can be implemented to run in O(n2log (n)),

based on the idea of constructing, for each point, a list

with a cyclic ordering of all other points (a complete

explanation is given in Ferrari (2004, pp. 208–211).

7.3. Properties and Advantages

The proposed filter has various attractive properties,

and offers several advantages over detecting outliers

to the epipolar geometry through RANSAC (Torr

and Murray, 1997), which is traditionally used in the

matching literature (Matas et al., 2002; Mikolajczyk

and Schmid, 2002; Schaffalitzky and Zisserman,

2002a, 2002b; Tuytelaars and Van-Gool, 2000). In the
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Figure 8. Sidedness constraints hold also for deformed objects.

The small arrows indicate ‘to the right’ of the directed lines A → B,

B → C, C → D, D → A.

following, we refer to it as RANSAC-EG. The main

two advantages are (more discussion in Ferrari (2004,

pp. 75–77):

It allows for non-rigid deformations. The filter al-

lows for non-rigid deformations, like the bending of pa-

per of cloth, because the structure of the spatial arrange-

ments, captured by the sidedness constraints, is stable

under these transformations. As Fig. 8 shows, sided-

ness constraints are still respected even in the presence

of substantial deformations. Other filters, which mea-

sure a geometrical distance error from an estimated

model (e.g. homography, fundamental matrix) would

fail in this situation. In the best case, several correct

matches would be lost. Worse yet, in many cases the

deformations would disturb the estimation of the model

parameters, resulting in a largely random behavior. The

proposed filter does not try to capture the transforma-

tions of all matches in a single, overall model, but it

relies instead on simpler, weak properties, involving

only three matches each. The discriminative power is

then obtained by integrating over all measurements,

revealing their strong, collective information.

It is insensitive to inaccurate locations. The regions’

centers need not be exactly localized, because errtopo

varies slowly and smoothly for a region departing from

its ideal location. Hence, the algorithm is not affected

by perturbations of the region’s locations. This is pre-

cious in the presence of large scale changes, not com-

pletely planar regions, or with all kinds of image degra-

dation (motion blur, etc.), where localization errors

become more important. In RANSAC-EG instead, the

point must lie within a tight band around the epipo-

lar line. Worse yet, inaccurate localization of some

regions might compromise the quality of the funda-

mental matrix, and therefore even cause rejection of

many accurate regions (Zhang et al., 1995). In Ferrari

(2004, pp. 84–85) we report experiments supporting

this point, where the topological filter could withstand

large random shifts on the regions’ locations (about 25

pixels, in a 720×576 image).

7.4. Main Contraction on the Case-Study

After the main expansion, the correct-ratio of the case-

study was of 74/243. Applying the filter presented in

this section brings it to 54/74, which is a major im-

provement (Fig. 9 second row). 20 correct matches are

lost, but many more mismatches are removed (149).

The further processing will recover the correct matches

lost and generate even more.

8. Exploring the Test Image

The processing continues by iteratively alternating

main expansion and main contraction phases.

1. Do a main expansion phase. All current matches Ŵ

are used as supports. This produces a set of prop-

agated region matches ϒ , which are added to the

configuration: Ŵ ← (Ŵ ∪ϒ).

2. Do a main contraction phase on Ŵ. This removes

matches from Ŵ.

3. If at least one newly propagated region survives

the contraction, i.e. if |ϒ∩ Ŵ| > 0, then iterate to

point 1, after updating the candidate set to contain �

← (�\Ŵ), all original candidate regions � which

are not yet in the configuration. Stop if no newly

propagated regions survived, or if all regions � have

been propagated (i.e. if � ⊂ Ŵ).

In the first iteration, the expansion phase generates

some correct matches, along with some mismatches.

Because a correct match tends to propagate more than

a mismatch, the correct ratio increases. The first main

contraction phase removes mostly mismatches, but

might also lose several correct matches: the amount

of noise (percentage of mismatches) could still be high

and limit the filter’s performance. In the next itera-

tion, this cleaner configuration is fed into the expan-

sion phase again which, less distracted, generates more

correct matches and fewer mismatches. The new cor-

rect matches in turn help the next contraction stage

in taking better removal decisions, and so on. As a

result, the number, percentage and spatial extent of

correct matches increase at every iteration, reinforcing
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Figure 9. Evolution of Ŵ for the case-study. Top-rows: correct matches; bottom rows: mismatches.
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Figure 10. Left: the number of correct matches for the case-study increases at every iteration (compare the points after each contraction

phase). Right: the steady growth in the percentage of correct matches best illustrates the increasing confidence in the presence of the object

(from 1.4% after soft-matching, to 91.8% after the last iteration!).

the confidence about the object’s presence and location

(Fig. 10). The two goals of separating correct matches

and gathering more information about the object are

achieved at the same time.

Correct matches erroneously killed by the contrac-

tion step in an iteration get another chance during the

next expansion phase. With even fewer mismatches

present, they are probably regenerated, and this time

have higher chances to survive the contraction (higher

correct-ratio, more positive evidence present).

Thanks to the refinement, each expansion phase

adapts the shape of the newly created regions to the

local surface orientation. Thus the whole exploration

process follows curved surfaces and deformations.

The exploration procedure tends to ‘implode’ when

the object is not in the test image, typically returning

only a few matches. Conversely, when the object is

present, the approach fills the visible portion of the

object with many high confidence matches. This yields

high discriminative power and the qualitative shift from

only detecting the object to knowing its extent in the

image and which parts are occluded. Recognition and

segmentation are two aspects of the same process.

In the case-study, the second main expansion propa-

gates 141 matches, 117 correct, which is better than the

previous 61/185. The second main contraction starts

from 171/215 and returns 150/174, killing a lower

percentage of correct matches than in the first itera-

tion. After the 11th iteration 220 matches cover the

whole visible part of the object (202 are correct). Fig-

ure 9 depicts the evolution of the set of matches Ŵ.

The correct matches gradually cover more and more

of the object, while mismatches decrease in num-

ber. The system reversed the situation, by going from

only very few correct matches in a large majority

of mismatches, to hundreds of correct matches with

only a few mismatches. Notice the accuracy of the

final segmentation, and in particular how the small

occluding rubber has been correctly left out (Fig. 9

bottom-right).

9. Overview of Part II: Integrating Multiple

Model Views

The image-exploration technique presented in the first

part of the paper matches each single model view

to the test image independently. In this second part,

we capture the relationships among multiple model

views, and integrate their contributions at recognition

time.

In the next section, we introduce an algorithm for

partitioning a set of region matches between two im-

ages into groups lying on smooth surfaces (termed

groups of aggregated matches, or GAMs). GAMs are

at the heart of the approach, and enjoy two fundamen-

tal properties. First, the matches in a GAM are most

often all correct, or all incorrect. Second, it is very un-

likely for mismatches to form large GAMs (i.e. com-

posed of many matches). Hence, the size of a GAM

informs about the probability of it being correct. Be-

cause of these properties, it is convenient to reason in

terms of GAMs, rather than individual matches. Our

multiple view integration scheme relates GAMs aris-

ing from different model views, and considers them

as atomic units, without descending to the matches

level.

Sections 11 and 12 present the multiple-view in-

tegration approach. In the initial modeling stage, the

model views are matched to each other, in order to build

a large number of region-tracks, densely connecting

them (Section 11). At recognition time, we match each

model view to the test image and partition the resulting

sets of matches into GAMs (Section 12). By following

the model tracks, a GAM originating from a certain

model view can be transfered to another model view.
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Hence, we can measure the geometric consistencies of

pairs of GAMs, and integrate these into a global score

which quantifies the goodness of some subset (configu-

ration) of all GAMs, even if they originate from differ-

ent model views. We search for the configuration that

maximizes the score function. The maximal score rep-

resents the system’s confidence in the presence of the

object and strongly increases in the presence of com-

patible GAMs. Therefore, the detection power is better

than when considering model views in isolation, and

the segmentation improves because several incorrect

GAMs are typically left out of the best configuration.

10. Groups of Aggregated Matches (GAMs)

This section describes an incremental grouping al-

gorithm to partition a set of two-view matches into

GAMs.

10.1. Affine Dissimilarity

The grouping process is driven by the similarity be-

tween the affine transformations that map the regions

from one view to the other. Consider three points on

each region: the center p0 and two more points p1, p2 on

the boundary. These points have previously been put

in correspondence by the matching algorithm. The fol-

lowing function measures to which degree the affine

transformation of a region match R is also valid for

another match Q (Fig. 11):

D(R, Q) =
1

6

(

∑

i=0..2

∥

∥AR
1,2 Qi

1 − Qi
2

∥

∥

+
∑

i=0..2

∥

∥AR
2,1 Qi

2 − Qi
1

∥

∥

)

(6)

where AR
a,b is the affine transformation mapping R from

view a to view b, and Ri
v is point pi of region R in view

v. By averaging over the two regions, we obtain the

affine dissimilarity

DA(R, Q) =
1

2
(D(R, Q) + D(Q, R)) (7)

between (the affine transformations of) R and Q. This

measure is symmetric in the regions and in the views.

This brings stability and helps dealing fairly with large

scale changes. Two region matches have a high affine

Figure 11. Affine dissimilarity. d is one term in function (6).

dissimilarity if either is a mismatch, or if they lie on

different surfaces.

10.2. Constructing GAMs

The matches are partitioned by the following algo-

rithm, which starts a GAM from a single match and

then grows it by iteratively adding matches. The algo-

rithm starts with the set � of region matches.

1. A match is removed from � and put in a new GAM

Ŵ.

2. Search � for a region with affine dissimilarity to

the GAM below a certain threshold.The search pro-

ceeds from the closest to the farthest to the GAM,

according to the spatial distance

∑

R∈Ŵ
d
(

R0
1, Q0

1

)

|Ŵ|

This is the average Euclidean distance (d) of a region

Q to the regions composing the GAM, measured in

the first view. The affine dissimilarity between a re-

gion Q and the GAM Ŵ is
∑

RǫŴ wR DA(R, Q). This

is the weighted mean of the affine dissimilarities to

each region in the GAM, with weights wR set in-

versely proportional to the square of the distances

between the regions.

3. As soon as a suitable region is found, it is added

to the GAM and the search stops. The region is

removed from �, and the algorithm iterates to 2. If

no such region is found, the current GAM is closed.

The algorithm goes back to 1, where a new GAM

is created and then grown. The process terminates

when � is empty.

Figure 12 shows an example run (Felix). Matches A,

B, C, D, E, F are distributed over the curved magazine

surface, while G, I, J over the planar plate on the left
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Figure 12. Felix scene. Top: 9 Matches. Bottom: Close-up on

match H; the ‘a’ of ‘Happy’ is mismatched to ‘Birthday’. The GAM

constructor successfully finds the two groups (dish, magazine) and

isolates the mismatch in a third, singleton one.

of the image. Region H, covering the ‘a’ of ‘Happy’ in

the left image, is mismatched to the ‘a’ of ‘Birthday’

in the right image (the correct corresponding region is

not visible). The algorithm starts by creating a GAM

containing region A alone. In the next iteration, the

nearest region B is added to the GAM, and then C, D,

E, F are added one at the time, in this order. No other

region has a sufficiently similar affine transformation,

so the GAM {A, B, C, D, E, F} is closed. A new

GAM formed by region G is started, and then region

I is added. The next nearest region H is a mismatch

and has a quite dissimilar affine transformation, so it

doesn’t join the GAM in the second iteration. Instead,

J is picked up, and the GAM is closed as {G, I, J}.

Finally, H is put in a singleton GAM, and the algorithm

terminates.

The algorithm groups two regions in the same GAM

if they have a similar affine transformation or if there is

some region with coherent intermediate affine transfor-

mation spatially located between them. In other words,

the affine transformation can vary gradually from a re-

gion to the next within a GAM. Hence, a GAM can

cover not only a planar, but also a curved or even a

continuously deformed surface (like bending of paper

or cloth). The fact that the method doesn’t prescribe a

fixed neighborhood area where to grow renders it capa-

ble of grouping also spatially sparse and discontiguous

subsets of correct matches.

In principle, the composition of a GAM might

depend on the choice of its first region in step 1.

However, the near-to-far growing order and the

distance-based weighting make the algorithm highly

order-independent. This is confirmed by experiments

on several scenes, where the composition of the GAMs

was stable (variations of about 1%) in spite of random

permutations of the input regions.

10.3. Fundamental Properties

The GAM decomposition has two fundamental prop-

erties:

1. It is unlikely for mismatches to form large GAMs.

Mismatches have independent, random affine trans-

formations, uniformly spread in the large 6D affine

transformation space. Thus, the more mismatches you

consider, the less likely they will respect the con-

structor’s criterion, that their affine transformations

vary gradually from a region to the next. A set of

mismatches has widely varying, inconsistent transfor-

mations. More precisely, the probability that N mis-

matches are grouped in the same GAM is expected to

decrease roughly exponentially with N. On the other

hand, several correct matches lying on the same sur-

face will form a larger GAM, because of their coher-

ent affine transformations. Therefore, the number of

matches in a GAM relates to its probability of being

correct.

2. A GAM is most often composed of either only cor-

rect matches or only mismatches. The reasons lie

again in the randomness of mismatches’ transforma-

tions. Suppose a correct GAM is being grown, and

at some iteration the algorithm has to decide whether

to add a nearby mismatch. This is unlikely to happen

as the mismatch has little chances to offer a suitable

affine transformation. Even in this case, the probability

to add a second mismatch is again equally low. The to-

tal probability quickly drops with the number of added

mismatches. As a result, correct GAMs are composed

of correct matches only, or they contain only very few

mismatches (typically 1 or 2).

As a combined effect of the two properties, mis-

matches are scattered over many small GAMs, while

correct matches typically concentrate in a few larger

GAMs. This brings the major advantage to organiz-

ing individual matches into GAMs: if a GAM contains

many matches we know it is very probably correct.

Small GAMs are most of the time mismatches, and

sometimes they are minor groups of correct matches

located on a small, or difficult to match, surface. Be-

side informing about correctness, the sizes of GAMs

correlate with relevance: the larger a GAM is, the more

important it is, because it covers a larger surface.
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Figure 13. (a) Number of incorrect GAMs in function of their size (x-axis). (b) Percentage of correct GAMs.

The above properties are the reason of existence

of GAMs and make them valuable as an intermediate

grouping level on which to base powerful higher level

algorithms. These need no longer consider each indi-

vidual match, but can reason about complete GAMs

instead, because matches and mismatches are sepa-

rated into different GAMs. Hence, GAMs are seen as

the new atomic units.

GAMs can be used beyond the object recognition

context. In another work (Ferrari et al., 2004), we pro-

pose a GAM-based algorithm for simultaneously esti-

mating the epipolar geometry between two images and

filtering mismatches, which works in the presence of

very high percentages of mismatches.

Experimental assessment. In order to assess the va-

lidity of the fundamental properties, we have matched

14 image pairs, run the GAM constructor, and mea-

sured size and composition of all resulting GAMs. The

images come from diverse sources and contain planar,

curved, as well as deformed surfaces. Seven pairs are

wide-baseline stereo cases (WBS), while the others

are object recognition cases, with the first image being

a model view and the second a test image. The two

kinds of data differ in several aspects. The recognition

pairs present larger occlusion, scale change, and clut-

ter. The WBS pairs feature a more complex geometry,

with many fragmented surfaces, in contrast to the of-

ten compact objects in the recognition pairs. Six of the

recognition cases come from our dataset (Section 13

results), while one is the teddybear used in the indepen-

dent work of Rothganger et al. (2005). The WBS cases

include three classic examples used in many papers: the

Valbonne church (Schaffalitzky and Zisserman, 2002)

the Graffiti wall (Mikolajczyk and Schmid, 2002) and

the Dunster toy house (Pritchett and Zisserman, 1998).

The region correspondences are produced by one-to-

one matching for the WBS cases, and by soft-matching

for the object recognition cases (Section 3).

In total there are 2253 matches, which have been

partitioned into 1428 GAMs. 1378 of them are formed

purely of mismatches, while there are 50 GAMs con-

taining all 415 correct matches. We call the former

incorrect GAMs and the latter correct GAMs. Since

the overall ratio of correct matches is only 18.4%, the

statistics are relevant and truly summarize the behavior

of the GAM constructor.

Figure 13(a) plots the number of incorrect GAMs

as a function of their size. The exponential decrease

is clearly visible. There is only one incorrect GAM of

size 6, and none larger than 7. This confirms the first

fundamental property: it is unlikely for mismatches to

form large GAMs. The second property is confirmed as

well: 96.4% of all non-singleton GAMs are composed

of either only correct matches or only mismatches (as

the property trivially holds for singleton GAMs, they

are not counted). The property is also almost fulfilled

by the remaining GAMs, as they contain all correct

matches, but one (2.4%) or two (1.2%). No GAM

mixed more than two mismatches with a correct match,

therefore meeting the expectations.

The relation between the size of a GAM and its

probability of being correct is illustrated in Fig. 13(b),

which plots the percentage of correct GAMs of size

N, for various N. The chances that a GAM is correct

quickly grow with its size, and is 94% for N > 6.

10.4. Example GAMs

Figure 14 shows some examples. The first is the well-

known Graffiti, introduced in Mikolajczyk and Schmid

(2002). The constructor algorithm grouped in a single

GAM 71 matches spread over the whole wall, despite

evident perspective effects. The matches are produced

by the standard approach of Tuytelaars and Van-Gool

(2000). The other example consists of two images of

Coleo, a plush toy with a complex shape composed by
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Figure 14. Top: Graffiti scene. A large GAM covers the whole wall,

effectively bridging the perspective effect (only centers are shown).

Middle: two GAMs on two very different views of Coleo. Bottom:

close-up on some matches of the back-arm GAM. The geometric

transformations vary over a wide range, but change gradually among

spatially neighboring regions.

several curved surfaces. We matched the images with

the image-exploration technique presented in part I,

and fed the GAM constructor with the resulting re-

gion correspondences. There are many more corre-

spondences than one would obtain by conventional

matching, and they densely cover the parts of the object

visible in both images. When applied to this input, the

GAM decomposition is most interesting, because the

constructor has enough prime matter to build GAMs

covering larger areas, even if curved or deformed. De-

spite the very different viewpoints, the exploration al-

gorithm produced about 120 correct matches, densely

covering the parts visible in both views. The two largest

GAMs correspond well to the principal contiguous sur-

faces, which are the head and the back-arm complex.

Some of the matches among the latter GAM are shown

in the close-ups. The regions are all circles of the same

size in the left image, because they are part of one

layer of the coverage generated in subsection 4.1. The

contiguous variation of the regions’ shapes in the right

image mirrors the changes in affine transformation due

to the varying surface orientation. Although the range

of the transformations is very wide, the GAM grouper

succeeded in grouping these matches in a large GAM,

exploiting the gradual changing of the transformation

from a region to the next.

11. Modeling from Multiple Views

Let’s now turn to the central question of this part of

the paper: how to exploit the relationships between

multiple model views for recognition. In the modeling

stage, the relationships are captured by a dense set of

region-tracks. Each such track is composed by the im-

age regions of a single physical surface patch along the

model views in which it is visible. The tracks should

densely connect the model views, because they will

be used during recognition in order to establish con-

nections among GAMs matched from different model

views to the test image (Section 12).

This section explains how to build the model region-

tracks, starting from the bare set of M unordered model

images. First, dense two-view matches are produced

between all pairs of model images. All pairwise sets

of matches are then integrated into a single multi-view

model. This process can be regarded as a specialized,

dense counterpart of other sparse multi-view matching

schemes, such as Schaffalitzky and Zisserman (2002;

Ferrari et al. (2003).

In the following sections, we explain the method

on 8 model views, taken at about 45 degrees during a

complete tour of an example object (named Coleo, see

next figures).

Dense two-view correspondences. A dense set of re-

gion correspondences between every two model views

vi, vj is obtained using a simplified variant of the

image-exploration technique (part I). More precisely,

it uses a simple one-to-one nearest neighbor approach

for the initial matching instead of the soft-matching

phase, and there are no ‘early’ phases (Sections 4 and

5). The system directly goes to the ‘main’ phases af-

ter the initial matching (Sections 6 and 7). The use of

this faster, less powerful version is justified because

matching model views is easier than matching to a test

image: there is no background clutter, and the object

appears at approximately the same scale.

Let’s recall that the image-exploration technique

constructs correspondences for many overlapping

circular regions, arranged on a grid completely

covering the first model view vi (coverage regions,

see Section 4.1). The procedure yields a large set of

reliable correspondences, densely covering the parts
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Figure 15 (a) Coverage regions for model view 5. (b) One of

the coverage regions. (c+d) the corresponding regions constructed

by the image-exploration algorithm in views 4 and 6. These direct

matches 5 → 4 and 5 → 6 induce a three-view track across views

4, 5, 6. Hence, the transitive match 4 → 6 is implied. Bottom: 242

3-view tracks through views 4, 5, 6.

of the object visible in both views. Please note that

the image-exploration matcher is not symmetric in the

views, as it tries to construct correspondences in the

second view, for the coverage regions of the first view

(we say that it matches vi to vj, noted vi → vj).

Dense multi-view correspondences. Once two-view

region correspondences have been produced for all or-

dered pairs of model views (vi, vj), i �= j, they can be

organized into multi-view region tracks. When match-

ing a view vi to any other model view, we always use

the same set of coverage regions. Therefore, each cov-

erage region, together with the regions it matches in

the other views, induces a region track (Fig. 15). Note

that if a region is matched from view vi to view vj,

and also from view vi to view vk, then it is implicitly

matched between vj and vk as well, because it will be

part of the same track. These transitive matches ac-

tively contribute to the inter-view connectedness, as

they often link parts of the object that are harder to

match directly. The final set of region tracks consti-

tutes our object model. Figure 15 shows all 3-view

Figure 16. A correct GAM (head), matched from view 3, and an

incorrect one (paw) from view 4. The paw GAM is transferred from

model view 4 to model view 3 (arrow) via the model’s connections.

tracks passing through views 4, 5, 6, after building the

model from all 8 views.

12. Recognition from Multiple Views

Given a test image, the system should determine if

it contains the modeled object. The first step is to

match each model view of the object to the test im-

age separately. For this purpose, the image-exploration

technique is used again, this time in its full version.

Each resulting set of region matches is then partitioned

into GAMs. Each correct GAM usually corresponds to

(part of) an object facet (Figs. 16, 17; only contours

are shown).

However, at this stage, there is no guarantee that all

GAMs are correct. As a result, there usually are some

inconsistencies between GAMs. For instance, a GAM

correctly matches the head of Coleo in Fig. 16 from

model view 3 to the test image. Furthermore, there is

another GAM erroneously matching the paw in model

view 4 to the chest in the test image. Since the model

views are interconnected by the model tracks, we know

the correspondences of the regions on the paw between

views 3 and 4. Therefore we consider the second GAM

to match the chest in the test image to the paw in model

view 3. Now both GAMs match model view 3 to the

test image, and their (geometric) inconsistency can be

measured and discovered.

Just as it finds conflicting GAMs, the system can

notice compatible ones (Fig. 17). This is a good reason

for considering them as more reliable and therefore
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Figure 17. Two compatible (and correct) GAMs. The nose GAM

(black) is initially matched from model view 8, and is transferred to

model view 1. Note how the other GAM (white) is very large and

covers the head, arms and chest. A GAM can extend over multiple

facets when the combination of viewpoints and surface orientations

make the affine transformations of the region matches vary smoothly

even across facet edges. In these cases, the resulting GAMs are larger

and therefore more reliable and relevant.

to reinforce the system’s belief in the presence of the

object. This leads to the main advantage in evaluating

GAM compatibilities: the reliability of the recognition

decision is enhanced, because higher scores can be

assigned in positive cases (i.e. when the object is in

the test image). As a secondary advantage, incorrect

GAMs can be detected and removed, thus improving

the segmentation.

In this section, we explain how to realize these

ideas. For every pair of GAMs, we compute a com-

patibility score, quantifying the consistency of their

spatial arrangement. In simple cases, the two GAMs

are matched from the same model view and the score

can be directly computed. In the more interesting cases

where each GAM is from a different model view, we

first transfer one of the GAMs to the model view of

the other, by using the connections embedded in the

model tracks. Next, the pairwise scores are integrated

in a single configuration score. This varies as a func-

tion of the configuration, the subset of all GAMs which

are considered correct. The score favors configurations

containing large, compatible GAMs. This is justified

because larger GAMs are more likely to be correct. A

Genetic Algorithm is used to maximize the configura-

tion score. The maximum yields the final recognition

score and reveals which GAMs are deemed incorrect.

The recognition score increases in the presence of com-

patible GAMs, thereby improving recognition perfor-

mance.

The recognition score, and the decisions to remove

GAMs, are based on a global analysis of the situation.

This considers simultaneously relationships among all

pairs of GAMS, coming from all model views. It is

computationally feasible because there are much less

GAMs (a few tens) than region matches (hundreds to

thousands). This is an advantage of reasoning on the

higher perceptual grouping level offered by GAMs.

The system no longer needs to consider each single

region individually, but it can rely on a meaningful or-

ganization instead. The following subsections describe

the elements of the above scheme in more detail.

12.1. GAM Transfer

Consider a GAM matched from a model view vi to the

test image, and another GAM matched from a different

model view vj. Before computing the compatibility

score for this GAM pair, they must be put in a common

model view. Only then the geometrical coherence of

their relative arrangement can be evaluated. A GAM is

transferred from vi to vj as follows:

1. Determine the set of model regions � covering the

same part of vi as the GAM5. Remove from � all

regions which are not part of a model track passing

through vj. The model can now predict the location

and shape of the GAM in vj.

2. Compute the affine transformations mapping each

region of � from vi to vj (Fig. 18).

3. Project each GAM region to vj via the affine trans-

formation of the nearest region of �. Thereby, we

have established a region-to-region correspondence

for the GAM between the test image and model

view vj.

When transferring a GAM, it is like making a model-

based prediction. The pairwise compatibility score

(next subsection) evaluates to which degree the two

GAMs are consistent with this prediction. This idea

is essential: in this way the system exploits the rela-

tionships among the model views, in order to conclude

more than what is possible from the mere collection

of all GAMs. During modeling, the system learned the

structure of the object in the form of region tracks,

and it brings this insight to bear at recognition time by

imposing order on the GAMs.

Note that a GAM cannot be transferred if the model

regions it covers in view vi are not visible in view vj



Simultaneous Object Recognition and Segmentation 177

Figure 18. The GAM transfer mechanism. (a) The GAM to be transfered, which is originally matched from view 3 to the test image. (b) The

set � of overlapping model regions. (c) One of the GAM regions (white) is transferred from view 3 to view 1, via the affine transformation of

the nearest region of � (black). We now know the correspondence between view 1 and the test image.

(� is empty). In these cases, the compatibility score is

not computed, and a neutral score is assigned instead.

12.2. Pairwise Compatibility Score

We evaluate here the geometric consistency of a pair

of GAMs. Both GAMs are matched between the test

image and a model view vi. If at least one GAM is

incorrect, we wish this measure to be low.

The compatibility score is based on the sidedness

constraint for triples of region matches, introduced in

Section 7. We check the constraint for all triples formed

by a region from a GAM and two regions from the

other GAM. The percentage of triples respecting the

constraint is our choice for the compatibility score of

the GAM pair.

The key idea is that if a region is picked from an

incorrect GAM, we expect most triples in which it

takes part to violate the constraint. Note that no triple

is composed of regions from a single GAM. This is

important when exactly one of the GAMs is correct.

In these cases, most triples based only on the correct

GAM will respect the constraint, and would therefore

falsely raise the score.

The proposed score tolerates a substantial amount

of non-rigid deformation. This preserves the system’s

capability of recognizing deformable objects. More-

over, it is insensitive to inaccurately localized region

matches (Section 7.3). The score can penalize con-

flicting GAMs, but also highlight compatible pairs of

GAMs. Although based on comparing region matches,

it captures the compatibility of the GAMs as a whole.

12.3. Configuration Score

The compatibility scores are computed for all pairs of

GAMs, and combined here in a single configuration

score.

The compatibility scores range in [0, 1]. Based on a

threshold t, we linearly transform the interval [0, t] to

[−1, 0] and the interval [t, 1] to [0, 1]. The values then

range in [−1, 1]. In all experiments, the threshold t =
0.2 splits the original range into positive and negative

parts. Positive scores now indicate that two GAMs are

likely to belong together, while negative ones indicate

incompatibility.

Let a configuration C be a subset of the available

GAMs. What is the score of a configuration? It should

be high when containing large, mutually compatible

GAMs. It should be lower in the presence of incom-

patible ones. These two forces, pairwise corroboration

and individual size, are combined into the following

configuration score

S(C) =
∑

P∈C

(

Size(P) +
∑

Q∈C\P

(Comp(P, Q) · Size(Q))

)

(8)

with Size(P) the number of regions in GAM P, and

Comp(P, Q) ∈ [−1, 1] the pairwise compatibility
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scores. We are interested in the maximum value of

S(C), and in the configuration for which it occurs. The

maximum value is used as recognition criterion, to de-

cide whether the object is in the test image. As argued

before, larger GAMs are trusted more (first summation

term). The second term makes the contribution of each

GAM heavily dependent on its compatibility with the

others, especially the larger ones. A GAM whose neg-

ative compatibilities lower S will be left out. Smaller

GAMs can also be part of the maximum configuration,

depending on how compatible they are with the others.

An important effect of the second summation term is

that the total score can be much higher than the mere

sum of the sizes of all correct GAMs. This reflects

the key idea that compatible configurations are worth

more because they more reliably indicate the presence

of the object. This increases the separation between

scores in positive and negative cases, thus improving

discriminative power.

The GAMs not selected by the best configuration

are deemed incorrect and discarded. This decision is

based on a global analysis. Typically, several incorrect

GAMs are detected thanks to their incompatibility with

GAMs matched to other model views. Such a case

couldn’t have been discovered by looking at the GAM’s

model view in isolation. This is another benefit of our

proposal for integrating multiple model views. Finally,

note how we treat a GAM as a unit: either we keeps all

its matches, or none.

12.4. Maximization by Genetic Algorithm

We now need to find the configuration which maxi-

mizes function (8). Unfortunately, we can’t try them

all out, as there are 2n possible configurations of n

GAMs. Moreover, a function in the form of (8) can-

not be maximized by graph-cuts methods, as shown by

Kolmogorov and Zabih (2002).

We designed a Genetic Algorithm (GA) to find an

approximation of the solution. GAs offer an elegant

and flexible framework for optimizing functions of any

form. We represent a configuration by a binary indica-

tor vector I of length n. If I(p) = 1, the pth GAM is in

the configuration. The fitness function F(I) is defined

equivalent to S(C). The GA follows several steps:

1. Initialize. Create a random, uniformly distributed

population of binary n-vectors. The size of this pop-

ulation is l = ceil(
√

2n)2. Since this enforces
√

l to

be an integer, it simplifies the later crossover.

2. Fitness. Evaluate the fitness function F(I) for each

individual. Stop if the best individual is identical as

in the previous generation.

3. Crossover. Consider the best
√

l individuals. De-

rive the next generation by crossing over all pairs of

them. Crossing over two individuals means keeping

the identical bits and randomly choosing the differ-

ent bits. This amounts to producing l −
√

l new

individuals, and copying the current best
√

l.

4. Mutation. Each bit of each individual in the new

population is switched with probability 0.1. This

avoids that the algorithm explores only the part of

the search space spanned by the best individuals.

5. Iterate. Iterate to point 2.

In various experiments6 this GA proved effective

by approximating the true exhaustive search solution

to less than 1 small GAM difference on average, in

comparisons with up to n = 20 GAMs. It is also very

time efficient, as it solves cases with n = 20 within

some seconds (exhaustive search needs more than 1

hour), and scales well, taking less than one minute for

n = 60, a problem size for which the real optimum

cannot be computed. One of the reasons for this per-

formance is the nature of the optimization problem

itself. In the vast majority of cases where the object

is in the test image, the GAMs sizes are very non-

uniformly distributed, with some large GAMs, and a

greater number of smaller ones. Moreover, the value

of function (8) raises more when large GAMs are in C,

and even much more with compatible large GAMs. As

a result, the search space has a strong non-flat shape,

and usually features high peaks for C containing at

least some of the largest GAMs. These characteristics

significantly ease the task of the GA.

13. Results

The next two Sections present results for the image-

exploration technique (part I) applied to an object

recognition dataset taken by the authors, and within

a video retrieval application. Subsection demonstrates

the improvements brought by integrating the contribu-

tions of multiple model views (part II).

13.1. Recognition on Our Dataset

The dataset in this Section7 consists of 9 model ob-

jects and 23 test images. In total, the objects appear 43
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Figure 19. Recognition results (see text).
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times, as some test images contain several objects. To

facilitate the discussion, the images are referred to by

their coordinates as in Fig. 19, where the arrangement

is chosen so that a test image is adjacent to the model

object(s) it contains. There are 3 planar objects, each

modeled by a single view, including a Kellogs box8

and two magazines, Michelle (Figure 2c) and Blonde

(analog model view). Two objects with curved shapes,

Xmas (b1) and Ovo (e2), have 6 model views. Leo

(d3), Car (a2), Suchard (d1) feature more complex 3D

shapes and have 8 model views. Finally, one frontal

view models the last 3D object, Guard (b3). Multiple

model views are taken equally spaced around the ob-

ject. The contributions from all model views of a single

object are combined by superimposing the area covered

by the final set of matched regions (to find the contour),

and by summing their number (detection criterion). All

images are shot at a modest resolution (720×576) and

all experiments are conducted with the same set of

parameters. In general, in the test cases there is con-

siderable clutter and the objects appear smaller than in

the models (all model images have the same resolution

as the test images and they are shown at the same size).

Tolerance to non-rigid deformations is shown in c1,

where Michelle is simultaneously strongly folded and

occluded. The contours are found with a good accu-

racy, extending to the left until the edge of the object.

Note the extensive clutter. High robustness to view-

point changes is demonstrated in c3, where Leo is only

half visible and captured in a considerably different

pose than any of the model views, while Michelle un-

dergoes a very large out-of-plane rotation of about 80

degrees. Guard, occluding Michelle, is also detected in

the image, despite a scale change of factor 3. In d2, Leo

and Ovo exhibit significant viewpoint changes, while

Suchard is simultaneously scaled by factor 2.2 and

89% occluded. This very high occlusion level makes

this case challenging even for a human observer. A

scale change of factor 4 affecting Suchard is illustrated

in e1. In figure la, Xmas is divided in two by a large

occluder. Both visible parts are correctly detected by

the presented method. On the right side of the image,

Car is found even if half occluded and very small. Car

is also detected in spite of a considerable viewpoint

change in a3. The combined effects of strong occlu-

sion, scale change and clutter make b2 an interesting

case. Note how the boundaries of Xmas are accurately

found, and in particular the detection of the part behind

the glass. As a final example, 8 objects are detected at

the same time in e3 (for clarity, only 3 contours are

shown). Note the correct segmentation of the two de-

formed magazines and the simultaneous presence of

all the aforementioned difficulties.

Figure 20(b) presents a close-up on one of 93

matches produced between a model view of Xmas (left)

and test case b2 (right). This exemplifies the great ap-

pearance variation resulting from combined viewpoint,

scale and illumination changes, and other sources of

image degradation (here a glass). In these cases, it is

very unlikely for the region to be detected by the initial

region extractor, and hence traditional methods fail.

This figure also illustrates the accuracy of the corre-

spondences generated by the expansion phases.

As a proof of the method’s capability to follow de-

formations, we processed the case in Fig. 20(c) starting

with only one match (dark). 356 regions, covering the

whole object, were produced. Each region’s shape fits

the local surface orientation (for clarity, only 3 regions

are shown).

The performance of the system was quantified by

processing all pairs of model-object and test images,

and counting the resulting number of region matches.

The highest ROC curve in Fig. 20(a) depicts the detec-

tion rate versus false-positive rate, while varying the

detection threshold from 0 to 200 matches. An object is

detected if the number of produced matches, summed

over all its model views, exceeds this threshold. The

method performs very well, and can achieve 98% de-

tection with 6% false-positives. For comparison, we

processed the dataset also with 4 state-of-the-art affine

region extractors (Baumberg, 2000; Mikolajczyk and

Schmid, 2002; Obrdzalek and Matas, 2002; Tuytelaars

and Van-Gool, 2000), and described the regions with

the SIFT (Lowe, 2004) descriptor,9 which has recently

been demonstrated to perform best (Mikolajczyk and

Schmid, 2003). The matching is carried out by the ‘un-

ambiguous nearest-neighbor’ approach10 advocated in

Baumberg (2000) and Lowe (2004): a model region is

matched to the region of the test image with the clos-

est descriptor if it is closer than 0.7 times the distance

to the second-closest descriptor (the threshold 0.7 has

been empirically determined to optimize results). Each

of the central curves illustrates the behavior of a dif-

ferent extractor. As can be seen, none is satisfactory,

which demonstrates the higher level of challenge posed

by the dataset and therefore suggests that our approach

can broaden the range of solvable Object Recognition

cases. Closer inspection reveals the source of failure:

typically only very few, if any, correct matches are pro-

duced when the object is present, which in turn is due to
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Figure 20. (a) ROC plot. False-positives on the X-axis, detection rate on the Y-axis. (b) Close-up on one match of case b2. (c) Starting from

the black region only, the method covers the magazine with 365 regions (3 shown).

the lack of repeatability and the inadequacy of a simple

matcher under such difficult conditions. The important

improvement brought by the proposed method is best

quantified by the difference between the highest curve

and the central thick curve, representing the system we

started from Tuytelaars and Van-Gool (2000) (‘TVG00

org’ in the plot).

Figure 21(a) shows a histogram of the number of fi-

nal matches (recognition score) output by our system.

The scores assigned when the object is in the test image

Figure 21. Distribution of scores (percentage; bright = positive cases; dark = negative cases). (a) For our method. (b) For the traditional

matching of the regions of Obrdzalek and Matas (2002).
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(positive cases) are much higher than when the object

is absent (negative cases). This very good separation

brings discriminative power and is due to the combina-

tion of two effects. First, the exploration process tends

to implode in negative cases, because the expansion

phases can do little and the contraction phases eat up

most of the matches. Conversely, the method fills the

object with matches when it is present, as expansions

can prosper on much fertile surface. As a compari-

son with the traditional methods, the standard match-

ing of regions of Obrdzalek and Matas (2002) based

on the SIFT descriptor, yields two hardly separable

distributions (Fig. 21 b), and hence the unsatisfactory

performance in the ROC plot. Similar histograms are

produced based on the other feature extractors (Baum-

berg, 2000; Mikolajczyk and Schmid, 2002; Tuytelaars

and Van-Gool, 2000).

As last comparison, we consider the recent sys-

tem (Rothganger et al., 2005) which constructs a 3D

model of each object prior to recognition. We asked

the authors to process our dataset. As they reported,

because of the low number of model views, their sys-

tem couldn’t produce meaningful models, and there-

fore couldn’t perform recognition. Conversely, we have

processed the dataset of Rothganger et al. (2005) with

our complete system (including GAMs and multi-view

integration). It performed well, and achieved 95% de-

tection rate for 6% false-positives (see Rothganger

(2005) for more details).

13.2. Video Retrieval

In this experiment, the goal is to find a specific object

or scene in a test video. The object is only given as

delineated by the user in one model image. In Sivic

and Zisserman (2003) another region-based system

for video object retrieval is presented. However, it fo-

cuses on different aspects of the problem, namely the

organization of regions coming from several shots, and

weighting their individual relevance in the wider con-

text of the video. At the feature level, their work still

relies solely on regions from standard extractors.

Because of the different nature of the data, the sys-

tem differs in a few points from the object recogni-

tion one. At recognition time the test video is seg-

mented into shots, and a few representative keyframes

are selected in each shot by the algorithm of Osian

and Van-Gool (2004). The object is then searched in

each keyframe separately, by a simplified version of

the image-exploration technique. Specifically, it has a

simple one-to-one nearest neighbor approach for the

initial matching instead of the soft-matching phase,

there are no ‘early’ phases, and there is only one layer

of coverage regions. This simpler version runs faster

(about twice as fast), though it is not as powerful. It

takes about 2 minutes to process a (object, keyframe)

pair on a common workstation (2.4 Ghz PC).

We present results on challenging, real-world video

material, namely television news broadcast provided

by the RTBF Belgian television. The data comes

from 4 videos, captured on different days, each of

about 20 minutes. The keyframes have low resolu-

tion (672×528) and many of them are visibly affected

by compression artifacts, motion blur and interlac-

ing effects. We selected 13 diverse objects, includ-

ing locations, advertising products, logos and football

shirts, and delineated each in one keyframe. Each ob-

ject is searched in the keyframes of the video con-

taining its model-image. On average, a video has 325

keyframes, and an object occurs 7.4 times. The number

of keyframes not containing an object (negatives), is

therefore much greater than the number of positives,

allowing to collect relevant statistics. A total of 4236

(object, keyframe) image pairs have been processed.

Figure 22 show some example detections. A large

piece of quilt decorated with various flags (a2) is found

in a3 in spite of non-rigid deformation, occlusion and

extensive clutter. An interesting application is depicted

in b1-b2-b3. The shirts of two football teams are picked

out as query objects (b2), and the system is asked to

find the keyframes where each team is playing. In b1

the Fortis shirt is successfully found in spite of im-

portant motion blur (close-up in a1). Both teams are

identified in b3, where the shirts appear much smaller

and the Dexia player is turned 45 degrees (viewpoint

change on the shirt). The keyframe in c1 instead, has

not been detected. Due to the intense blur, the initial

matcher does not return any correct correspondence.

Robustness to large scale changes and occlusion is

demonstrated in a4, where the UN council, modeled

in b4, is recognized while enlarged by a scale factor

2.7, and heavily occluded (only 10% visible). Equally

intriguing is the image of Figure 4c, where the UN

council is seen from an opposite viewpoint. The large

painting on the left of b4 is about the only thing still

visible in the test keyframe, where it appears on the

right side. The system matched the whole area of the

painting, which suffers from out-of-plane rotation. As

a last example, a room with Saddam Hussein is found



Simultaneous Object Recognition and Segmentation 183

Figure 22. Video retrieval results. The parts of the model-images not delineated by the user are blanked out.

in Figure 3c (model in c2). The keyframe is taken un-

der a different viewpoint and substantially corrupted

by motion blur.

The retrieval performance is quantified by the de-

tection rate and false-positive rate, averaged over all

objects. An object is detected if the number of final

matches, divided by the number of model coverage

regions, exceeds 10% (detections of model-keyframes

are not counted). The system performs well, by achiev-

ing an average detection rate of 82.4%, for a false-

positive rate of 3.6%. As a comparison, we repeated

the experiment with (Tuytelaars and Van-Gool, 2000),

the method we started from. It only managed a 33.3%

detection rate, for a false-positive rate of 4.6%, show-

ing that our approach can substantially boost the per-

formance of standard affine invariant matching proce-

dures.

13.3. Multiple-View Integration

Example cases. We present a few examples on

Coleo, to illustrate the behavior of the multiple-view

integration scheme. Coleo features a complex geom-

etry composed by several curved surfaces. Moreover,

it is covered by ambiguous texture, formed by many

small variations on the same basic pattern, which chal-

lenge the matching process. The model is built from

only 8 views.

On the example of Fig. 16 and 17, the system ini-

tially produces 33 GAMs. Only 9 of the GAMs are

correct, but 4 of them are very large (more than 60

matches) and contain the majority of the correctly

matched regions. The multi-view integration scheme

selects 10 GAMs in the configuration with the maxi-

mal score. All 9 correct GAMs are included, while all

but one of the 24 erroneous GAMs are successfully

detected and discarded. The final recognition score is

1770, which is three times as much as the total num-

ber of matches within the correct GAMs (596). Hence

the confidence about the presence of the object is sig-

nificantly boosted, compared to the simpler approach

taken in Section 13 which just accumulates the number

of matches from all model views as score. Moreover,

when the object is not in the test image, the confidence

score is decreased. As combined effect, the scores as-

signed in the two cases are more separated, which leads

to enhanced discriminative power. Figure 23(a) shows

the final segmentation, as the total area covered by the

10 selected GAMs.
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Figure 23. Coleo cases. (a) The example used in part II. (b) De-

formed case. The raised arm and the deformed chest are successfully

detected. The minor background blobs are due to a few incorrect

GAMs. (c) A challenging case with viewpoint remarkably different

from any model view. (d) Some of the removed GAMs. (e) Close-

up on some of the matches of case b. The regions are all circles in

the left image because they are part of the homogeneous coverage.

The shapes of the constructed correspondences (right) automatically

adapt to the changing surface orientation.

A challenging case is shown in Fig. 23(c). The view-

point is from above, and remarkably different from any

model view. The object appears twice smaller than in

the model views, and is partially occluded by a ball

(head) and a plush wildcat (front). 37 GAMs are ini-

tially produced, out of which 5 are correct and quite

large (43 matches on average). Most of the 32 wrong

ones are composed by few matches. Our method se-

lects all 5 correct GAMs, and 3 small incorrect ones,

thereby effectively removing the large majority of mis-

matches (93%). The recognition score is 581, which is

2.6 times the number of matches in all correct GAMs

(216). Note the quality of the segmentation, which in-

cludes even parts of the tail and the left paw. Figure 23

d shows some of the removed GAMs.

In the case of Fig. 23(b) Coleo is non-rigidly de-

formed. One arm is raised (left of the image), the paws

face each other and the chest is being compressed. Nev-

Figure 24. Effects of additional model views. One of the 4 ad-

ditional views (left), and segmentation for the case of Figure 23c,

when using 12 model views (right). Notice the improvement, e.g.

the head is more complete, and the left paw is included.

ertheless, the system could identify the object (config-

uration score 1270), and included in the segmentation

also the arm and the chest. The paws were missed, be-

cause too occluded (right paw) and turned so as to hide

the bottom part, mostly visible in the model views (left

paw). A closer look at the chest allows to fully appre-

ciate the behavior of the image-exploration technique

(Fig. 23(e)). The pressure applied by the finger causes

considerable distortions of the texture pattern. The sys-

tem responds by altering the shape of each region in

the test image, so as to mirror the wide variation of the

local surface orientation.

Effect of additional model views. Although the

above reported cases are solved satisfactorily based

on 8 model views, it is interesting to inspect the effects

of including more model views. Figure 24 shows one

of the 4 additional model views, which are taken from

above at 90 degrees intervals. Matching also these new

model views to the test image of Fig. 23(c) results in a

total of 60 GAMs, including 9 correct. 8 correct GAMs,

and 10 incorrect ones, are selected by the best config-

uration, giving a score of 2498, almost 5 times the

total size of correct GAMs (511). Not only the score is

much higher than when using 8 model views (581), but

especially the ratio to the number of correct matches

is larger (it was 2.6 before). The score grows faster

than linearly with the number of compatible GAMs,

realizing the idea that since compatible GAMs reveal

consistent hypotheses, the system’s confidence should

quickly grow with them. When more model views are

available, their larger overlap leads to a greater number

of GAMs and a higher degree of their mutual corrob-

oration. More model views means more cooperation

and the proposed approach can effectively measure it.

Besides, the segmentation also marginally improves,

and now covers the left paw and more of the head.
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Figure 25. ROC plot. Adding the multiple-view integration layer

brings significant improvement (thick line) on our dataset.

While including 10 incorrect GAMs might seem a

lot, it must be noted that the other 41 incorrect ones are

filtered out. Moreover, the 10 retained GAMs contain

only a few matches each (3.8 on average) and their total

size makes up only 11% of the mismatches within all

51 incorrect GAMs.

13.3.1. Impact on our dataset. In order to test the

effects of the multiple-view integration scheme on a

larger scale, we have applied it to the whole dataset of

Section 13.1. We have first built models for all 9 ob-

jects, via the procedure of Section 11. Then, the outputs

of all image-exploration matching processes for every

pair of object and test images have been integrated

as explained in Section 12. Notice how the scheme

seamlessly accommodates for objects having only one

model image. In these cases, it naturally reduces to

an advanced two-view filter, which verifies the mutual

compatibilities of GAMs matched between the model

view and the test image. The parameters are kept the

same throughout the whole experiment. The ROC plot

in Fig. 25 shows important improvement over the one

obtained without multiple-view integration. The sys-

tem now attains the excellent performance of 100%

detection, for 3% false-positives.

14. Related Work

Part I: simultaneous object recognition and seg-

mentation. The presented technique belongs to the

category of appearance-based object recognition. Since

it can extend any approach which matches affine in-

variant regions between images, it is tightly related to

this class of methods. The novelties and improvements

brought by our approach are enumerated in the intro-

duction section and demonstrated in the result Section

13.

Beyond the realm of local invariant features, there

are a few works which are related to ours, in that they

also combine recognition with segmentation. Leibe and

Schiele (2004) present a method to detect an unknown

object instance of a given category and segment it from

a test image. The category (e.g. ‘cows’) is learnt from

example instances (images of particular cows). How-

ever, the method does not support changes in camera

viewpoint or orientation. In Yu et al. (2002), low-level

grouping cues based on edge responses, high-level cues

from a part detector and spatial consistency of detected

parts, are combined in a graph partitioning framework.

The scheme is shown to recognize and segment a hu-

man body in a cluttered image. However, the part detec-

tors need a considerable number of training examples,

and the very ‘parts’ to be learned are manually indi-

cated (‘head’, ‘left arm’, etc.). Moreover, there is no

viewpoint, orientation or scale invariance. Both meth-

ods are suited for categorization, and not specialized

in the recognition of a particular object instance.

While we believe our approach to be essentially

new, some components are clearly related to earlier re-

search. The filter in Section 7 is constructed around the

sidedness constraint. A similar constraint, testing the

cyclic ordering of points, was used for wide-baseline

matching in Tell and Carlsson (2002). Moreover, the

‘propagation attempt’ at the heart of the expansion

phases is an evolution of the idea of ‘growing matches’

proposed by Pritchett and Zisserman (1998), Schaffal-

itzky and Zisserman (2002a, b). While they use exist-

ing affine transformations only to guide the search for

further matches, our approach actively generates new

regions, which have not been originally extracted. This

is crucial to counter the repeatability problems stated

in the introduction. Previously, a different, pixel-by-

pixel propagation strategy was proposed in Lhuillier

and Quao (2002), but it is applicable only in case of

small differences between the images.

Part II: integrating multiple model views The

GAM idea is similar in spirit to the work of Selinger and

Nelson (1999), who advocate the benefits of an inter-

mediate perceptual grouping level between primitives

and views. Unlike in their work, here the primitives

being grouped are region matches, rather than contour

fragments. Moreover, GAMs are inherently a two-view

concept, whereas contour fragments are defined in in-

dividual views. Very recently, Lazebnik et al. (2004)
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have proposed to cluster nearby matches into semi-

local groups, coined ‘affine parts’. Since all matches

in one such part are rigidly mapped by a single affine

transformation, they are limited to cover semi-local

planar areas. In contrast, GAMs are more general as

they can cover any smooth surface, be it large, curved

or deformed.

Since finding GAMs is not a goal per se, but rather an

intermediate representation to enable higher level algo-

rithms, their relation to the research world is better un-

derstood when considering our approach to integrating

the contributions of multiple model views for recogni-

tion. If we take a step back from local invariant regions,

and look at the wider world of appearance-based Ob-

ject Recognition, we find much research on modeling

3D objects using multiple training viewpoints. For ex-

ample in the works on aspect graphs (Cyr and Kimia,

2001), or on appearance eigenspaces (Murase and

Nayar, 1995). However, when turning our attention to

local invariant regions, we notice that nearly all works

focus on one model image, or use multiple model im-

ages just independently, without trying to relate them or

exploit their interplay (e.g. Ferrari et al., 2004; Lazeb-

nik et al., 2004; Obrdzalek and Matas, 2002; Schmid,

1996, 1999). Only very few such earlier works try to

capture and exploit the relationships among the model

views. In Lowe (2001), similar model views are clus-

tered, and links are made between corresponding fea-

tures in adjacent clusters. By following the links, a

feature from the test image votes for the view to which

it is matched, and for the adjacent ones. The system

gains robustness, because the votes are not dispersed

among neighboring model views. In comparison to that

work, we believe that our approach offers deeper in-

tegration among the model views. Multiple views ac-

tively cooperate: by reciprocally (in)validating GAMs

arising from different views, they corroborate, or in-

hibit, the hypotheses of correspondence among parts

of the object surface they represent. Moreover, the sys-

tem arrives at a global recognition score, based on all

GAMs and their mutual compatibility as expressed by

the model views. This score grows in presence of com-

patible GAMs, thereby explicitly taking into account

that hypotheses shared by multiple model views more

reliably indicate the presence of the object. The very

organization of region matches into GAMs, which be-

come the new unit of reasoning, is a difference and

novelty of our approach.

In Rothganger et al. (2005), a high degree of

multiple-view integration is reached by building a

3D model of the object, prior to recognition. The

method imposes two-view and multiview geometric

constraints on subsets of matches, and obtains partial

reconstructions by factorization. These partial recon-

structions are then registered in a global frame by align-

ing points common to overlapping subsets. In contrast,

our method does not build a 3D model. This has the

advantage that the selection of model views is less con-

strained. Indeed, not all features need to be visible in at

least two or three views, and the method can work also

with a single view, or with disjoint views. Moreover,

there is no danger of degenerate cases such as views

showing only a single planar part. As an additional

advantage, our method does not make rigidity assump-

tions and is capable of recognizing objects undergoing

non-rigid deformations.

15. Conclusion and Outlook

In the first part of the paper we have presented an

approach to object recognition capable of solving par-

ticularly challenging cases. Its power roots in the ‘im-

age exploration’ technique. Every single correct match

can lead to the generation of many correct matches

covering the smooth surface on which it lies, even

when starting from an overwhelming majority of mis-

matches. Hence, the method can boost the performance

of any algorithm which provides affine regions corre-

spondences, because very few correct initial matches

suffice for reliable recognition. Moreover, the approx-

imate boundaries of the object are found during the

recognition process, and non-rigid deformations are

explicitly taken into account, two features lacking in

competing approaches (e.g. Baumberg, 2000; Lowe,

2004; Mikolajczyk and Schmid, 2002; Obrdzalek and

Matas, 2002; Rothganger et al., 2005; Schaffalitzky

and Zisserman, 2002; Tuytelaars and Van-Gool, 2000).

The second part of the paper introduced the GAM

concept, and extended the recognition scheme to ex-

ploit the relationships among multiple model views to

integrate their contributions during recognition. This

increases the discriminative power due to the higher

scores in positive cases. Moreover, the segmentation

quality improves due to the removal of spurious region

matches. Multi-view integration is achieved without

rigidity assumptions, and without constructing a 3D

model. The heart of the approach, GAMs, are capable

of covering planar, curved or smoothly deformed

surfaces, and posses two fundamental properties



Simultaneous Object Recognition and Segmentation 187

which reveal valuable for the design of higher-level

algorithms. GAMs are useful in several contexts of

computer vision. In Ferrari (2004) and Ferrari et al.

(2004) they are used in a powerful two-view filter,

robust to very high amounts of mismatches. In a sense,

GAMs also form an alternative to the elusive concept

of ‘object parts’, in that they offer a perceptual unit

between the local features and the global object.

Some individual components of the scheme, like the

topological filter and GAMs, are useful in their own

right, and can be used profitably beyond the scope of

this paper.

In spite of the positive points expressed above, our

approach is not without limitations. One of them is

the computational expense: in the current implemen-

tation, a 2.4 Ghz computer takes about 4–5 minutes,

on average, to process a pair of model and test images.

Although we plan a number of speedups, the method

is unlikely to reach the speed of the fastest other sys-

tems (the system of Lowe (2001, 2004) is reported to

perform recognition within seconds). As another limi-

tation, our method is best suited for objects which have

some texture, much like the other recognition schemes

based on invariant regions. Uniform objects (e.g. a bal-

loon) cannot be dealt with and seem out of the reach of

this kind of approaches. They should be addressed by

techniques based on contours (Cyr and Kimia, 2001;

Selinger and Nelson, 1999). Hence, a useful extension

would be to combine some sort of ‘local edge regions’

with the current textured regions. Another interesting

evolution would be to make the multiple-view integra-

tion scheme more active. Currently all model views

are first matched to the test image, with the integration

happening only afterwards. However, we could start

by matching to a single view only and then employ the

model connections to decide if and which other model

view to try out. Finally, using several types of affine in-

variant regions simultaneously, rather than only those

of Tuytelaars and Van-Gool (2000), would push the

performance further upwards.

Notes

1. The R, G, B colorbands range in [0, 255], so sim is within [−4.41,

2]. A value of 1.0 indicates good similarity. In all experiments

the matching thresholds are t1 = 0.6, t2 = 1.0.

2. These values are for an image of 720×576 pixels, and are pro-

portionally adapted for images of other sizes.

3. This is set to 1.3 in all our experiments.

4. In all experiments the radius is set to 1/6 of the image size.

5. This is implemented by selecting the model regions which

strongly overlap (more than 70%) with the image area covered

by the union of the GAM’s regions.

6. These experiments are reported in full detail in Ferrari (2004,

pp. 193–195).

7. The dataset is available at www.vision.ee.ethz.ch/∼ferrari.

8. The kellogs box is used throughout the paper as a case-study.

9. All region extractors and the SIFT descriptor are implemen-

tations of the respective authors. We are grateful to Jiri Matas,

Krystian Mikolajczyk, Andrew Zisserman, Cordelia Schmid and

David Lowe.

10. We have also tried the standard approach, used in Mikola-

jczyk and Schmid (2001, 2003), Obrdzalek and Matas (2002),

Tuytelaars and Van-Gool (2000), which simply matches two

nearest-neighbors if their distance is below a threshold, but it

produced slightly worse results.
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